
Modelnet Howto
David Becker and Ken Yocum <(becker,grant)@cs.duke.edu>

version 0.99

Copyright Notice

Copyright © 2003 Duke University. All rights reserved. See COPYING for license statement.

Most files in this distribution are licensed under the terms of the GNU General Public License
(GPL), see COPYING for the full license statement.

For the convenience of users who are porting OSes and applications to run as ModelNet edge
nodes, certain files in this distribution are not subject to the GPL when distributed separately
or included in software packages outside this distribution. Instead we specify the more relaxed
BSD-style license. Affected files include the libipaddr in the tools directory. In all such cases,
license terms are stated at the top of the file.

i

Contents

1 Modelnet Overview and Requirements 1

1.1 Overview . 1

1.2 Cluster requirements . 2

1.3 Downloads and Related Packages . 2

1.3.1 FreeBSD support . 3

1.3.2 Debian support . 3

1.3.3 Fedora Core 2 support . 3

1.3.4 gexec . 4

2 Installing Modelnet 5

2.1 Binary packages . 5

2.2 Building Modelnet from source . 6

2.3 Installing Modelnet from source . 6

2.4 Custom FreeBSD kernel . 6

2.5 Build and Install gexec . 7

3 Generating a Model Network 9

3.1 Creating the graph and route files . 9

3.1.1 Using inet2xml to generate graph file . 9

3.1.2 XML graph file format . 11

3.1.3 Creating the route file from the graph file 12

3.2 Creating the machines and model files . 12

CONTENTS ii

4 Deploying a Model Network 13

4.1 Sudo support . 13

4.2 Manual Deployment . 13

4.3 Automated Deployment . 14

5 Running experiments on a Model Network 15

5.1 Running Programs on a Virtual Node . 15

5.2 vnrun . 15

5.3 libipaddr . 16

6 Validating and Troubleshooting Modelnet 17

1

Chapter 1

Modelnet Overview and Requirements

Modelnet software and documentation are beta.

Modelnet emulates wide-area network conditions for testing distributed applications, such as
peer to peer systems or content distribution networks, within a local area network.

This document explains how to:

• Build and install Modelnet - ‘Installing Modelnet’ on page 5

• Create a target network topology to emulate - ‘Generating a Model Network’ on page 9

• Deploy the topology on the host cluster - ‘Deploying a Model Network’ on page 13

• Run an application across Modelnet - ‘Running experiments on a Model Network’ on
page 15

1.1 Overview

Modelnet is designed to run on a machine room cluster to evaluate wide area distriubted sys-
tems. One or more of the cluster machines is set aside for traffic emulation, while the remainder
can be used to operate as nodes in the application. When these node communicate with each
other, those IP packets are sent through the emulators to create the illusion that application
packets are crossing the wide area Internet.

To use Modelnet, a virtual network topology must first be created. This virtual network is
what the application traffic will experience. The topology contains all the links and nodes
of the virtual network and spedifies the link characteristics including bandwidth, queueing,
propagation delay, and drop rate. Modelnet includes tools to create these target topologies.

Modelnet emulates a target topology by forwarding all application packets to central network
emulation machines. Using the source and destination IP addresses, the emulators determine a
path through the virtual topology and handle the packets according to that path. Each hop on

Chapter 1. Modelnet Overview and Requirements 2

this path has certain bandwidth, queueing, propagation delay, and drop characteristics. This
hop-by-hop emulation subjects the IP traffic to realistic wide area effects including congestion.
The packet emulation work all occurs in real time with millisecond accuracy.

Application hosts are configured with IP aliases on a private subnet (typically the 10.0.0.0/8
network) dedicated to Modelnet emulation. These end hosts send packets over the emula-
tion subnet to the central emulation machines. Applications make their IP traffic go through
Modelnet simply by using the IP addresses from the emulation subnet’s address space.

For many distributed systems and virtual networks, a typical cluster machine has far more
CPU power and network bandwidth than a single instance of the application requires. Model-
net takes advantage of this by creating, possibly, hundreds of virtual nodes on each application
host. The application machines have an IP alias (from the emulation subnet) for each virtual
node it hosts. Modelnet provides a dynamic library to force all application packets to go out to
an emulator, even if they are addressed to another virtual node on that same host. Modelnet
includes tools to assist executing applications on large numbers of virtual nodes.

1.2 Cluster requirements

A Modelnet cluster can be as small as two machines; one emulator running FreeBSD, and one
machine hosting the virtual nodes. We have successfully hosted virtual nodes on Linux, Xen-
Linux, Solaris and FreeBSD. The crucial feature required to host a virtual node is IP aliasing.
With IP aliases, entries can be added to the route table so the host properly handles Modelnet
IP packets.

In practice, at Duke we use Linux Debian machines to host virtual nodes, and so this distri-
bution has the most support for that system in terms of scripts and automation. However we
have also used ModelNet with Fedora Core 2 distributions, and include notes on the proper
packages for that installation.

A LAN with gigabit ethernet links to the emulators gets the best utilization. A gigahertz or
faster CPU with a gigabit ethernet NIC on a 64/66MHz PCI slot is a good match to get the
most traffic through each emulator.

1.3 Downloads and Related Packages

• Modelnet (http://issg.cs.duke.edu/modelnet) - the current release page for
Modelnet.

• FreeBSD (http://www.FreeBSD.org) - the emulator nodes must run 4.5-RELEASE
or newer 4.x kernel. Also, for fine grain timing accuracy, a custom FreeBSD kernel is
required to change the clock hertz to 10KHz. Here are the 4.8 ISO images (ftp://ftp.
FreeBSD.org/pub/FreeBSD/ISO-IMAGES-i386/4.8).

• Boost Graph Library (http://www.boost.org/libs/graph/doc)

http://issg.cs.duke.edu/modelnet
http://www.FreeBSD.org
ftp://ftp.FreeBSD.org/pub/FreeBSD/ISO-IMAGES-i386/4.8
ftp://ftp.FreeBSD.org/pub/FreeBSD/ISO-IMAGES-i386/4.8
http://www.boost.org/libs/graph/doc

Chapter 1. Modelnet Overview and Requirements 3

• Xerces XML Parser (http://xml.apache.org/xerces-c/) for C++.

• Perl modules

– Graph 0.20105 (http://search.cpan.org/dist/Graph/)

– Heap (http://search.cpan.org/author/JMM/Heap-0.50/)

– XML::Simple (http://search.cpan.org/author/GRANTM/XML-Simple-2.
07/lib/XML/Simple.pm)

ModelNet requires version 0.2xxxx of the Perl Graph library. See the CPAN site link in the
previous section for downloading the right Graph package. The system should be able to
build the user-level tools against version 1_32 of the boost library on FreeBSD 4.10, Debian,
and Redhat 9.0.

1.3.1 FreeBSD support

For FreeBSD hosts, the package ftp page (ftp://ftp5.freebsd.org/pub/FreeBSD/
ports/packages/All) has the latest perl modules and gexec dependencies. Set the
PACKAGESITEenvironment variable to this URL (trailing / is significant)

ftp://ftp.freebsd.org/pub/FreeBSD/ports/packages/Latest/

To download,

pkg_add -r p5-XML-Simple linuxthreads libgnugetopt boost xerces-c2

You will need to install the p5-Graph (version 0.20105) package off of the CPAN web site.

1.3.2 Debian support

For Debian hosts, the current testing release(sarge) has the boost and XML libraries. apt-
get these packages: libxerces23-dev libboost-graph-dev libxml-simple-perl
libssl-dev For the woody(stable) version of Debian, libxerces21-dev is available via apt-
get in the Modelnet debian download tree.

1.3.3 Fedora Core 2 support

For Fedora hosts, you will need to install the following package versions:
xerces-c-devel-2.5.0-1.n0i.1 openssl-0.9.7a-35 boost-devel-1.31.0-7
perl-XML-Simple-2.12-1.1 perl-Graph-0.20105

Openssl, boost, perl-XML-Simple, can be found using yum. However Xerces and Graph can
be installed separately from these sites:

http://xml.apache.org/xerces-c/
http://search.cpan.org/dist/Graph/
http://search.cpan.org/author/JMM/Heap-0.50/
http://search.cpan.org/author/GRANTM/XML-Simple-2.07/lib/XML/Simple.pm
http://search.cpan.org/author/GRANTM/XML-Simple-2.07/lib/XML/Simple.pm
ftp://ftp5.freebsd.org/pub/FreeBSD/ports/packages/All
ftp://ftp5.freebsd.org/pub/FreeBSD/ports/packages/All

Chapter 1. Modelnet Overview and Requirements 4

• http://ftp.iasi.rdsnet.ro/mirrors/reb00t.com/fedora-2/RPMS

• http://rpmfind.net/linux/RPM/dag/fedora/1/i386/perl-Graph-0.20105-
1.1.fc1.rf.noarch.html

1.3.4 gexec

For large scale remote root execution, Modelnet is designed to use gexec and sudo. See ‘Build
and Install gexec’ on page 7 and ‘Running Programs on a Virtual Node’ on page 15.

• gexec (http://www.theether.org/gexec) | authd (http://www.theether.
org/authd) | libe (http://www.theether.org/libe)

• Modelnet gexec patch (http://issg.cs.duke.edu/modelnet/gexec-0.3.5-1)

• OpenSSL (http://www.openssl.org/)

http://www.theether.org/gexec
http://www.theether.org/authd
http://www.theether.org/authd
http://www.theether.org/libe
http://issg.cs.duke.edu/modelnet/gexec-0.3.5-1
http://www.openssl.org/

5

Chapter 2

Installing Modelnet

2.1 Binary packages

Modelnet binary packages are available for Debian and FreeBSD systems. For Debian woody
(stable), add these lines to /etc/apt/sources.list:

deb http://issg.cs.duke.edu/modelnet/debian woody main
deb-src http://issg.cs.duke.edu/modelnet/debian woody main

For Debian sarge (testing), add these lines to /etc/apt/sources.list:

deb http://issg.cs.duke.edu/modelnet/debian sarge main
deb-src http://issg.cs.duke.edu/modelnet/debian sarge main

and install with apt-get :

apt-get install modelnet

This will pull in on the related libraries and perl modules from the regular Debian distribution
sites.

For FreeBSD, a kernel modification is strongly recommended (see ‘Custom FreeBSD kernel’ on
the following page). Also the prerequistie packages must be downloaded first (see ‘FreeBSD
support’ on page 3). To download the Modelnet package set the PACKAGESITEenvironment
variable to this URL (trailing / is significant)

ftp://ftp.cs.duke.edu/pub/modelnet/FreeBSD/

To download,

pkg_add -r authd gexec modelnet

Chapter 2. Installing Modelnet 6

2.2 Building Modelnet from source

Unpack the distribution with tar -

tar xfz modelnet-0.0.tar.gz

On Linux and FreeBSD, configure and build in your OS-specific object directories -

cd modelnet-0.0

For Linux:

mkdir linux
cd linux
../configure
gmake

On FreeBSD, the modelnet.ko module is already built and included in the distribution file.
However if you do want to build the kernel module from source then you need to tell configure
where your kernel sources are. If you want to use the included .ko, just run configure with no
options.

mkdir freebsd
cd freebsd
../configure --with-fbsdsys=/freebsd/4.XX/src/sys/
gmake

2.3 Installing Modelnet from source

Since modelnet has components that need to execute on several different OSs, its easiest to
install to a local disk. The default prefix set by configure is /usr/local, so this would happen
by default. An alternative is to configure with a prefix in nfs space. Either way, the prefixes
must be consistent across all the hosts for the remote execution scripts to operate successfully.

gmake install

2.4 Custom FreeBSD kernel

For the best fidelity in the emulated network links, the FreeBSD kernel on the emulators needs
the clock rate set to 10000 Hertz. In FreeBSD, the HZ parameter is a config time parameter so
you have to build a kernel to change it from the default of 100Hz.

Chapter 2. Installing Modelnet 7

See the FreeBSD Handbook (http://www.FreeBSD.org/doc/en_US.ISO8859-1/
books/handbook/kernelconfig.html) chapter on configuring kernels for full details of
configuring, building and installing a FreeBSD kernel.

To set HZ, add a line to the conf file in sys/i386/conf that says

options HZ=10000

Briefly, to build a kernel run config conf_filein the conf dir, then make in the sys/compile dir
for that configure, and finally copy kernel to / and reboot.

2.5 Build and Install gexec

Unpack gexec and patch it. The Modelnet patch allows the gexec system to on FreeBSD hosts.

tar xfz libe-0.2.2.tar.gz
tar xfz authd-0.2.1.tar.gz
tar xfz gexec-0.3.5.tar.gz
patch -p0 < modelnet.patch

libe needs to be built both on a linux host and freebsd host and installed only on the build
hosts.

cd libe-0.2.2
mkdir linux
cd linux
../configure
make
make install

authd needs to be built and configure both on a linux host and a freebsd host. It needs to be
configured and run on all hosts in the emulation cluster.

cd authd-0.2.1
mkdir linux
cd linux
../configure
make
make install

Create and distribute a cluster key pair as describe on the authd page (http://www.
theether.org/authd/). Then authd can be started on all nodes. It is meant to be run at
boottime and includes a redhat style startup script that goes in /etc/init.d.

gexecd needs to be built both on a linux host and a freebsd host. It needs to be run on all hosts
in the emulation cluster. gexecd can be started from inetd or run stand-alone at startup.

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
http://www.theether.org/authd/
http://www.theether.org/authd/

Chapter 2. Installing Modelnet 8

cd gexec-0.3.5
mkdir linux
cd linux
../configure
make
make install

The deploy command (‘Automated Deployment’ on page 14) relies on all hosts in the cluster
running gexecd and authd.

9

Chapter 3

Generating a Model Network

To run a modelnet network, you must create several XML files:

• graph - lists the nodes and links of the virtual network

• route - contains route data for paths through the virtual network

• machines - lists the machines that can be emulators or host virtual nodes.

• model - matches nodes and links to host machines and emulator machines

Modelnet operation requires the route and model file. The graph and machines files are used
to create the route and model files. Perl tools are included to create these files, and these tools
can be modified to suite particular objectives.

3.1 Creating the graph and route files

The first step to using Modelnet is to create a target network topology to emulate. The topol-
ogy can be created by generation tools, such as Inet (http://topology.eecs.umich.
edu/inet/), BRITE (http://cs-www.bu.edu/faculty/matta/Research/BRITE), or
GT-ITM (http://www.cc.gatech.edu/projects/gtitm), or from actual network mea-
surements, such as the RON data (http://nms.lcs.mit.edu/ron/data/) from MIT. The
current version of Modelnet directly supports the Inet tool. Many situations call for custom
topologies. In that case, the perl tools can be modified to generate a graph file according to
whatever virtual network topology is required.

3.1.1 Using inet2xml to generate graph file

Modelnet includes a perl tool to convert Inet output to a graph file, and set the link parameters
for all the edges in the virtual network topology. This example creates a network of 4000 nodes
plus 100 clients attached among 25 stubs spread throughout the toplogy. The links will be
given default characteristics.

http://topology.eecs.umich.edu/inet/
http://topology.eecs.umich.edu/inet/
http://cs-www.bu.edu/faculty/matta/Research/BRITE
http://www.cc.gatech.edu/projects/gtitm
http://nms.lcs.mit.edu/ron/data/

Chapter 3. Generating a Model Network 10

inet -n 4000 | inet2xml -p 100 among 25 stubs > example.graph

inet2xml can assign values for bandwidth, latency, and drop rate, for four type of links (GT-
ITM style link names): ’client-stub’, ’stub-stub’, ’stub-transit’, ’transit-transit’. Link paramter
definitions:

• bandwidth - kilobits per second

• latency - milliseconds of delay per packet. Can be infered from length of link in those
topologies that specify node coordinates.

• drop rate - fraction of packets that are dropped. Does not include those dropped due to
queue overflows.

Node type definitions:

• transit node - node in the virtual network topology corresponding to a router in the wide
area internet.

• stub node - a gateway for client nodes to the access the network

• client node - edge node in the virtual network corresponding to an computer attached to
the wide area internet

• virtual node - sysnonymous with client node. Each VN is assigned an IP address in the
modeled network. Modelnet emulates the end-to-end traffic between VNs.

Link type definitions:

• client-stub - connects a virtual node to an interior node at the edge of the virtual network.
Corresponds to a link from a computer to a gateway router.

• stub-stub - connects two nodes at the edge of the virtual network

• stub-transit - connects a stub node to transit node. Correspond to a link from a site (an
AS) to a backbone network.

• transit-transit - corresponds to links within or between backbone networks.

With inet2xml , you can specify all the link parameters for all the links types, or give a min-
max range where inet2xml randomly picks a value.

usage: inet2xml [-l] [-q qcnt] -p <vncnt> among <stubcnt> stubs
[<link type> <kbps bw> <ms delay> <drop fraction>]+ |
[min-<link type> <kbps bw> <ms delay> <drop fraction>

max-<link type> <kbps bw> <ms delay> <drop fraction>]

Chapter 3. Generating a Model Network 11

-l Set delay based on link lengths derived from inet node location
-q qcnt

Queue length for on all links. Default is 10
-p <vncnt> among <stubcnt> stubs

Create <vncnt> virtual nodes spread among <stubcnt> stubs
<link type>

Types can be: client-stub stub-stub stub-transit transit-transit
<kbps bw>

integer kilobits per second
<ms delay>

integer milliseconds of link latency
<drop fraction>

real value from fraction of packets dropped

3.1.2 XML graph file format

The graph file has 3 subsections: vertices, edges and specs. For this example, take a simple
graph that has one link connecting two nodes, then attach one client node to one node and
two clients to the other node. This graph then has two stub nodes, three clients nodes, and 8
uni-directional edges connecting them. The resulting XML graph file is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<topology>

<vertices>
<vertex int_idx="0" role="gateway" />
<vertex int_idx="1" role="gateway" />
<vertex int_idx="2" role="virtnode" int_vn="0" />
<vertex int_idx="3" role="virtnode" int_vn="1" />
<vertex int_idx="4" role="virtnode" int_vn="2" />

</vertices>
<edges>

<edge int_dst="1" int_src="2" int_idx="0" specs="client-stub" int_delayms="1" />
<edge int_dst="2" int_src="1" int_idx="1" specs="client-stub" dbl_kbps="768" />
<edge int_dst="1" int_src="3" int_idx="2" specs="client-stub" />
<edge int_dst="3" int_src="1" int_idx="3" specs="client-stub" />
<edge int_dst="0" int_src="4" int_idx="4" specs="client-stub" />
<edge int_dst="4" int_src="0" int_idx="5" specs="client-stub" />
<edge int_dst="1" dbl_len="1" int_src="0" int_idx="0" specs="stub-stub" />
<edge int_dst="0" dbl_len="1" int_src="1" int_idx="1" specs="stub-stub" />

</edges>
<specs >

<client-stub dbl_plr="0" dbl_kbps="64" int_delayms="100" int_qlen="10" />
<stub-stub dbl_plr="0" dbl_kbps="1000" int_delayms="20" int_qlen="10" />

</specs>

Chapter 3. Generating a Model Network 12

</topology>

The <specs> section of each <edge> can be overridden on a per-edge basis. Any link param-
eter expressly stated as an <edge> attribute overrides the value in the associated <specs> .
For example, edge 0 overrides the delay to be 1ms and edge 1 overrides the bandwidth to be
768 Kbit/s.

3.1.3 Creating the route file from the graph file

The route file store the shortest paths across the virtual network for all pairs of virtual nodes.

allpairs example.graph > example.route

3.2 Creating the machines and model files

The machines file is written by hand to list the machines available to be emulators or host vir-
tual nodes. This example is for cluster of 3 machines name larry, curly and moe and designates
them as an emulator and two hosts.

<?xml version="1.0" encoding="ISO-8859-1"?>
<hardware>
<emul hostname="larry"/>
<host hostname="curly"/>
<host hostname="moe"/>
</hardware>

The model file is create by the mkmodel perl script. mkmodel assigns the virtual nodes to
hosts, and assigns links to emulators.

mkmodel example.graph example.machines > example.model

13

Chapter 4

Deploying a Model Network

Once the model and route files are created, the emulation cluster can be configured to be the
virtual network. Root access on all machines is required for this operation. With a handful of
machines, it is feasible to manually setup Modelnet.

Modelnet requires all machines in the emulation cluster have the XML::Simple (http:
//search.cpan.org/author/GRANTM/XML-Simple-2.07/lib/XML/Simple.pm) perl
module installed.

4.1 Sudo support

Root access is required to deploy a network topology. Using sudo, this access can be fine tuned
and password-free. The deploy scripts assume sudo is configured on each machine used for
Modelnet.

For controlled access, the /etc/sudoers (or /usr/local/etc/sudoers on FreeBSD) can specify
the Modelnet commands. Add these lines to sudoers, for password-free access:

Host_Alias MODELHOSTS = larry moe curly
User_Alias MODELERS = login names go here
Cmnd_Alias MODELCMDS = /sbin/ifconfig, /sbin/route, \

/sbin/kldload, /sbin/kldunload, /sbin/ipfw, /sbin/sysctl, \
/usr/local/bin/modelload, /usr/local/bin/ipfwload

MODELERS MODELHOSTS = NOPASSWD: MODELCMDS

To test your sudo access, do sudo -l

4.2 Manual Deployment

Modelnet can be deployed by logging in to each host, and running the deployhost command.
This commond configures all the virtual IP addresses, routes, and loads the topology into the

http://search.cpan.org/author/GRANTM/XML-Simple-2.07/lib/XML/Simple.pm
http://search.cpan.org/author/GRANTM/XML-Simple-2.07/lib/XML/Simple.pm

Chapter 4. Deploying a Model Network 14

emulator.

deployhost example.model example.route

Once deployhost has run on every machine in the hosts file, the system is ready to emulate
the virtual network.

4.3 Automated Deployment

For large emulations, deployment can be automated as a a single command when gexec remote
access to the cluster is available. See ‘Build and Install gexec’ on page 7.

deploy example.model example.route

The deploy can be run on any node in the gexec cluster.

15

Chapter 5

Running experiments on a Model
Network

5.1 Running Programs on a Virtual Node

Once a network topology is deployed onto the emulation hardware, the system is live and
it can test a distributed application. All packets an edge node transmits with a source and
destination IP in the 10.0.0.0/8 network will be sent its emulator. This requires that the src and
dst IP be set correctly. Modelnet provides libipaddr to control the IP addresses applications
use.

5.2 vnrun

vnrun will execute a program on a virtual node, or on all virtual nodes. It creates an environ-
ment that make sure the source address is set correctly for any internet sockets. The example
runs the date program on all virtual nodes listed in example.model.

vnrun all example.model gnutella

A copy of gnutella is run on every virtual node. If the gnutella program opens a socket,
the IP source address will be set according the virtual running that instance of gnutella.

vnrun can also start a single instance of an application if a virtuan node number is given
instead of “all”.

usage: vnrun [-d] < VN# | all > <file.model> <command>

Chapter 5. Running experiments on a Model Network 16

5.3 libipaddr

libipaddr has only been tested on linux glibc-2.2.5

vnrun uses libipaddr to make applications use the correct IP addresses. libipaddr is a
shared library so it requires that applications are dynamically linked executables. For Unix
systems, it relies on the LD_PRELOADof ld.so to interpose its own version of socket related
system calls. Typical applications do not explicitly set the source IP address. The libipaddr
versions of bind(2) , sendto(2) and other syscalls explicitly set the source and destination
IP addresses.

The libipaddr does not work with static binaries or with RAW sockets. In particular, ping
uses RAW sockets and therefore cannot have its addresses manipulated by libipaddr . Test
connections with netperf or some other higher level application than ping(8) .

libipaddr sets the source address to be the address in the environment variable SRCIP. Using
sh syntax:

$ LD_PRELOAD=prefix/lib/libipaddr.so SRCIP=10.0.0.1 netperf -H 10.0.1.1

The netperf packets transmitted with have a source IP of 10.0.0.1. Server processes, eg.
netserver , address return packets simply by swapping the source and destination addresses.
This means pure server processes do not need the libipaddr system calls.

Packets being sent between two virtual nodes on the same edge node must be prevented from
going through the loopback interface. This is why the destination IP address is also set by
libipaddr . This forces packets to actually go to the emulator when the destination virtual
node happens to reside on the same host as source virtual node. This is done by turning on
bit 23 of the destination address. Since the 10.128.0.0/24 subnet does not reside on the host
with the 10.0.0.0/24 net, it will send the packet to the emulator all other packets for 10.0.0.0/8.
In this example, even though 10.0.0.1 and 10.0.0.2 are on the same host, the netperf packets in
both directions will go through the emulator

$ LD_PRELOAD=prefix/lib/libipaddr.so SRCIP=10.0.0.1 netperf -H 10.0.0.2

The emulator turn off bit 23 of the destination IP. If 23 was set, it will turn it on in the source IP
address before delivering the packet to the edge node with the destination virtual node. This
is so servers will automatically send replies with bit 23 set. So again, pure servers do not need
libipaddr PRELOAD-ed. This feature is the default behavior of libipaddr . To disable this
feature, define the environment variable KEEP_DSTIP.

17

Chapter 6

Validating and Troubleshooting
Modelnet

The configuration for Modelnet itself, and the experimental distributed applications that use
it, are complex systems that must be validated to confirm it is all working as expected.

netperf (http://www.netperf.org/) is the handiest tool to validate link performance. Use
it with libipaddr (‘libipaddr’ on the facing page)to confirm link bandwidth of the virtual topol-
ogy with both TCP and UDP packets.

Check mbuf limits, netstat -m , on forwarders. Check systat -ip , on forwarders for
packet throughput.

http://www.netperf.org/

	Modelnet Overview and Requirements
	Overview
	Cluster requirements
	Downloads and Related Packages
	FreeBSD support
	Debian support
	Fedora Core 2 support
	gexec

	Installing Modelnet
	Binary packages
	Building Modelnet from source
	Installing Modelnet from source
	Custom FreeBSD kernel
	Build and Install gexec

	Generating a Model Network
	Creating the graph and route files
	Using inet2xml to generate graph file
	XML graph file format
	Creating the route file from the graph file

	Creating the machines and model files

	Deploying a Model Network
	Sudo support
	Manual Deployment
	Automated Deployment

	Running experiments on a Model Network
	Running Programs on a Virtual Node
	vnrun
	libipaddr

	Validating and Troubleshooting Modelnet

