
CS 458 / 658
Computer Security and Privacy

Module 3
Operating System Security

Spring 2017

3-2

Operating systems

• An operating system allows different users to
access different resources in a shared way

• The operating system needs to control this sharing
and provide an interface to allow this access

• Identification and authentication are required for
this access control

• We will start with memory protection techniques
and then look at access control in more general
terms

3-3

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design



3-4

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-5

History

• Operating systems evolved as a way to allow
multiple users use the same hardware
• Sequentially (based on executives)
• Interleaving (based on monitors)

• OS makes resources available to users if required
by them and permitted by some policy

• OS also protects users from each other
• Attacks, mistakes, resource overconsumption

• Even for a single-user OS, protecting a user from
him/herself is a good thing
• Mistakes, malware

3-6

Protected objects
• Memory

• Data

• CPU

• Programs

• I/O devices (disks, printers, keyboards,...)

• Networks

• OS



3-7

Separation

• Keep one user’s objects separate from other users
• Physical separation

• Use different physical resources for different users
• Easy to implement, but expensive and inefficient

• Temporal separation
• Execute different users’ programs at different times

• Logical separation
• User is given the impression that no other users exist
• As done by an operating system

• Cryptographic separation
• Encrypt data and make it unintelligible to outsiders
• Complex

3-8

Sharing

• Sometimes, users do want to share resources
• Library routines (e.g., libc)
• Files or database records

• OS should allow flexible sharing, not “all or
nothing”
• Which files or records? Which part of a file/record?
• Which other users?
• Can other users share objects further?
• What uses are permitted?

• Read but not write, view but not print (Feasibility?)
• Aggregate information only

• For how long?

3-9

Memory and address protection

• Prevent one program from corrupting other
programs or data, operating system and maybe
itself

• Often, the OS can exploit hardware support for
this protection, so it’s cheap
• See CS 350 memory management slides

• Memory protection is part of translation from
virtual to physical addresses
• Memory management unit (MMU) generates exception

if something is wrong with virtual address or associated
request

• OS maintains mapping tables used by MMU and deals
with raised exceptions



3-10

Protection techniques

• Fence register
• Exception if memory access below address in fence

register
• Protects operating system from user programs
• Single-user OS only

• Base/bounds register pair
• Exception if memory access below/above address in

base/bounds register
• Different values for each user program
• Maintained by operating system during context switch
• Limited flexibility

3-11

Protection techniques

• Tagged architecture
• Each memory word has one or more extra bits that

identify access rights to word
• Very flexible
• Large overhead
• Difficult to port OS from/to other hardware

architectures

• Segmentation

• Paging

3-12

Segmentation

• Each program has multiple address spaces
(segments)

• Different segments for code, data, and stack
• Or maybe even more fine-grained, e.g., different

segments for data with different access restrictions

• Virtual addresses consist of two parts:
• <segment name, offset within segment>

• OS keeps mapping from segment name to its base
physical address in Segment Table
• A segment table for each process

• OS can (transparently) relocate or resize segments
and share them between processes

• Segment table also keeps protection attributes



3-13

Segment table

(Protection attributes are missing)

3-14

Review of segmentation

• Advantages:
• Each address reference is checked for protection by

hardware
• Many different classes of data items can be assigned

different levels of protection
• Users can share access to a segment, with potentially

different access rights
• Users cannot access an unpermitted segment

• Disadvantages:
• External fragmentation
• Dynamic length of segments requires costly

out-of-bounds check for generated physical addresses
• Segment names are difficult to implement efficiently

3-15

Paging

• Program (i.e., virtual address space) is divided into
equal-sized chunks (pages)

• Physical memory is divided into equal-sized chunks
(frames)

• Frame size equals page size
• Virtual addresses consist of two parts:

• <page #, offset within page>
• # bits for offset = log2(page size)

• OS keeps mapping from page # to its base
physical address in Page Table

• Page table also keeps memory protection attributes



3-16

Paging

Source: CS 350 slides

3-17

Review of paging

• Advantages:
• Each address reference is checked for protection by

hardware
• Users can share access to a page, with potentially

different access rights
• Users cannot access an unpermitted page
• Unpopular pages can be moved to disk to free memory

• Disadvantages:
• Internal fragmentation
• Assigning different levels of protection to different

classes of data items not feasible

3-18

x86 architecture

• x86 architecture has both segmentation and
paging
• Linux and Windows use both

• Only simple form of segmentation, helps portability
• Segmentation cannot be turned off on x86

• Memory protection bits indicate no access,
read/write access or read-only access

• Recent x86 processors also include NX (No
eXecute) bit, forbidding execution of instructions
stored in page
• Enabled in Windows XP SP 2 and some Linux distros
• E.g., make stack/heap non-executable

• Does this avoid all buffer overflow attacks?



3-19

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-20

Access control

• Memory is only one of many objects for which OS
has to run access control

• In general, access control has three goals:
• Check every access: Else OS might fail to notice that

access has been revoked

• Enforce least privilege: Grant program access only to
smallest number of objects required to perform a task

• Verify acceptable use: Limit types of activity that can
be performed on an object
• E.g., for integrity reasons (ADTs)

3-21

Access control matrix

• Set of protected objects: O
• E.g., files or database records

• Set of subjects: S
• E.g., humans (users), processes acting on behalf of

humans or group of humans/processes

• Set of rights: R
• E.g., read, write, execute, own

• Access control matrix consists of entries a[s,o],
where s ∈ S, o ∈ O and a[s,o] ⊆ R



3-22

Example access control matrix

File 1 File 2 File 3

Alice orw rx o

Bob r orx

Carol rx

3-23

Implementing access control matrix

• Access control matrix is rarely implemented as a
matrix
• Why?

• Instead, an access control matrix is typically
implemented as
• a set of access control lists

• column-wise representation

• a set of capabilities
• row-wise representation

• or a combination

3-24

Access control lists (ACLs)

• Each object has a list of subjects and their access rights
• File 1: Alice:orw, Bob:r, File 2: Alice:rx, Bob:orx, Carol:rx
• ACLs are implemented in Windows file system (NTFS), user

entry can denote entire user group (e.g., “Students”)
• Classic UNIX file system has simple ACLs. Each file lists its

owner, a group and a third entry representing all other users.
For each class, there is a separate set of rights.
Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

• Which of the following can we do quickly for ACLs?
• Determine set of allowed users per object
• Determine set of objects that a user can access
• Revoke a user’s access right to an object or all objects



3-25

Capabilities

• A capability is an unforgeable token that gives its owner
some access rights to an object
• Alice: File 1:orw, File 2:rx, File 3:o

• Unforgeability enforced by having OS store and
maintain tokens or by cryptographic mechanisms
• E.g., digital signatures (see later) allow tokens to be handed

out to processes/users. OS will detect tampering when
process/user tries to get access with modified token.

• Tokens might be transferable (e.g., if anonymous)
• Some research OSs (e.g., Hydra) have fine-grained

support for tokens
• Caller gives callee procedure only minimal set of tokens

• Answer questions from previous slide for capabilities

3-26

Combined usage of ACLs and cap.

• In some scenarios, it makes sense to use both
ACLs and capabilities
• Why?

• In a UNIX file system, each file has an ACL, which
is consulted when executing an open() call

• If approved, caller is given a capability listing type
of access allowed in ACL (read or write)
• Capability is stored in memory space of OS

• Upon read()/write() call, OS looks at capability to
determine whether type of access is allowed

• Problem with this approach?

3-27

Role-based access control (RBAC)

• In a company, objects that a user can access often
do not depend on the identity of the user, but on
the user’s job function (role) within the company
• Salesperson can access customers’ credit card numbers,

marketing person only customer names

• In RBAC, administrator assigns users to roles and
grants access rights to roles
• Sounds similar to groups, but groups are less flexible

• When a user takes over new role, need to update
only her role assignment, not all her access rights

• Available in many commercial databases



3-28

RBAC extensions

• RBAC also supports more complex access control
scenarios

• Hierarchical roles
• “A manager is also an employee”
• Reduces number of role/access rights assignments

• Users can have multiple roles and assume/give up
roles as required by their current task
• “Alice is a manager for project A and a tester for

project B”
• User’s current session contains currently initiated role

• Separation of Duty
• “A payment order needs to be signed by both a

manager and an accounting person, where the two
cannot be the same person”

3-29

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-30

User authentication

• Computer systems often have to identify and
authenticate users before authorizing them

• Identification: Who are you?

• Authentication: Prove it!
• Identification and authentication is easy among

people that know each other
• For your friends, you do it based on their face or voice

• More difficult for computers to authenticate people
sitting in front of them

• Even more difficult for computers to authenticate
people accessing them remotely



3-31

User authentication

https://xkcd.com/1121/

3-32

Authentication factors

• Four classes of authentication factors
• Something the user knows

• Password, PIN, answer to “secret question”

• Something the user has
• ATM card, badge, browser cookie, physical key,

uniform, smartphone

• Something the user is
• Biometrics (fingerprint, voice pattern, face,. . . )
• Have been used by humans forever, but only recently

by computers

• Something about the user’s context
• Location, time, devices in proximity

3-33

Combination of auth. factors

• Different classes of authentication factors can be
combined for more solid authentication
• Two- or multi-factor authentication

• Using multiple factors from the same class might
not provide better authentication

• “Something you have” can become “something
you know”
• Token can be easily duplicated, e.g., magnetic strip on

ATM card
• Token (“fob”) displays number that changes over time

and that needs to be entered for authentication
• SMS message



3-34

Passwords

• Probably oldest authentication mechanism used in
computer systems

• User enters user ID and password, maybe multiple
attempts in case of error

• Usability problems
• Forgotten passwords might not be recoverable (though

this has been changing recently, see later)
• Entering passwords is inconvenient
• If password is disclosed to unauthorized individual, the

individual can immediately access protected resource
• Unless we use multi-factor authentication

• If password is shared among many people, password
updates become difficult

3-35

Attacks on Passwords

• Shoulder surfing

• Keystroke logging

• Interface illusions / Phishing

• Password re-use across sites

• Password guessing

3-36

Password guessing attacks

• Brute-force: Try all possible passwords using
exhaustive search

• Can test 350 billion Windows NTLM passwords
per second on a cluster of 25 AMD Radeon
graphics cards (see optional reading)

• Can try 958 combinations in 5.5 hours

• Enough to brute force every possible
eight-character password containing upper- and
lower-case letters, digits, and symbols



3-37

Brute-forcing passwords is exponential

http://erratasec.blogspot.ca/2012/08/common-misconceptions-of-password.html

3-38

Password guessing attacks

• Exhaustive search assumes that people choose
passwords randomly, which is often not the case

• Attacker can do much better by exploiting this
• For example, assume that a password consists of a

root and a pre- or postfix appendage
• “password1”, “abc123”, “123abc”

• Root is from dictionaries (passwords from previous
password leaks, names, English words, . . . )

• Appendage is combination of digits, date, single
symbol, . . .

• >90% of 6.5 million LinkedIn password hashes
leaked in June 2012 were cracked within six days

3-39

Password guessing attacks

• So should we just give up on passwords?
• Attack requires that attacker has encrypted

password file or encrypted document
• Offline attack

• Instead, attacker might want to guess your banking
password by trying to log in to your bank’s website
• Online attack

• Online guessing attacks are detectable
• Bank shuts down online access to your bank account

after n failed login attempts (typically n ≤ 5)
• But! How can an attacker circumvent this lockout?



3-40

Choosing good passwords

• Use letters, numbers and special characters
• Choose long passwords

• At least eight characters

• Avoid guessable roots
• If supported, use pass phrase

• Mix upper and lower case, introduce misspellings and
special characters

• Avoid common phrases (e.g., advertisement slogans)

3-41

Password strength

https://xkcd.com/936/

3-42

Password hygiene

• Writing down passwords is more secure than
storing many passwords on a networked computer
or re-using same password across multiple sites
• Unreasonable to expect users to remember long

passwords, especially when changed often
• Requires physical security for password sheet, don’t use

sticky notes

• Change passwords regularly
• Especially if shorter than eight characters
• Should users be forced to change their password?
• Leads to password cycling and similar

• “myFavoritePwd” -> “dummy” -> “myFavoritePwd”
• goodPwd.”1” -> goodPwd.”2” -> goodPwd.”3”



3-43

Changing passwords

Copyright Tamedia, Switzerland

3-44

Password hygiene

• Have site-specific passwords
• Don’t reveal passwords to others

• In email or over phone
• If your bank really wants your password over the phone,

switch banks

• Studies have shown that people disclose passwords for
a cup of coffee, chocolate, or nothing at all
• Caveat of these studies?

• Don’t enter password that gives access to sensitive
information on a public computer (e.g., Internet
café)
• Don’t do online banking on them
• While travelling, forward your email to a free Webmail

provider and use throwaway (maybe weak) password

3-45

Attacks on password files

• Website/computer needs to store information
about a password in order to validate entered
password

• Storing passwords in plaintext is dangerous, even
when file is read protected from regular users
• Password file might end up on backup tapes
• Intruder into OS might get access to password file
• System administrator has access to file and might use

passwords to impersonate users at other sites
• Many people re-use passwords across multiple sites



3-46

Storing password fingerprints

• Store only a digital fingerprint of the password
(using a cryptographic hash, see later) in the
password file

• When logging in, system computes fingerprint of
entered password and compares it with user’s
stored fingerprint

• Still allows offline guessing attacks when password
file leaks

3-47

Defending against guessing attacks

• UNIX makes guessing attacks harder by including
user-specific salt in the password fingerprint
• Salt is initially derived from time of day and process ID

of /bin/passwd
• Salt is then stored in the password file in plaintext

• Two users who happen to have the same password
will likely have different fingerprints

• Makes guessing attacks harder, can’t just build a
single table of fingerprints and passwords and use
it for any password file

3-48

Defending against guessing attacks

• Don’t use a standard cryptographic hash (like
SHA-1 or SHA-512) to compute the stored
fingerprint

• They are relatively cheap to compute
(microseconds)

• Instead use an iterated hash function that is
expensive to compute (e.g., bcrypt) and maybe
also uses lots of memory (e.g., scrypt)
• Hundreds of milliseconds

• This slows down a guessing attack significantly,
but is barely noticed when a users enters his/her
password



3-49

Defending against guessing attacks

• An additional defense is to use a MAC (see later),
instead of a cryptographic hash

• A MAC mixes in a secret key to compute the
password fingerprint

• If the fingerprints leak, guessing attacks aren’t
useful anymore

• Can protect the secret key by embedding it in
tamper resistant hardware

• If the key does leak, the scheme remains as secure
as a scheme based on a cryptographic hash

3-50

Password Recovery

• A password cannot normally be recovered from a
hash value (fingerprint)

• If password recovery is desired, it is necessary to
store an encrypted version of the password in the
password file

• We need to keep encryption key away from
attacker

3-51

Password Recovery

• As opposed to fingerprints, this approach allows
the system to (easily) re-compute a password if
necessary
• E.g., have system email password in the clear to

predefined email address when user forgets password
• This has become the norm for many websites
• In fact, some people use this reminder mechanism

whenever they want to log in to a website

• There are many problems with this approach!



3-52

The Adobe Password Hack (November
2013)

• In November 2013, 130 million encrypted
passwords for Adobe accounts were revealed.

• The encryption mechanism was the following:
1 First a NUL byte was appended to the password.
2 Next, additional NUL bytes were appended as required

to make the length a multiple of 8 bytes.
3 Then the padded passwords were encrypted 8

characters at a time using a fixed key. (This is called
ECB mode and it is the weakest possible encryption
mode.)

• The password hints were not encrypted.
• It turns out that many passwords can be

decrypted, without breaking the encryption and
not knowing the key.

3-53

The Adobe Password Hack (cont.)

XKCD dubbed this ”the greatest crossword puzzle in
the history of the world”: http://xkcd.com/1286/.

3-54http://xkcd.com/1286



3-55

Interception attacks

• Attacker intercepts password while it is in
transmission from client to server

• One-time passwords make intercepted password
useless for later logins
• Fobs (see earlier)
• Challenge-response protocols

3-56

Challenge-response protocols

• Server sends a random challenge to a client

• Client uses challenge and password to compute a
one-time password

• Client sends one-time password to server

• Server checks whether client’s response is valid

• Given intercepted challenge and response, attacker
might be able to brute-force password

3-57

Interception attacks

• There are cryptographic protocols (e.g., SRP) that
make intercepted information useless to an
attacker

• On the web, passwords are transmitted mostly in
plaintext
• Sometimes, digital fingerprint of them
• Encryption (TLS, see later) protects against

interception attacks on the network

• Alternative solutions are difficult to deploy
• Patent issues, changes to HTTP protocol, hardware

• And don’t help against interception on the client
side
• Malware



3-58

Android unlock patterns

3-59

Graphical passwords

• Graphical passwords are an alternative to
text-based passwords

• Multiple techniques, e.g.,
• User chooses a picture; to log in, user has to re-identify

this picture in a set of pictures
• User chooses set of places in a picture; to log in, user

has to click on each place

• Issues similar to text-based passwords arise
• E.g., choice of places is not necessarily random

• Shoulder surfing becomes a problem

• Ongoing research

3-60

Graphical passwords

http://www.usenix.org/events/sec07/tech/thorpe.html



3-61

Server authentication

• With the help of a password, system authenticates
user (client)

• But user should also authenticate system (server)
else password might end up with attacker!

• Classic attack:
• Program displays fake login screen
• When user “logs in”, programs prints error message,

sends captured user ID/password to attacker, and ends
current session (which results in real login screen)

• That’s why Windows trains you to press
<CTRL-ALT-DELETE> for login, key combination
cannot be overridden by attacker

• Today’s attack:
• Phishing

3-62

Biometrics

• Biometrics have been hailed as a way to get rid of
the problems with password and token-based
authentication

• Unfortunately, they have their own problems
• Idea: Authenticate user based on physical

characteristics
• Fingerprints, iris scan, voice, handwriting, typing

pattern,. . .

• If observed trait is sufficiently close to previously
stored trait, accept user
• Observed fingerprint will never be completely identical

to a previously stored fingerprint of the same user

3-63

Local vs. remote authentication

• Biometrics work well for local authentication, but
are less suited for remote authentication or for
identification

• In local authentication, a guard can ensure that:
• I put my own finger on a fingerprint scanner, not one

made out of gelatin
• I stand in front of a camera and don’t just hold up a

picture of somebody else

• In remote authentication, this is much more
difficult



3-64

Authentication vs. identification

• Authentication: Does a captured trait correspond
to a particular stored trait?

• Identification: Does a captured trait correspond to
any of the stored traits?
• Identification is an (expensive) search problem, which is

made worse by the fact that in biometrics, matches are
based on closeness, not on equality (as for passwords)

• False positives can make biometrics-based
identification useless
• False positive: Alice is accepted as Bob
• False negative: Alice is incorrectly rejected as Alice

3-65

Biometrics-based identification

• Example (from Bruce Schneier’s “Beyond Fear”):
• Face-recognition software with (unrealistic) accuracy of

99.9% is used in a football stadium to detect terrorists
• 1-in-1,000 chance that a terrorist is not detected
• 1-in-1,000 chance that innocent person is flagged as

terrorist

• If one in 10 million stadium attendees is a known
terrorist, there will be 10,000 false alarms for every real
terrorist

• Remember “The Boy Who Cried Wolf”?

• After pilot study, German FBI recently concluded
that this kind of surveillance is useless
• Average detection accuracy was 30%

3-66

Other problems with biometrics

• Privacy
• Why should my employer (or a website) have

information about my fingerprints, iris,..?
• Aside: Why should a website know my date of birth, my

mother’s maiden name,. . . for “secret questions”?

• What if this information leaks? Getting a new
password is easy, but much more difficult for biometrics

• Accuracy: False negatives are annoying
• What if there is no other way to authenticate?
• What if I grow a beard, hurt my finger,. . . ?

• Secrecy: Some of your biometrics are not
particularly secret
• Face, fingerprints,...



3-67

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-68

Trusted operating systems

• Trusting an entity means that if this entity
misbehaves, the security of the system fails

• We trust an OS if we have confidence that it
provides security services, i.e.,

• Memory and file protection
• Access control and user authentication

3-69

Trusted operating systems

Typically a trusted operating system builds on four
factors:

• Policy: A set of rules outlining what is secured and
why

• Model: A model that implements the policy and
that can be used for reasoning about the policy

• Design: A specification of how the OS implements
the model

• Trust: Assurance that the OS is implemented
according to design



3-70

Trusted software

• Software that has been rigorously developed and
analyzed, giving us reason to trust that the code
does what it is expected to do and nothing more

• Functional correctness
• Software works correctly

• Enforcement of integrity
• Wrong inputs don’t impact correctness of data

• Limited privilege
• Access rights are minimized and not passed to others

• Appropriate confidence level
• Software has been rated as required by environment

• Trust can change over time, e.g., based on
experience

3-71

Security policies
• Many OS security policies have their roots in

military security policies
• That’s where lots of research funding came from

• Each object/subject has a sensitivity/clearance
level
• “Top Secret” > “Secret” > “Confidential” >

“Unclassified”
where “>” means “more sensitive”

• Each object/subject might also be assigned to one
or more compartments
• E.g., “Soviet Union”, “East Germany”
• Need-to-know rule

• Subject s can access object o iff level(s) ≥ level(o)
and compartments(s) ⊇ compartments(o)
• s dominates o, short “s ≥ o”

3-72

Example

• Secret agent James Bond has clearance “Top
Secret” and is assigned to compartment “East
Germany”

• Can he read a document with sensitivity level
“Secret” and compartments “East Germany” and
“Soviet Union”?

• Which documents can he read?



3-73

Commercial security policies

• Rooted in military security policies
• Different classification levels for information

• E.g., external vs. internal

• Different departments/projects can call for
need-to-know restrictions

• Assignment of people to clearance levels typically
not as formally defined as in military
• Maybe on a temporary/ad hoc basis

3-74

Other security policies

• So far we’ve looked only at confidentiality policies

• Integrity of information can be as or even more
important than its confidentiality
• E.g., Clark-Wilson Security Policy
• Based on well-formed transactions that transition

system from a consistent state to another one
• Also supports Separation of Duty (see RBAC slides)

• Another issue is dealing with conflicts of interests
• Chinese Wall Security Policy
• Once you’ve decided for a side of the wall, there is no

easy way to get to the other side

3-75

Chinese Wall security policy
• Once you have been able to access information

about a particular kind of company, you will no
longer be able to access information about other
companies of the same kind
• Useful for consulting, legal or accounting firms
• Need history of accessed objects
• Access rights change over time

• ss-property: Subject s can access object o iff each
object previously accessed by s either belongs to
the same company as o or belongs to a different
kind of company than o does

• *-property: For a write access to o by s, we also
need to ensure that all objects readable by s either
belong to the same company as o or have been
sanitized



3-76

Example

• Fast Food Companies = {McDonalds, Wendy’s}
• Book Stores = {Chapters, Amazon}
• Alice has accessed information about McDonalds

• Bob has accessed information about Wendy’s
• ss-property prevents Alice from accessing

information about Wendy’s, but not about
Chapters or Amazon
• Similar for Bob

• Suppose Alice could write information about
McDonalds to Chapters and Bob could read this
information from Chapters
• Indirect information flow violates Chinese Wall Policy
• *-property forbids this kind of write

3-77

Security models

• Many security models have been defined and
interesting properties about them have been proved

• Unfortunately, for many models, their relevance to
practically used security policies is not clear

• We’ll focus on two prominent models
• Bell-La Padula Confidentiality Model
• Biba Integrity Model

• Targeted at Multilevel Security (MLS) policies,
where subjects/objects have
clearance/classification levels

3-78

Lattices

• Dominance relationship ≥ defined in military
security model is transitive and antisymmetric

• Therefore, it defines a partial order (neither a ≥ b
nor b ≥ a might hold for two levels a and b)

• In a lattice, for every a and b, there is a unique
lowest upper bound u for which u ≥ a and u ≥ b
and a unique greatest lower bound l for which a ≥
l and b ≥ l

• There are also two elements U and L that
dominate/are dominated by all levels
• U = (“Top Secret”, {“Soviet Union”, “East

Germany”})
L = (“Unclassified”, ∅)



3-79

Example lattice

(U, ∅)

(S, ∅)

(TS, ∅)

SU = Soviet Union
Sensitivity levels:

TS = Top Secret

S = Secret

Compartments:

EG = East Germany

U = Unclassified

(TS, {SU})

(TS, {SU, EG})

(S, {SU, EG}) (TS, {EG})

(S, {EG})

(U, {EG})

(U, {SU, EG})(S, {SU})

(U, {SU})

3-80

Bell-La Padula confidentiality model

• Regulates information flow in MLS policies, e.g.,
lattice-based ones

• Users should get information only according to
their clearance

• Should subject s with clearance C(s) have access
to object o with sensitivity C(o)?

• Underlying principle: Information can only flow up

• ss-property (“no read up”): s should have read
access to o only if C(s) ≥ C(o)

• *-property (“no write down”): s should have write
access to o only if C(o) ≥ C(s)

3-81

Example
• No read up is straightforward
• No write down avoids the following leak:

• James Bond reads secret document and summarizes it
in a confidential document

• Miss Moneypenny with clearance “confidential” now
gets access to secret information

• In practice, subjects are programs (acting on
behalf of users)
• Else James Bond couldn’t even talk to Miss

Moneypenny
• If program accesses secret information, OS ensures that

it can’t write to confidential file later
• Even if program does not leak information
• Might need explicit declassification operation for

usability purposes



3-82

Biba integrity model

• Prevent inappropriate modification of data

• Dual of Bell-La Padula model

• Subjects and objects are ordered by an integrity
classification scheme, I(s) and I(o)

• Should subject s have access to object o?
• Write access: s can modify o only if I(s) ≥ I(o)

• Unreliable person cannot modify file containing high
integrity information

• Read access: s can read o only if I(o) ≥ I(s)
• Unreliable information cannot “contaminate” subject

3-83

Low Watermark Property

• Biba’s access rules are very restrictive, a subject
cannot ever read lower integrity object

• Can use dynamic integrity levels instead
• Subject Low Watermark Property:

If subject s reads object o, then I(s) = glb(I(s), I(o)),
where glb() = greatest lower bound

• Object Low Watermark Property:
If subject s modifies object o, then I(o) = glb(I(s), I(o))

• Integrity of subject/object can only go down,
information flows down

3-84

Review of Bell-La Padula & Biba

• Very simple, which makes it possible to prove
properties about them
• E.g., can prove that if a system starts in a secure state,

the system will remain in a secure state

• Probably too simple for great practical benefit
• Need declassification
• Need both confidentiality and integrity, not just one
• What about object creation?

• Information leaks might still be possible through
covert channels in an implementation of the model



3-85

Information flow control

• An information flow policy describes authorized
paths along which information can flow

• For example, Bell-La Padula describes a
lattice-based information flow policy

• In compiler-based information flow control, a
compiler checks whether the information flow in a
program could violate an information flow policy

• How does information flow from a variable x to a
variable y?

• Explicit flow: E.g., y:= x; or y:= x / z;

• Implicit flow: If x = 1 then y := 0;

else y := 1

3-86

Information flow control (cont.)

• Input parameters of a program have a
(lattice-based) security classification associated
with them

• Compiler then goes through the program and
updates the security classification of each variable
depending on the individual statements that
update the variable (using dynamic BLP/Biba)

• Ultimately, a security classification for each
variable that is output by the program is computed

• User (more likely, another program) is allowed to
see this output only if allowed by the user’s
(program’s) security classification

3-87

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design



3-88

Trusted system design elements
• Design must address which objects are accessed

how and which subjects have access to what
• As defined in security policy and model

• Security must be part of design early on
• Hard to retrofit security, see Windows 95/98

• Eight design principles for security
• Least privilege

• Operate using fewest privileges possible

• Economy of mechanism
• Protection mechanism should be simple and

straightforward

• Open design
• Avoid security by obscurity
• Secret keys or passwords, but not secret algorithms

3-89

Security design principles (cont.)

• Complete mediation
• Every access attempt must be checked

• Permission based / Fail-safe defaults
• Default should be denial of access

• Separation of privileges
• Two or more conditions must be met to get access

• Least common mechanism
• Every shared mechanism could potentially be used as a

covert channel

• Ease of use
• If protection mechanism is difficult to use, nobody will

use it or it will be used in the wrong way

3-90

Blacklist vs whitelist



3-91

Security features of trusted OS

• Identification and authentication
• See earlier

• Access control

• Object reuse protection

• Complete mediation

• Trusted path

• Accountability and audit

• Intrusion detection

3-92

Access control

• Mandatory access control (MAC)
• Central authority establishes who can access what
• Good for military environments
• For implementing Chinese Wall, Bell-La Padula, Biba

• Discretionary access control (DAC)
• Owners of an object have (some) control over who can

access it
• You can grant others access to your home directory
• e.g., UNIX and Windows

• RBAC is neither MAC nor DAC

• Possible to use combination of these mechanisms

3-93

Object reuse protection
• Alice allocates memory from OS and stores her

password in this memory
• After using password, she returns memory to OS

• By calling free() or simply by exiting procedure if
memory is allocated on stack

• Later, Bob happens to be allocated the same piece
of memory and he finds Alice’s password in it

• OS should erase returned memory before handing
it out to other users

• Defensive programming: Erase sensitive data
yourself before returning it to OS
• How can compiler interfere with your good intentions?

• Similar problem exists for files, registers and
storage media



3-94

Hidden data

• Hidden data is related to object reuse protection

• You think that you deleted some data, but it is still
hidden somewhere
• Deleting a file will not physically erase file on disk
• Deleting an email in GMail will not remove email from

Google’s backups
• Deleting text in MS Word might not remove text from

document
• Putting a black box over text in a PDF leaves text in

PDF
• Shadow Copy feature of Windows 7 keeps file

snapshots to enable restores

3-95

Complete mediation / trusted path

• Complete mediation
• All accesses must be checked
• Preventing access to OS memory is of little use if it is

possible to access the swap space on disk

• Trusted path
• Give assurance to user that her keystrokes and mouse

clicks are sent to legitimate receiver application
• Remember the fake login screen?
• Turns out to be quite difficult for existing desktop

environments, both Linux and Windows
• Don’t run sudo if you have an untrusted application

running on your desktop

3-96

Accountability and audit

• Keep an audit log of all security-related events
• Provides accountability if something goes bad

• Who deleted the sensitive records in the database?
• How did the intruder get into the system?

• An audit log does not give accountability if
attacker can modify the log

• At what granularity should events be logged?
• For fine-grained logs, we might run into

space/efficiency problems or finding actual attack can
be difficult

• For coarse-grained logs, we might miss attack entirely
or don’t have enough details about it



3-97

Intrusion detection

• There shouldn’t be any intrusions in a trusted OS

• However, writing bug-free software is hard, people
make configuration errors,. . .

• Audit logs might give us some information about
an intrusion

• Ideally, OS detects an intrusion as it occurs

• Typically, by correlating actual behaviour with
normal behaviour

• Alarm if behaviour looks abnormal

• See later in Network Security module

3-98

Trusted computing base (TCB)

• TCB consists of the part of a trusted OS that is
necessary to enforce OS security policy
• Changing non-TCB part of OS won’t affect OS

security, changing its TCB-part will
• TCB better be complete and correct

• TCB can be implemented either in different parts
of the OS or in a separate security kernel

• Separate security kernel makes it easier to validate
and maintain security functionality

• Security kernel runs below the OS kernel, which
makes it more difficult for an attacker to subvert it

3-99

Security kernel



3-100

Rings

• Some processors support this kind of layering
based on “rings”

• If processor is operating in ring n, code can access
only memory and instructions in rings ≥ n

• Accesses to rings < n trigger interrupt/exception
and inner ring will grant or deny access

• x86 architecture supports four rings, but Linux and
Windows use only two of them
• user and supervisor mode
• i.e., don’t have security kernel

• Some research OSs (Multics, SCOMP) use more

3-101

Reference monitor

• Crucial part of the TCB

• Collection of access controls for devices, files,
memory, IPC,. . .

• Not necessarily a single piece of code

• Must be tamperproof, unbypassable and analyzable

• Interacts with other security mechanism, e.g., user
authentication

3-102

Virtualization

• Virtualization is a way to provide logical separation
(isolation)

• Different degrees of virtualization
• Virtual memory

• Page mapping gives each process the impression of
having a separate memory space

• Virtual machines
• Also virtualize I/O devices, files, printers,. . .
• Currently very popular (VMware, Xen, Parallels,...)
• If Web browser runs in a virtual machine, browser-based

attacks are limited to the virtual environment
• On the other hand, a rootkit could make your OS run

in a virtual environment and be very difficult to detect
(“Blue Pill”)



3-103

Application Insulation
• Memory encryption techniques allow application

shielding from other apps, OS, some hardware
attacks

• Application is partitioned into trusted and
untrusted code.

• Trusted code segment is encrypted in memory
using a key living in secure hardware (close to
CPU)

• Untrusted code talks with trusted code via
compact API

• Trusted computing base is reduced to secure
hardware, CPU and (hopefully small) trusted code

• Two examples: Intel SGX and ADM memory
encryption

3-104

Least privilege in popular OSs

• Pretty poor

• Windows pre-NT: any user process can do anything
• Windows pre-Vista: fine-grained access control.

However, in practice, many users just ran as
administrators, which can do anything
• Some applications even required it

• Windows Vista
• Easier for users to temporarily acquire additional access

rights (“User Account Control”)
• Integrity levels, e.g., Internet Explorer is running at

lowest integrity level, which prevents it from writing up
and overwriting all a user’s files

3-105

Least privilege in popular OSs (cont.)

• Traditional UNIX: a root process has access to
anything, a user process has full access to user’s
data

• SELinux and AppArmor provide Mandatory Access
Control (MAC) for Linux, which allows the
implementation of least privilege
• No more root user
• Support both confidentiality and integrity
• Difficult to set up

• Other, less invasive approaches for UNIX
• Chroot, compartmentalization, SUID (see next slides)

• What about the iPhone?



3-106

Chroot

• Sandbox/jail a command by changing its root
directory
• chroot /new/root command

• Command cannot access files outside of its jail

• Some commands/programs are difficult to run in a
jail

• But there are ways to break out of the jail

3-107

Compartmentalization
• Split application into parts and apply least privilege

to each part
• OpenSSH splits SSH daemon into a privileged

monitor and an unprivileged, jailed child
• Confusingly, this option is called

UsePrivilegeSeparation. But this is different from
Separation of Privileges (see earlier)

• Child receives (maybe malicious) network data
from a client and might get corrupted

• Child needs to contact monitor to get access to
protected information (e.g., password file)
• Small, well-defined interface
• Makes it much more difficult to also corrupt monitor

• Monitor shuts down child if behaviour is suspicious

3-108

setuid/suid bit

• In addition to bits denoting read, write and execute
access rights, UNIX ACLs also contain an suid bit

• If suid bit is set for an executable, the executable
will execute under the identity of its owner, not
under the identity of the caller
• /usr/bin/passwd belongs to root and has suid bit set
• If a user calls /usr/bin/passwd, the program will

assume the root identity and can thus update the
password file

• Make sure to avoid “confused deputy” attack
• Eve executes /usr/bin/passwd and manages to

convince the program that it is Alice who is executing
the program. Eve can thus change Alice’s password



3-109

Assurance

• How can we convince others to trust our OS?
• Testing

• Can demonstrate existence of problems, but not their
absence

• Might be infeasible to test all possible inputs
• Penetration testing: Ask outside experts to break into

your OS

• Formal verification
• Use mathematical logic to prove correctness of OS
• Has made lots of progress recently
• Unfortunately, OSs are probably growing faster in size

than research advances

3-110

Assurance (cont.)

• Validation
• Traditional software engineering methods
• Requirements checking, design and code reviews,

system testing

3-111

Evaluation

• Have trusted entity evaluate OS and certify that
OS satisfies some criteria

• Two well-known sets of criteria are the “Orange
Book” of the U.S. Department of Defence and the
Common Criteria

• Orange Book lists several ratings, ranging from
“D” (failed evaluation, no security) to “A1”
(requires formal model of protection system and
proof of its correctness, formal analysis of covert
channels)
• See text for others
• Windows NT has C2 rating, but only when it is not

networked and with default security settings changed
• Most UNIXes are roughly C1



3-112

Common criteria

• Replace Orange Book, more international effort

• Have Protection Profiles, which list security
threats and objectives

• Products are rated against these profiles

• Ratings range from EAL 1 (worst) to EAL 7 (best)
• Windows XP has been rated EAL 4+ for the

Controlled Access Protection Profile (CAPP),
which is derived from Orange Book’s C2
• Interestingly, the continuous release of security patches

for Windows XP does not affect its rating

3-113

Recap

• Protection in general-purpose operating systems

• User authentication

• Security policies and models

• Trusted operating system design


