
CS 458 / 658: Computer Security and Privacy

Module 5 – Security and Privacy of Internet Applications

Part 1 – Basics of Cryptography

Fall 2022

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Module outline

1 Introduction to cryptography

2 Secret-key Cryptography

3 Public-key Cryptography

4 Integrity

5 Authentication

2 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Cryptology

Cryptology is a science that studies:
Cryptography (“secret writing”): Making secret messages

Turning plaintext (an ordinary readable message) into ciphertext (secret messages
that are “hard” to read)

Cryptanalysis: Breaking secret messages

Recovering the plaintext from the ciphertext

The point of cryptography is to send secure messages over an insecure medium
(like the Internet)

Cryptanalysis studies cryptographic systems to look for weaknesses or leaks of
information

3 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

The scope of these lectures

The goal of the cryptography unit in this course is to show you what cryptographic
tools exist, and information about using these tools in a secure manner

We won’t be showing you details of how the tools work

For that, see CO 487, chapter 2 of van Oorschot’s textbook, or chapter 2.3 of
Pfleeger’s textbook

4 / 272

https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf
https://learning-oreilly-com.proxy.lib.uwaterloo.ca/library/view/security-in-computing/9780134085074/ch02.xhtml#ch02lev1sec3
https://learning-oreilly-com.proxy.lib.uwaterloo.ca/library/view/security-in-computing/9780134085074/ch02.xhtml#ch02lev1sec3

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Cast of Characters

When talking about cryptography, we often use a standard cast of characters

(Honest) communicating parties Adversaries

Alice Bob Carol Dave Eve Mallory

Eve: a passive eavesdropper who can listen to transmitted messages

Mallory: an active Man-In-The-Middle, who can listen to, and modify, insert, or
delete, transmitted messages.

There are others: Trent (a Trusted Third Party), Peggy (a prover), Victor (a
verifier), etc.

5 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Building blocks

Cryptography contains three major types of components
Confidentiality components

Preventing Eve from reading Alice’s messages

Integrity components

Preventing Mallory from modifying Alice’s messages without being detected

Authenticity components

Preventing Mallory from impersonating Alice

6 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Kerckhoff’s principle

Kerckhoff’s principle: a cryptosystem should be secure, even if everything about the
system, except the key, is public knowledge.

Shannon’s maxim: one ought to design systems under the assumption that the
enemy will immediately gain full familiarity with them.

So don’t use “secret” encryption methods (security by obscurity)

Have public algorithms that use a secret key as input

It’s easy to change the key; it’s usually just a smallish number

7 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Kerckhoffs’ principle

Kerckhoffs’ principle has a number of implications:

The system is at most as secure as the number of keys

Eve can just try them all, until she finds the right one

Many times, there are shortcuts to finding the key

Example: newspaper cryptogram has 403,291,461,126,605,635,584,000,000
possible keys

But you don’t try them all; it’s way easier than that!

8 / 272

https://www.wordplays.com/daily-cryptogram

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Daily cryptogram

9 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Daily cryptogram

10 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Strong cryptosystems

What information do we assume the attacker (Eve) has when she’s trying to break
our system?

She may:

Know the algorithm
Know some part of the plaintext
Know a number (maybe a large number) of corresponding plaintext/ciphertext pairs
Have access to an encryption and/or decryption oracle

And we still want to prevent Eve from learning the key!

11 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Module outline

1 Introduction to cryptography

2 Secret-key Cryptography

3 Public-key Cryptography

4 Integrity

5 Authentication

12 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Secret-key encryption

Secret-key encryption is the simplest form of cryptography

Also called symmetric encryption

Used for thousands of years

The key Alice uses to encrypt the message is the same as the key Bob uses to
decrypt it

Encrypt Decrypt
M C M

K K

13 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Secret-key encryption

Eve, not knowing the key, should not be able to recover the plaintext

Encrypt Decrypt
? C ?

14 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Vernam Cipher

Encrypts one bit at a time by XOR’ing the plaintext with the key:

Plaintext (t bits): M = [m1,m2, . . . ,mt]

Key (t bits): K = [k1, k2, . . . , kt]

Ciphertext (t bits): C = [c1, c2, . . . , ct] = [m1,m2, . . . ,mt]⊕ [k1, k2, . . . , kt]

XOR reminder:

0⊕ 0 = 0 0⊕ 1 = 1 1⊕ 0 = 1 1⊕ 1 = 0

Q: How do we decrypt?

A: [m1,m2, . . . ,mt] = [c1, c2, . . . , ct]⊕ [k1, k2, . . . , kt]

If K is randomly chosen and never reused, Vernam cipher is called One-Time Pad
15 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

One-time Pad

Vernam cipher: C = M ⊕ K

If K is randomly chosen and never reused, this is called One-Time Pad

This provides Information-Theoretic security.

Q: Why does “try every key” not work here?

A: Because, given a ciphertext C , for every possible message M, there exist a key K
that could have generated that ciphertext.

Q: Does this provide integrity?

16 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

One-time Pad

Vernam cipher: C = M ⊕ K

If K is randomly chosen and never reused, this is called One-Time Pad

Q: If your boss stores your salary (in binary) encrypted with a one time pad, and you
have access to the ciphertext, what can you do with it?

A: You can XOR a “100000 . . . ”. This flips the most significant bit, which most likely
will be zero.

The one-time pad is very hard to use correctly:

The key must be truly random, not pseudorandom
Keys would have to be shared in person, or sent by courier.
The key must never be used more than once!

A “two-time pad” is insecure!

17 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Computational security

In contrast to One-Time Pad’s “perfect” or “information-theoretic” security, most
cryptosystems have “computational” security.

This means that it’s certain they can be broken, given enough work by Eve

How much is “enough”?

At worst, Eve tries every key

How long that takes depends on how long the keys are
But it only takes this long if there are no “shortcuts”!

18 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Trying every key: some data points

These are some estimates for RC5:

One computer can try about 17 million keys per second: 1.7 · 107 keys/second.

A medium-sized corporate or research lab may have 100 computers: 1.7 · 109
keys/second.

The Bitcoin network computes 258 million terahashes per second as of Oct 2022.
If the hardware could be used to try decrypting with a key in the same time,
that’s ≈ 2.6 · 1020 keys/second.

19 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

40-bit crypto

This was the US legal export limit for a long time (cryptosystems were classified
as munitions until the late 90’s)

240 ≈ 1 · 1012 possible keys

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns

20 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

56-bit crypto

This was the US government standard (DES) for a long time

256 ≈ 7.2 · 1026

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
56-bit 134 years 16 months 0.22 ms

21 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

128-bit crypto

This is the modern standard

2128 ≈ 3.4 · 1038

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
56-bit 134 years 16 months 0.22 ms
128-bit 6.3 · 1023 years 6.3 · 1021 years 4.1 · 1010 years

4.1 · 1010 years: around 3 times larger than the age of the universe, around 4.2
times larger than the expected lifetime of the sun.

22 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Well, we cheated a bit

This isn’t really true, since computers get faster over time

A better strategy for breaking 128-bit crypto is just to wait until computers get 288

times faster, then break it on one computer in 18 hours.

How long do we wait? Moore’s law says 132 years.

If we believe Moore’s law will keep on working, we’ll be able to break 128-bit crypto
in 132 years (and 18 hours) :-)

Q: Do we believe this?

Q: What about quantum computers? (Shor’s Algorithm)

23 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

An even better strategy

24 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Types of secret-key cryptosystems

Secret-key cryptosystems come in two major classes

Stream ciphers

Block ciphers

25 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Stream ciphers

A stream cipher operates one bit at a time.
Basically, take the One-Time Pad, but use a pseudorandom keystream instead of a
truly random one

Pseudorandom
Keystream
Generator

⊕
Plaintext

Ciphertext

Key Keystream

RC4 was the most common stream cipher on the Internet but deprecated.
ChaCha increasingly popular (Chrome and Android), and SNOW3G in mobile
phone networks.

26 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Issues of Two-time Pad

Q: What happens if you use the same key (therefore, same keystream) to encrypt two
messages? C1 = M1 ⊕ K , C2 = M2 ⊕ K

A: We can XOR the ciphertexts: C1 ⊕ C2 = (M1 ⊕ K)⊕ (M1 ⊕ K) = M1 ⊕M2

Q: Why is this an issue?

A: Messages are not purely random!

C1 C2 C1 ⊕ C2 M2 M1
27 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Stream ciphers

Stream ciphers can be very fast

This is useful if you need to send a lot of data securely

But they can be tricky to use correctly!

We saw the issues of re-using a key! (two-time pad)
Solution: concatenate key with nonce (we’ll see more about nonces later)

Pseudorandom
Keystream
Generator

⊕Plaintext

Ciphertext

Key || nonce Keystream

WEP, PPTP are great examples of how not to use stream ciphers.

28 / 272

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
https://www.schneier.com/wp-content/uploads/2015/12/paper-pptpv2.pdf

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Block ciphers

Note that stream ciphers operate on the message one bit at a time

What happens in a stream cipher if you change just one bit of the plaintext?

We can also use block ciphers

Block ciphers operate on the message one block at a time
Blocks are usually 64 or 128 bits long

AES is the block cipher everyone should use today

Unless you have a really, really good reason

29 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Block ciphers

Block ciphers work like this:

Encrypt

1 block of plaintext

1 block of ciphertext

If the plaintext is smaller than one block: padding.

If the plaintext is larger than one block: the choice of what to do with multiple
blocks is called the mode of operation of the block cipher

30 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Electronic Code Book (ECB) mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...

Electronic Code Book (ECB): encrypt each successive
block separately

Q: What happens if the plaintext M has some blocks that
are identical, Mi = Mj?

A: Ci = EK (Mi), Cj = EK (Mj) =⇒ Ci = Cj

This reveals patterns in the ciphertext...

=⇒

31 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Improving ECB (v1)

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...
...

We can provide “feedback” among
different blocks, to avoid repeating
patters.

Q: Does this avoid repeating patterns?
Any issues here?

A: We can un-do the XOR if we get all the
ciphertexts. This basically does not
improve compared to ECB.

32 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Improving ECB (v2)

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...
...

Q: Does this avoid repeating patterns among blocks?
Any issues here?

Q: What would happen if we encrypt the message twice
with the same key?

A: C1 = EK (M), C2 = EK (M) =⇒ C1 = C2

We could change the key... but there’s a better way

33 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Cipher Block Chaining (CBC) mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

IV

...
...

...
...

Q: Does this solve the issue of encrypting equal blocks?
Does this solve the issue of encrypting equal
messages/plaintexts?

A: Yes! This is called CBC mode

Q: Can we share IV in the clear?

A: Yes!!

An initialization vector might also be called as a nonce
(number used once) or a salt.

34 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Modes of operation

There are different modes of operation. Common ones include Cipher Block
Chaining (CBC), Counter (CTR), and Galois Counter (GCM) modes

Patterns in the plaintext are
no longer exposed because
these modes involve some
kind of “feedback” among
different blocks.

But you need an IV

35 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Key exchange

How do Alice and Bob share the secret key?

Meet in person; diplomatic courier
In general this is very hard

Or, we invent new technology...

36 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Module outline

1 Introduction to cryptography

2 Secret-key Cryptography

3 Public-key Cryptography

4 Integrity

5 Authentication

37 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Public-key cryptography

Invented (in public) in the 1970’s

Also called asymmetric cryptography

Allows Alice to send a secret message to Bob without any prearranged shared secret!
In secret-key cryptography, the same (or a very similar) key encrypts the message
and also decrypts it
In public-key cryptography, there’s one key for encryption, and a different key for
decryption!

Some common examples:

RSA, ElGamal, ECC, NTRU, McEliece

38 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Public-key cryptography

How does it work?

1 Bob creates a key pair (ek , dk)

2 Bob gives everyone a copy of his public encryption key ek
3 Alice uses it to encrypt a message, and sends the encrypted message to Bob
4 Bob uses his private decryption key dk to decrypt the message

Eve can’t decrypt it; she only has the encryption key ek
Neither can Alice!
It must be hard to derive dk from ek

So with this, Alice just needs to know Bob’s public key in order to send him secret
messages

These public keys can be published in a directory somewhere

39 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Public-key cryptography

Encrypt Decrypt
M C M

dkek

40 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Textbook RSA

First popular public-key encryption method (published in 1977)

Relies on the practical difficulty of the factoring problem: given the product of
two large prime numbers n = p · q, it is very hard to factor n.

Modular arithmetic: integer numbers that “wrap around”

High-level idea:

It is easy to find large integers e, d , and n, such that:

(me)d ≡ m (mod n)

But knowing e and n (and even m), it is extremely hard to find d .

41 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Textbook RSA (simplified)

Choose two large primes p and q (these are secret).

Compute n = p · q.
“Choose” a number e, and find d such that

(me)d ≡ m (mod n)

(This is easy since we know p and q)

Public key: (e, n)

Private key: d (other numbers can be discarded)

Encryption: c ≡ me (mod n)

Decryption: cd (mod n)

Note that the
decryption works.

Factoring n breaks
this!

This is textbook
RSA, never do this!!
(we’ll see one of the
reasons next)

42 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Example of Textbook RSA

Choose primes p and q

n = pq

Find e and d (using “math
magic”)

Public key: (e, n)

Private key: d

Encryption:
c ≡ me (mod n)

Decryption:
m ≡ cd (mod n)

Q: Example (very small RSA): p = 53, q = 101,
e = 139, d = 1459.

Compute n.

Compute C1 = Ee(1011). Verify the decryption works.

Compute C2 = Ee(4). Verify the decryption works.

Compute Dd (C1 · C2). What is happening? Why?

A: The decryption is the product of the original
plaintexts. (m1)

e · (m2)
e ≡ (m1 ·m2)

e .

Malleability: it is possible to transform a ciphertext
into another ciphertext that decrypts to a related
plaintext.
This is typically (but not always!) undesirable.

43 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Chosen Ciphertext Attack

Choose primes p and q

n = pq

Find e and d (using “math
magic”)

Public key: (e, n)

Private key: d

Encryption:
c ≡ me (mod n)

Decryption:
m ≡ cd (mod n)

Chosen Ciphertext Attack

We are Eve. Alice is using RSA and her public
key is (e, n).

Bob sends a super-secret message m,
encrypted as c = Ee(m). We intercept c.

Alice is convinced her textbook RSA is very
secure, so she is willing to decrypt any
ciphertext we send her (except for c), and send
us the decryption back.

Can we ask Alice to decrypt something else
that helps us guess m?

44 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Chosen Ciphertext Attack

Choose primes p and q

n = pq

Find e and d (using “math
magic”)

Public key: (e, n)

Private key: d

Encryption:
c ≡ me (mod n)

Decryption:
m ≡ cd (mod n)

Chosen Ciphertext Attack: solution

Alice’s public key (e, n).

Bob sends c1 = Ee(m). We intercept c1.

We ask Alice to decrypt, e.g., c2 = 2e · c1.

This decryption yields (2e · c1)d ≡ 2m.

We divide the result by 2, and we get m.

Textbook RSA is vulnerable against chosen
ciphertext attacks (among other things)

We can fix this with padding techniques
(OAEP).

45 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Public key sizes

Recall that if there are no shortcuts, Eve would have to try 2128 things in order to
read a message encrypted with a 128-bit key

Unfortunately, all of the public-key methods we know do have shortcuts

Eve could read a message encrypted with a 128-bit RSA key with just 233 work,
which is easy!
If we want Eve to have to do 2128 work, we need to use a much longer public key

46 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Public key sizes

Comparison of key sizes for roughly equal strength

AES RSA ECC

80 1024 160
116 2048 232
128 2600 256
160 4500 320
256 14000 512

47 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Hybrid cryptography

Secret-key cryptography: shorter keys, faster, same key to encrypt and decrypt.

Public-key cryptography: longer keys, slower, different key to encrypt and decrypt.

But public-key cryptography is very convenient!

We can get the best of both worlds:

Pick a random 128-bit key K for a secret-key cryptosystem
Encrypt the large message with the key K (e.g., using AES)
Encrypt the key K using a public-key cryptosystem
Send the encrypted message and the encrypted key to Bob

This hybrid approach is used for almost every cryptography application on the
Internet today

48 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Knowledge check!

Public-key params:
(eA, dA)

Secret-key params:
K

Public-key params:
(eB , dB)

Secret-key params:
?

Encrypt/decrypt functions: Ekey (·), Dkey (·)
Alice wants to send a large message m to Bob.

Q: How does Alice build the message? How does Bob recover the message?

Remember: public-key crypto is slow!! We don’t want to use it on m.

A: Alice computes c1 = EeB (K), c2 = EK (m) and sends ⟨c1||c2⟩.
Bob recovers K = DdB (c1) and then m = DK (c2).

49 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Is that all there is?

We know how to “send secret messages”, and Eve cannot do anything about it.
What else is there to do?

Mallory can modify our encrypted messages in transit!
Mallory won’t necessarily know what the message says, but can still change it in an
undetectable way

e.g. bit-flipping attack on stream ciphers

This is counterintuitive, and often forgotten

How do we make sure that Bob gets the same message Alice sent?

50 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Module outline

1 Introduction to cryptography

2 Secret-key Cryptography

3 Public-key Cryptography

4 Integrity

5 Authentication

51 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Integrity components

How do we tell if a message has changed in transit?

Simplest answer: use a checksum

For example, add up all the bytes of a message
The last digits of serial numbers (credit card, ISBN, etc.) are usually checksums
Alice computes the checksum of the message, and sticks it at the end before
encrypting it to Bob. When Bob receives the message and checksum, he verifies that
the checksum is correct.

52 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Checksum does not work!

With most checksum methods, Mallory can easily change the message in such a
way that the checksum stays the same

We need a “cryptographic” checksum

It should be hard for Mallory to find a second message with the same checksum as
any given one

53 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a fixed length
string y = h(x) called a message digest

Common examples: MD5, SHA-1, SHA-2, SHA-3 (AKA Keccak, from 2012 on)

Hash functions should have three properties:
1 Preimage-resistance:

Given y , it’s hard to find x such that h(x) = y (i.e., a “preimage” of x)

2 Second preimage-resistance:

Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′) (i.e., a “second preimage” of
h(x)). Note that x is fixed, we have to find x ′.

3 Collision-resistance:

It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′) (a “collision”).
Note that we have free choice of x and x ′.

54 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

What is “hard”?

For SHA-1, for example, it takes 2160 work to find a preimage or second preimage,
and 280 work to find a collision using a brute-force search

However, there are faster ways than brute force to find collisions in SHA-1 or MD5

Collisions are always easier to find than preimages or second preimages due to the
well-known birthday paradox

If there are n people in a room, what is the probability that at least two people have
the same birthday?
For 23 people, the probability is larger than 50%!
For 40 people, it’s almost 90%!!
For 60 people, it’s more than 99%!!!

55 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Let’s use a hash function!

[m, h(m)] ???

Assume we don’t care about confidentiality now, just integrity.

Q: What can Mallory do to change the message?

A: Just change it and compute the new message digest herself!

[m, h(m)] [m′, h(m′)]

56 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Let’s use a hash function!

[EK (m), h(EK (m))] ???

Now we also care about confidentiality

Q: What can Mallory do to change the message?

A: Just change it and compute the new message digest herself!

[EK (m), h(EK (m))] [m′, h(m′)]

57 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Cryptographic hash functions

Hash functions provide integrity guarantees only when there is a secure way of
sending and/or storing the message digest

For example, Bob can publish a hash of his public key (i.e., a message digest) on his
business card
Putting the whole key on there would be too big
But Alice can download Bob’s key from the Internet, hash it herself, and verify that
the result matches the message digest on Bob’s card

What if there’s no external channel to be had?

For example, you’re using the Internet to communicate

58 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Module outline

1 Introduction to cryptography

2 Secret-key Cryptography

3 Public-key Cryptography

4 Integrity

5 Authentication

59 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Message Authentication Codes (MACs)

We can use “keyed hash functions”, that are usually called Message
Authentication Codes, or MACs

Only those who know the secret key can generate, or even check, the computed
hash value (sometimes called a tag)

Common examples:

SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

60 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Message Authentication Codes (MACs)

MAC

MAC

m

tag =?

k
k

61 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Combining ciphers and MACs

In practice we often need both confidentiality and message integrity

There are multiple strategies to combine a cipher and a MAC when processing a
message

MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC

Ideally your crypto library already provides an authenticated encryption mode that
securely combines the two operations, so you don’t have to worry about getting it
right

E.g., GCM, CCM (used in WPA2, see later), or OCB mode

62 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Combining Ciphers and MACs. Let’s try it!

Alice and Bob have a secret key K for a secret-key cryptosystem (EK (·),DK (·))
and a secret key K ′ for their MAC (MACK ′(·)). Concatenation is ||. How does
Alice build a message for Bob in the following scenarios?

MAC-then-Encrypt: compute the MAC on the message, then encrypt the message
and MAC together, and send that ciphertext.

EK (m||MACK ′(m))

Encrypt-and-MAC: compute the MAC on the message, compute the encryption of
the message, and send both.

EK (m)||MACK ′(m)

Encrypt-then-MAC: encrypt the message, compute the MAC on the encryption, send
encrypted message and MAC.

EK (m)||MACK ′(EK (m))
63 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Encrypt and authenticate: what’s the right order?

Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

EK (m||MACK ′(m)), EK (m)||MACK ′(m), EK (m)||MACK ′(EK (m))

A: The recommended strategy is Encrypt-then-MAC:

EK (m)||MACK ′(EK (m))

There is a nice blog post that calls this the “Doom principle”: if you have to
perform any cryptographic operation before verifying the MAC on a message
you’ve received, it will somehow inevitably lead to doom.

It explains two simple attacks that can happen if you violate the Doom principle.

64 / 272

https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Repudiation

EK (m)||MACK ′(EK (m)) EK (m)||MACK ′(EK (m))

Bob can be assured that Alice is the one who sent m and that the message has
not been modified since she sent it!
We have confidentiality, integrity, and authentication
This is like a “signature” on the message... but not quite the same!
Bob can’t prove to Carol that Alice sent m, though.

Q: Why not?

A: Either Alice or Bob could create any of the message and MAC combinations. Also,
Carol doesn’t know the secret keys.

65 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Repudiation

??
Alice sent m, look: EK (m)||MACK ′(EK (m))

Did she?

Alice can just claim that Bob made up the message m, and calculated the MAC
himself

This is called repudiation, and we sometimes want to avoid it

Some interactions should be repudiable

Private conversations

Some interactions should be non-repudiable

Electronic commerce

66 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Digital signatures

??
Alice sent m, she signed it!

She did!

For non-repudiation, what we want is a true digital signature, with the following
properties:

If Bob receives a message with Alice’s digital signature on it, then:

Alice, and not an impersonator, sent the message (like a MAC)
The message has not been altered since it was sent (like a MAC)
Bob can prove these facts to a third party (additional property not satisfied by a
MAC).

How do we arrange this?

Use similar techniques to public-key cryptography

67 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Making digital signatures

Remember public-key cryptosystems:

Separate keys for encryption and decryption
Give everyone a copy of the encryption key
The decryption key is private

To make a digital signature:

Alice signs the message with her private signature key (sk)

To verify Alice’s signature:

Bob verifies the message with Alice’s public verification key (vk)
If it verifies correctly, the signature is valid

68 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Making digital signatures

sk

vk

vk

Sign
Verify

m

Sig T/F

vksk

69 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Faster signatures

Just like encryption in public-key crypto, signing large messages is slow

We can also “hybridize” signatures to make them faster:

Alice sends the (unsigned) message, and also a signature on a hash of the message
The hash is much smaller than the message, and so it is faster to sign and verify

Verifyvk (sig , h(m))?
m||sig

sig = Signsk (h(m))

Remember that authenticity and confidentiality are separate; if you want both,
you need to do both

70 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Combining public-key encryption and digital signatures

Alice has two different key pairs:
an (encryption, decryption) key pair (eAk , d

A
k)

a (signature, verification) key pair (sAk , v
A
k)

So does Bob: (eBk , d
B
k) and (sBk , v

B
k)

Alice uses eBk to encrypt a message destined for Bob:
C = EeBk

(M)

She uses sAk to sign the ciphertext:
T = SignsAk

(C)

Bob uses vAk to check the signature:
VerifyvA

k
(C ,T), if verified, C is authentic

He uses dB
k to decrypt the ciphertext:

M = DdB
k
(C)

Similarly for reverse direction
71 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Relationship between key pairs

Alice’s (signature, verification) key pair is long-lived, whereas her (encryption,
decryption) key pair is short-lived

Gives forward secrecy (see later)

When creating a new (encryption, decryption) key pair, Alice uses her signing key
to sign her new encryption key and Bob uses Alice’s verification key to verify the
signature on this new key

72 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

The Key Management Problem

Bob? Alice?

How can Alice and Bob be sure they’re talking to each other, and not Mallory?

By having each other’s verification key.

Finding this verification key is a very hard problem!
Possible solutions for Bob to get Alice’s verification key:

He can know it personally (manual keying)
SSH does this

He can trust a friend to tell him (web of trust)
PGP does this

He can trust some third party to tell him (CAs)
TLS / SSL do this

73 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Certificate Authorities (CAs)

(sAk , v
A
k) (sCAk , vCAk)

m=(vAk , personal info), SigsAk
(m)

SigsCAk
(m)

A CA is a trusted third party who keeps a directory of people’s (and
organizations’) verification keys
Alice generates a (sAk , v

A
k) key pair, and sends the verification key and personal

information, both signed with Alice’s signature key, to the CA
The CA ensures that the personal information and Alice’s signature are correct
The CA generates a certificate consisting of Alice’s personal information, as well
as her verification key. The entire certificate is signed with the CA’s signature key
https://letsencrypt.org has changed the game. Most web traffic now encrypted.
Extended validation certificates (for which CAs charged a lot of money) now not
treated differently by browsers.

74 / 272

https://letsencrypt.org

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Certificate authorities

Everyone is assumed to have a copy of the CA’s verification key (vCAk), so they
can verify the signature on the certificate
There can be multiple levels of certificate authorities; level n CA issues certificates
for level n+1 CAs – Public-key infrastructure (PKI)
Need to have only verification key of root CA to verify the certificate chain

root
sign verification key

75 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Chain of certificates

Alice sends Bob the following certificate to prove her identity. Bob can follow the
chain of certificates to validate Alice’s identity.

Subject: Alice

Issuer: CA2

validity_period

public_key: vA

...

Subject: CA2

Issuer: CA1

validity_period

public_key: vCA2

...

Subject: CA1

Issuer: CA1

validity_period

public_key: vCA1

...
Signed with sCA2 Signed with sCA1 Signed with sCA1

Bob has vCA1

76 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Putting it all together

We have all these blocks; now what?

Put them together into protocols

This is HARD. Just because your pieces all work, doesn’t mean what you build
out of them will; you have to use the pieces correctly

Common mistakes include:

Using the same stream cipher key for two messages
Assuming encryption also provides integrity
Falling for replay attacks or reaction attacks
LOTS more!

77 / 272

Introduction Secret-key Cryptography Public-key Cryptography Integrity Authentication

Recap: crypto tools

Secret-key crypto

One-time pad
Stream ciphers (two-time pad, using nonces)
Block ciphers (modes of operation – CBC)

Public-key crypto

Textbook RSA
Secret vs. public crypto (speed, key sizes)
Hybrid crypto

Integrity

Checksum (usually does not work)
Hash functions

Authentication

MACs (repudiation, encrypt-then-MAC)
Digital signatures (non-repudation)
Key management

Manual keying (SSH)
Web of trust (PGP)
Certificate authorities (TLS)

78 / 272

CS 458 / 658: Computer Security and Privacy

Module 5 – Security and Privacy of Internet Applications

Part 2 – Cryptography Use Cases (Pt 1)

Fall 2022

Securit Controls WEP: a failure case IPSec TLS WireGuard

Module outline

6 Overview of Security Controls

7 Link-layer Security (WEP, WPA)

8 Network-layer Security (IPSec)

9 Transport-layer Security (TLS)

10 WireGuard

80 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Security controls using cryptography

We use cryptography as security control in situations where trust cannot be
assumed

We will focus on network security (link layer, network layer, transport layer, and
application layer).

But first, we will see other use cases.

81 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Use cases in program and OS security

Apps can be installed only if digitally signed by the vendor (BlackBerry) or
upgraded only if signed by the original developer (Android)

OS allows execution of programs only if signed (iOS)

OS allows loading of certified device drivers only (Windows)

Secure boot: OS components booted only if correctly signed

82 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Encrypted code

There is research into processors that executes encrypted code only

The processor will decrypt instructions before executing them

Each processor has its own key, we have to encrypt the code for that processor

The decryption key is processor-dependent

Malware won’t be able to spread without knowing a processor’s encryption key

Downsides? It’s hard to scale, we have to encrypt the code for a single processor, we
don’t know the keys of other processors...

83 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Encrypted data

A common technique that aims to protect data in the storage media when the laptop
gets lost/stolen, which can be performed either on hardware or by software.

It often does not protect against:

Other users who legitimately use laptop

Somebody installing malware on laptop

Somebody (maybe physically) extracting the decryption key from the laptop’s
memory

84 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Network security and privacy

Entities you can only communicate with over a network are inherently less trustworthy
(e.g., they may not be who they claim to be). This makes networking a primary
scenario for cryptography.

This is a separation of concern, and in particular, “separating the security of the
medium from the security of the message”

85 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Recall the Network Stack

Q: Where do we need to apply crypto? (confidentiality, integrity, authentication)

A Link layer is enough

B Application layer is enough

C We need it in all layers

D Who needs crypto?

86 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Network security and privacy

Cryptography is used at every layer of the network stack for both security and privacy
applications. We will see some examples:

Link

WEP, WPA, WPA2

Network

VPN, IPsec

Transport

TLS/SSL, Tor

Application

ssh, PGP, OTR,
Signal, Mixminion

87 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Module outline

6 Overview of Security Controls

7 Link-layer Security (WEP, WPA)

8 Network-layer Security (IPSec)

9 Transport-layer Security (TLS)

10 WireGuard

88 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) protocol is a link-layer security protocol that
aims to make wireless communication links just as secure as wired links.

In particular, WEP was intended to enforce three security goals

Data Confidentiality

Prevent an adversary from learning the contents of the wireless traffic

Data Integrity

Prevent an adversary from modifying the wireless traffic or fabricating traffic that
looks legitimate

Access Control

Prevent an adversary from using your wireless infrastructure

Unfortunately, none of these is actually enforced!

89 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

WEP description

The sender and receiver share a secret
k (either 40 or 104 bits)

In order to transmit a message M:
Compute a checksum c(M) (which does
not depend on k)
Pick an IV v and generate a keystream
K = RC4(v , k)
Ciphertext C = K ⊕ ⟨M ∥ c(M)⟩
Transmit v and C over the wireless link

Q: What kind of cipher is this?
What does the receiver do with v
and C?

A: It’s a stream cipher
(symmetric)

A: Upon receipt of v and C :

Use the received v and the shared k for K = RC4(v , k)

Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M′ ∥ c ′⟩ = M′ ∥ c ′

Check to see if c ′ = c(M′)

If it is, accept M′ as the message transmitted

90 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Problem 1: key reuse

Keystream is derived as: K = RC4(v , k)

IV (v) is too short: only 3 bytes = 24 bits.

Secret (k) is rarely changed!

Q: What is the problem with this? How could we have avoided this?

A: Key-stream gets re-used after 224 iterations → two-time pad.

91 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Problem 2: integrity breach

The checksum algorithm in WEP is CRC32, which has two important (and
undesirable) properties:

It is independent of k and v

It is linear: c(M ⊕ δ) = c(M)⊕ c(δ)

Q: Why is linearity a pessimal property for your integrity mechanism to have when
used in conjunction with a stream cipher?

92 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Problem 2: integrity breach

The sender transmits C and v . If Mallory wants to
modify the plaintext M into M ′ = M ⊕ δ:

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the recipient!

Q: How could we have avoided this?

93 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

WEP authentication protocol (disaster)

WEP’s authentication protocol to prove that a client knows k :

The access point sends a challenge string
R to the client

The client sends back the challenge,
WEP-encrypted with the shared secret k

The wireless access point checks if the
challenge is correctly encrypted, and if so,
accepts the client

AP Client

Challenge: R

Response: C , v

C = RC4(k , v)⊕ ⟨R||c(R)⟩

The adversary has seen both R and (C , v)

Q: What can the adversary do with this?

A: Compute a valid v and RC4(k , v) pair...

94 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Let’s think about this...

AP Client

Challenge: R

Response: C , v

C = RC4(k , v)⊕ ⟨R||c(R)⟩
Mallory has seen R, C , and v .

Q: Mallory wants to authenticate herself to the AP. The AP sends Mallory a new
challenge R ′. Can Mallory successfully run the authentication protocol?

A: Yes! Note that Mallory knows RC4(k , v) = C ⊕ ⟨R||c(R)⟩. Mallory can just
compute: C ′ = RC4(k , v)⊕ ⟨R ′||c(R ′)⟩ and send C ′ and v to the AP.

95 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Problem 3: packet injection

Problem 3: Mallory can run the authentication herself (previous slide)

But, more generally, she can inject packets.

We saw that seeing R, C , and v gives Mallory a value of v and the corresponding
keystream RC4(v , k)

The same way Mallory encrypted the challenge R ′ in the previous slide, she can
encrypt any other value F :

Then C ′ = ⟨F ∥ c(F)⟩ ⊕ RC4(v , k), and she transmits v ,C ′

C ′ is in fact a correct encryption of F , so the message must be accepted
96 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

More problems with WEP

Somewhat surprisingly, the ability to modify and inject packets leads to ways in
which Mallory can trick the AP to decrypt packets! Check Prof. Goldberg’s talk
for more details.

Note that none of the attacks so far use the fact that the stream cipher was RC4.
It turns out that when RC4 is used with similar keys, the output keystream has a
subtle weakness, which lead the recovery of either a 104-bit or 40-bit WEP key in
under 60 seconds, most of the time. Check this paper for more details.

97 / 272

https://cypherpunks.ca/bh2001/
https://eprint.iacr.org/2007/120.pdf

Securit Controls WEP: a failure case IPSec TLS WireGuard

Replacing WEP

Wi-fi Protected Access (WPA) was rolled out as a short-term patch to WEP while
formal standards for a replacement protocol (IEEE 802.11i, later called WPA2) were
being developed

Replaces CRC-32 with a real MAC

IV is 48 bits

Key is changed frequently (TKIP)

Ability to use a 802.1x authentication server

But maintains a less-secure PSK (Pre-Shared Key) mode for home users

Ability to run on most older WEP hardware

98 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Replacing WEP

The 802.11i standard was finalized in 2004, and the result (called WPA2) has been
required for products calling themselves “Wi-fi” since 2006

Replaces the RC4 and MAC algorithms in WPA with the CCM authenticated
encryption mode (using AES)

Considered strong, except in PSK mode

Dictionary attacks still possible (avoided in WPA3 (2018))

99 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

WEP Recap

Q: What have we learned from WEP?

Respect to randomness? (provided by IVs?)

Respect to checksums?

A:

Use sufficiently long IVs, don’t share a key with many people, don’t reuse
short-term secret keys and IVs.

Do not use checksums for integrity. Use keyed MACs instead!

You need to understand what was wrong with WEP, how to fix these issues, and you
need to be able to identify these issues in other protocols.

100 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Module outline

6 Overview of Security Controls

7 Link-layer Security (WEP, WPA)

8 Network-layer Security (IPSec)

9 Transport-layer Security (TLS)

10 WireGuard

101 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Network layer security: purpose

Suppose every link in our network had strong link-layer security. Why would this not
be enough?

Source, destination IPs may not share the same link. Network layer threats such
as IP spoofing still exist.

We need end-to-end security across networks, i.e., securing network layer packets
from one host to another so that routers or other hosts in the middle cannot
modify or read the packet payload (they still need to read packet metadata for
routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to provide
confidentiality and integrity of packets transmitted across the network. IPSec enables
various architectures of Virtual Private Networks (VPNs) which is the foundation in
network-layer security.

102 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Recall the IP Datagram

Recall the IP datagram format: no confidentiality, protection against IP spoofing, etc.

103 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec Overview

Internet Key Exchange (IKE) to agree on a shared symmetric key. We use this key
to encrypt and compute MACs over IP packets or parts of it.

Modes of operation

Transport mode
Tunnel mode

Header types

Authentication Header (AH)
Encapsulated Security Payload (ESP)

104 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Diffie-Hellman Key Exchange Overview

DH is a public-key protocol that allows two parties to agree on a shared secret
over an insecure channel.

=
105 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Internet Key Exchange (IKE)

The source and destination IP addresses agree on a shared symmetric key via the IKE
process, which internally uses the Diffie-Hellman protocol:

Alice chooses prime p at random and finds a
generator g

Alice chooses X ←R {2, 3, . . . , p − 2} and sends
A = gX (mod p) to Bob, together with p and g

Bob chooses Y ←R {2, 3, . . . , p − 2} and sends
B = gY (mod p) to Alice

Alice and Bob both compute s = gXY (mod p)

Alice does that by computing BX (mod p)
Bob does that by computing AY (mod p)

Now they share a common secret s which can be
used to derive a symmetric key

(gX (mod p), p, g)

gY (mod p)

(gY)X = gXY (gX)Y = gXY

106 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Internet Key Exchange (IKE): more visual

(Background: computing discrete logarithms, e.g., logg Z (mod p) is very hard!)

X (gX , p, g) (gY , ·, ·) Y

(gX , p, g)

(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

107 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Modes of operation

IPSec has two main modes of operation:

Transport mode: uses the original IP header
Tunnel mode: encapsulates the original IP header

108 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec Headers

Authentication Header (AH) – RFC4302

Offers integrity and data source authentication

Authenticates payload and parts of IP header that do not get modified during
transfer, e.g., source IP address

Offers protection against replay attacks

Via extended sequence numbers

Encapsulated Security Payload (ESP) – RFC4303

Offers confidentiality

IP data is encrypted during transmission

Offers authentication functionality similar to AH

But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic

Makes traffic analysis harder

109 / 272

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec: Authentication Header (AH) view

110 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec: Encapsulated Security Payload (ESP) view

111 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec packets’ format

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed into an IPSec packet
depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H and P ↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling) is often used to
implement Virtual Private Networks (VPNs)

112 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

IPSec deployment challenges

Needs to be included in the kernel’s network stack.

There may be legitimate reasons to modify some IP header fields; IPSec breaks
networking functionalities that require such changes.

with AH, you cannot replace a private address for a public one at a NAT box.
with ESP, it depends

In transport usually does not work due to TCP and UDP checksums
In tunnel mode it is fine

IPSec is complex, hard to audit, and prone to misconfigurations

113 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Module outline

6 Overview of Security Controls

7 Link-layer Security (WEP, WPA)

8 Network-layer Security (IPSec)

9 Transport-layer Security (TLS)

10 WireGuard

114 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Transport-layer security and privacy

Network-layer security mechanisms arrange to send individual IP packets securely
from one network to another

Transport-layer security mechanisms transform arbitrary TCP connections to add
security and privacy
The main transport-layer security mechanism:

TLS (formerly known as SSL)
The main transport-layer privacy mechanism:

Tor — will be covered in the lecture on PETs

115 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

TLS / SSL

In the mid-1990s, Netscape invented a protocol called Secure Sockets Layer (SSL)
meant for protecting HTTP (web) connections

The protocol, however, was general, and could be used to protect any TCP-based
connection
HTTP + SSL = HTTPS

Historical note: there was a competing protocol called S-HTTP. But Netscape
and Microsoft both chose HTTPS, so that’s the protocol everyone else followed

SSL went through a few revisions, and was eventually standardized into the
protocol known as TLS (Transport Layer Security, imaginatively enough)

116 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

TLS at a high level: RFC8446

Client connects to server, indicates it wants to speak TLS, with

Client key-share under ECDHE
The list of ciphersuites it knows

Server sends its certificate to client, which contains:

Server key-share under ECDHE
Its host name
Its verification key
Some other administrative information
A signature from a Certificate Authority (CA)

Both client and server derives the same session key K (which is hard for Eve to
derive) based on the two key shares

Server also chooses which ciphersuite to use

All remaining traffic will be encrypted and authenticated under K

117 / 272

https://datatracker.ietf.org/doc/html/rfc8446

Securit Controls WEP: a failure case IPSec TLS WireGuard

TLS connection establishment

118 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Security properties provided by TLS

Server authentication

Message integrity

Message confidentiality

Client authentication (optional)

119 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Certification Authorities (CAs) in TLS

A certification authority acts as a trusted third-party that:

Issues digital certificates

Certifies the ownership of a public key by the named subject of the certificate

Manages certificate revocation lists (CRLs)

120 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

What can go wrong with TLS?

Basic idea: Alice accepts the connection if she receives a certificate and

1 the certificate is
signed by a CA she
trusts (vCAk)

2 the certificate is for
the domain she’s
requesting

3 when talking to the
web server, Alice can
verify the signatures
with vWS

k (which is
in the certificate).

121 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

What can go wrong with TLS?

An adversary can compromise a CA to plant fake certificates (e.g., DigiNotar’s fake
*.google.com certificates used by an ISP in Iran)

122 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

What can go wrong with TLS?

An adversary can install a custom CA on users’ devices, allowing them to sign
certificates that clients will accept for any site (e.g., in 2019, Kazakhstan’s ISPs
mandated the installation of a root certificate issued by the government)

123 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

What can go wrong with TLS?

Other examples:

Companies may think it is an excellent idea

e.g., Lenovo’s Superfish or Sennheiser HeadSetup root certificates (for advertisement
and communication purposes, respectively)

There have been many issues with TLS/SSL implementations

Here’s a very interesting talk about some of these issues.

124 / 272

https://www.youtube.com/watch?v=5dhSN9aEljg

Securit Controls WEP: a failure case IPSec TLS WireGuard

This happened just yesterday!

125 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

SSL-based VPNs

We can use SSL/TLS to create secure site-to-site tunnels
Similarly to IPSec

A more flexible “user-space VPN”
In contrast to IPSec, it does not require kernel-level access
Virtual network interfaces are used instead

Several solutions available:
e.g., OpenVPN, Cisco AnyConnect

126 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Module outline

6 Overview of Security Controls

7 Link-layer Security (WEP, WPA)

8 Network-layer Security (IPSec)

9 Transport-layer Security (TLS)

10 WireGuard

127 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Issues with existing VPNs

IPSec:

Is complex, hard to audit, and prone to misconfigurations

Big book of IPSec RFCs: Internet security architecture (Loshin, ’99)

Does not prevent you from making bad choices

Supports all ciphers, including obsolete ones and NULL

SSL VPNs:

Also on the complex side

Tends to be slow

Also does not prevent you from making bad choices

128 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

WireGuard

New (and simpler) VPN design built from the ground-up

Offers a kernel and a user-space implementation

Faster than IPSec and TLS-based VPN solutions

129 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Lightweight and secure

Easy to configure
But no PKI, keys are distributed manually

Easy to audit
4,000 LoCs vs IPSec’s 400,000 LoCs

Hard to get it wrong
Single cipher suite

130 / 272

Securit Controls WEP: a failure case IPSec TLS WireGuard

Recap: cryptography use cases (Pt. I)

Security controls:

Digital signature: app installation, OS execution, drivers, secure boot.
Encryption: code encryption, disk encryption.

Link layer: WEP problems

Short IV → two-time pad → make it bigger!
Checksum → integrity breach → use MACs
Protocol disaster → packet injection

Network layer: IPSec

IKE: Diffie-Hellman
Modes: transport, tunnel
Headers: AH, ESP
Too many parameters

Transport layer: TLS

Protocol summary (ECDHE, etc.)
Key management: CAs
Issues with TLS: MITM

Wireguard

Better VPN

131 / 272

CS 458 / 658: Computer Security and Privacy

Module 5 – Security and Privacy of Internet Applications

Part 3 – Cryptography Use Cases (Pt 2)

Fall 2022

App. layer SSH PGP OTR Signal

Module outline

11 Application layer security

12 SSH

13 PGP

14 OTR

15 Signal

133 / 272

App. layer SSH PGP OTR Signal

Application layer security

TLS can provide for encryption at the TCP socket level
“End-to-end” in the sense of a network connection
Is this good enough? Hint: one application may involve multiple TCP connections

Many applications would like true end-to-end security
Human-to-human would be best, but those last 50 cm are really hard!
We usually content ourselves with desktop-to-desktop

We’ll look at three
particular applications:

SSH

PGP

Instant messaging
(OTR, Signal)

134 / 272

App. layer SSH PGP OTR Signal

Module outline

11 Application layer security

12 SSH

13 PGP

14 OTR

15 Signal

135 / 272

App. layer SSH PGP OTR Signal

Insecure application traffic pre-SSH

Suppose that you want to connect to a remote machine

You may think “Oh ok, let me use Telnet”

Think again...

All data exchanged through Telnet is in plain text!

136 / 272

App. layer SSH PGP OTR Signal

Enter secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a remote computer
(the ugster machines)

Usual usage (simplified):
Client connects to server
Server sends its verification key

The client should verify that this is the correct key

Example: I was trying to connect to an ugster machine for the first time:

Q: Have you ever verified this fingerprint?

Many clients implement Trust on first use (TOFU):
The client software prompts to confirm the connection.
Subsequent connections are fine unless the public key of the server has changed.

137 / 272

App. layer SSH PGP OTR Signal

Enter secure remote login (ssh)

Usual usage (simplified):

Client connects to server
Server sends its verification key

The client should verify that this is the correct key

Client and server run a key agreement protocol to establish session keys, server signs
its messages

All communication from here on in is encrypted and MAC-ed with the session keys

Client authenticates to server
Server accepts authentication, login proceeds

138 / 272

App. layer SSH PGP OTR Signal

Client authentication with ssh

There are two main ways to authenticate with ssh:

Send a password over the encrypted channel

The server needs to know (a hash of) your password

Sign a random challenge with your private signature key

The server needs to know your public verification key

Q: Advantages/disadvantages of each?

A: People create weak passwords, people write their passwords in post-it notes, etc.

A: People usually don’t protect private keys with passphrases

139 / 272

App. layer SSH PGP OTR Signal

SSH port forwarding

SSH allows for tunneling:

The client machine can create a mapping between a local TCP port and a port in
the remote machine

e.g., localhost:IMAP to mail.myorg.ca:IMAP

The client SSH and the server SSHd operate as a secure relay

Allows the client to interact with server applications via SSH

140 / 272

App. layer SSH PGP OTR Signal

Module outline

11 Application layer security

12 SSH

13 PGP

14 OTR

15 Signal

141 / 272

App. layer SSH PGP OTR Signal

Pretty Good Privacy

The first popular implementation of public-key cryptography.

Originally made by Phil Zimmermann in 1991

He got in a lot of trouble for it, since cryptography was highly controlled at the time.
But that’s a whole ’nother story. :-)

Today, there are many (more-or-less) compatible programs

GNU Privacy Guard (gpg), Hushmail, etc.

142 / 272

App. layer SSH PGP OTR Signal

Pretty Good Privacy

What does it do?

Its primary use is to protect the contents of email messages.
Provides confidentiality, integrity, authentication, and non-repudation.

Q: What do we use for non-repudiation?

A: Digital signatures!

How does it work?
Uses public-key cryptography to provide:

Encryption of email messages (using hybrid encryption)
Digital signatures on email messages (hash-then-sign)

143 / 272

App. layer SSH PGP OTR Signal

Recall: Public-key Cryptography, Sign-then-Encrypt

encryption/decryption:
(eA, dA)

signature/verification:
(sA, vA)

encryption/decryption:
(eB , dB)

signature/verification:
(sB , vB)

To send a message to Bob, Alice will:

Write a message

Sign it with ???

Encrypt both the message and the
signature with ???, send them to Bob

Q: You know how to write that at this
point, right? (what are the ???)

A: EeB (m ∥ SignsA(m))

Q: And you also know what Bob does next...

144 / 272

App. layer SSH PGP OTR Signal

But you said we prefer to “authenticate last”!

Both Encrypt-then-sign and Sign-then-encrypt have their uses

We saw “authenticating last” can prevent certain attacks but...

Q: What can Eve learn from an Encrypt-then-Sign message that she cannot learn from
a Sign-then-Encrypt message?

EeB (m) ∥ SignsA(EeB (m)) EeB (m ∥ SignsA(m))

A: Eve can see Alice signed the encrypted message (if she has Alice’s verification key)

145 / 272

App. layer SSH PGP OTR Signal

But you said we prefer to “authenticate last”!

Both Encrypt-then-sign and Sign-then-encrypt have their uses

We saw “authenticating last” can prevent certain attacks but...

Q: What can Mallory do with a captured Encrypt-then-Sign message?

EeB (m) ∥ SignsA(EeB (m)) EeB (m ∥ SignsA(m))

A: Mallory could remove the signature and sign it herself! (even if she does not know
the plaintext)

EeB (m) ∥ SignsA(EeB (m))→ EeB (m) ∥ SignsM (EeB (m))

146 / 272

App. layer SSH PGP OTR Signal

So... what do we do?

The “modern approach” to confidentiality, integrity, and authentication uses
authenticated encryption (and more advanced tools that we are not seeing in this
course).

What does PGP do?

PGP: original protocol from 1991
OpenPGP: open-source version, from 1997, updated
GPG (GNU Privacy Guard): most common implementation, follows OpenPGP

People usually refer to OpenPGP when talking about “PGP”

OpenPGP offers now modern solutions for authenticated encryption, but it is also
very complex (similar to what we have seen with IPSec and TLS...)

You do not need to know all this; we are going to focus on how PGP deals with
the key management problem

147 / 272

App. layer SSH PGP OTR Signal

Back to PGP

PGP’s main functions:

Create these four kinds of keys

encryption, decryption, signature, verification

Encrypt messages using someone else’s encryption key

Decrypt messages using your own decryption key

Sign messages using your own signature key

Verify signatures using someone else’s verification key

Sign other people’s keys using your own signature key

Disclaimer: in practice there are primary keypairs, used for signing, verifying, and
creating encryption sub-keypairs, but let’s abstract from this...

148 / 272

App. layer SSH PGP OTR Signal

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s public key in order
to send him an encrypted message.

How does Alice do this?

Q: We could use Certificate Authorities (CAs), like in...

A: TLS / SSL

Q: ... or manual keying like in...

A: SSH

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage
Is this good enough?

149 / 272

App. layer SSH PGP OTR Signal

Verifying public keys

The key in Bob’s website would look something like this:
mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat

01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2

tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt

m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/

rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD

8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL

UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM

If Alice knows Bob personally, she could:

Download the key from Bob’s web page
Phone up Bob, and verify she’s got the right key
Problem: keys are big and unwieldy!

150 / 272

App. layer SSH PGP OTR Signal

Fingerprints

Luckily, there’s a better way!

A fingerprint is a cryptographic hash of a key

This, of course, is much shorter:

B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

Q: Can Eve generate another key-pair whose public key has the same fingerprint?

A: Collision-resistant hash functions: there’s no (known) way to make two different
keys that have the same fingerprint

151 / 272

App. layer SSH PGP OTR Signal

Fingerprints

So now we can try this:

Alice downloads Bob’s key from his webpage
Alice’s software calculates the fingerprint
Alice phones up Bob, and asks him to read his key’s actual fingerprint to her
If they match, Alice knows she’s got an authentic copy of Bob’s key

That’s great for Alice, but what about Carol?

Carol might not know Bob
At least not well enough to phone him

152 / 272

App. layer SSH PGP OTR Signal

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to sign Bob’s key,
and link it to Bob’s email address

This is effectively the same as Alice signing a message that says:

“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob (bob@bobmail.com)”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Q: Can you see some potential issue with key signing?

A: Once you sign a key... you cannot take that back...

153 / 272

App. layer SSH PGP OTR Signal

Web of Trust

Now Alice can act as an introducer for Bob

If Carol doesn’t know Bob, but does know Alice (and has already verified Alice’s
key, and trusts her to introduce other people):

she downloads Bob’s key from his website
she sees Alice’s signature on it
she is able to use Bob’s key without having to check with Bob personally

This is called the Web of Trust, and the PGP software handles it mostly
automatically

154 / 272

App. layer SSH PGP OTR Signal

So, great!

So if Alice and Bob want to have a private conversation by email:

They each create their sets of keys

They exchange public encryption keys and verification keys

They send signed and encrypted messages back and forth

(You can also use encryption or signing independently)

Pretty Good, no?

155 / 272

App. layer SSH PGP OTR Signal

How to use PGP

(If you want to be extra safe, check that there’s a big block of jumbled characters at the
bottom.)

156 / 272

App. layer SSH PGP OTR Signal

Problem 1: Usability

Common mistakes:

Encrypt a message with the sender’s public key
Send private key so that recipient can decrypt a message

Oftentimes, study participants cannot send a PGP-encrypted e-mail after 45min

157 / 272

App. layer SSH PGP OTR Signal

Problem 1: Usability

(Public Key)

158 / 272

App. layer SSH PGP OTR Signal

Problem 2: Key compromise

Suppose (encrypted) communications between Alice and Bob are recorded by the
“bad guys”

criminals, competitors, etc

Later, Bob’s computer is stolen by the same bad guys

Or just broken into

Virus, trojan, etc

All of Bob’s key material is recovered

159 / 272

App. layer SSH PGP OTR Signal

The bad guys can...

Decrypt past messages

Learn their content

Learn that Alice sent them

And have a mathematical proof they can show to anyone else!

How private is that?

160 / 272

App. layer SSH PGP OTR Signal

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

161 / 272

App. layer SSH PGP OTR Signal

What really went wrong

PGP creates lots of incriminating records:

Key material that decrypts data sent over the public Internet
Signatures with proofs of who said what

Alice had better watch what she says!

Her privacy depends on Bob’s actions

162 / 272

App. layer SSH PGP OTR Signal

Module outline

11 Application layer security

12 SSH

13 PGP

14 OTR

15 Signal

163 / 272

App. layer SSH PGP OTR Signal

Casual conversations

Alice and Bob talk in a room

No one else can hear

Unless being recorded

No one else knows what they say

Unless Alice or Bob tells them

No one can prove what was said

Not even Alice or Bob

These conversations are “off-the-record” (OTR)

164 / 272

App. layer SSH PGP OTR Signal

We like off-the-record conversations

Legal support for having them

Illegal to record other people’s conversations without notification

We can have them over the phone

Illegal to tap phone lines

But what about over the Internet?

165 / 272

App. layer SSH PGP OTR Signal

What do we want to achieve?

(Perfect) Forward secrecy: a key compromise does not reveal past communication.

Post-compromise security Backwards secrecy Future secrecy: a key compromise
does not reveal future communication.

Repudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something.

Forward secrecy Post-compromise security

Alice said this!

No proof!
Repudiation

166 / 272

App. layer SSH PGP OTR Signal

Repudiation (Deniable authentication)

We want authentication with repudiation (deniable authentication).

Q: What do we use for this?

A Hash functions

B Checksums

C MACs

D Digital Signatures

A: Message Authentication Codes (MACs)! Signatures provide non-repudiation, which
is great for signing contracts but undesirable for private conversations.

167 / 272

App. layer SSH PGP OTR Signal

(Perfect) Forward Secrecy

Forward secrecy

Future key compromises should not reveal past communication

Use secret-key encryption with a short-lived key (a session key)

The session key is created by a modified Diffie-Hellman protocol

Discard the session key after use:

Securely erase it from memory (and everywhere possible)

Use long-term keys only to authenticate the Diffie-Hellman protocol messages only

168 / 272

App. layer SSH PGP OTR Signal

Idea for Forward Secrecy:

Forward secrecy

EK1(m) EK2(m) EK3(m) EK4(m) EK5(m) EK6(m) EK7(m)

Future key compromises should not reveal past communication

Q: Idea: what if session keys are hashes of the previous key?
K1 → K2 = H(K1)→ K3 = H(K2)→ . . .

A: This should work (there are better ways of doing this, though)
What if a message arrives out of order?

169 / 272

App. layer SSH PGP OTR Signal

Post-Compromise Security

Post-compromise security

EK1(m) EK2(m) EK3(m) EK4(m) EK5(m) EK6(m) EK7(m)

Past key compromises should not compromise the security of future sessions

Q: Idea: what if session keys are hashes of the previous key?
K1 → K2 = H(K1)→ K3 = H(K2)→ . . .

A: Eve can still compute all future keys!

So what can we do?
Regularly replace potentially compromised session keys with new key material

170 / 272

App. layer SSH PGP OTR Signal

Cryptographic Ratchets

A ratchet is a mechanical device that moves in one direction and cannot move
backwards.

Example of cryptographic ratchet:

K1 → K2 = H(K1)→ K3 = H(K2)→ . . . (1)

We want something that provides both forward secrecy and post-compromise
security.

We will see the OTR ratchet, which uses Diffie-Hellman.

The signal protocol uses a more advanced version of this ratchet, which we will
not see (Whatsapp also uses this now)

171 / 272

App. layer SSH PGP OTR Signal

Recall: Diffie-Hellman

=

172 / 272

App. layer SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

Q: How does Bob recover the message?

173 / 272

App. layer SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

Q: Following this logic, how does Bob reply to Alice?

174 / 272

App. layer SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

175 / 272

App. layer SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

Q: What happens if Eve learns a

private key? (e.g., 1)

A: She can decrypt “Hi Bob!” and
“How are you?”

176 / 272

App. layer SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

Session keys only roll forward
with interactive replies

If Alice sends multiple
messages but Bob takes a
long time to reply, multiple
messages get encrypted with
the same key!

Forward secrecy is only
partially provided

177 / 272

App. layer SSH PGP OTR Signal

Using these techniques

Using forward secrecy and deniable authentication, we can make our online
conversations more like face-to-face “off-the-record” conversations.
But there is a wrinkle:

These techniques require the parties to communicate interactively

This makes them unsuitable for email

But they’re still great for instant messaging!

178 / 272

App. layer SSH PGP OTR Signal

Module outline

11 Application layer security

12 SSH

13 PGP

14 OTR

15 Signal

179 / 272

App. layer SSH PGP OTR Signal

Signal Protocol

Signal is an app for iOS, Android, and Chrome

Original protocol based on OTR and used for encrypted SMS (e.g., Google
Messages)

The Signal Protocol is now used by other apps like WhatsApp

Also optionally in Facebook Messenger and Skype
Why on Earth would you like to always keep your conversations private, right? :-)

180 / 272

App. layer SSH PGP OTR Signal

Signal Protocol

Provides forward secrecy

Similar to OTR, uses a “ratchet” technique to constantly rotate session keys

Provides post-compromise security

A leak of past or long-term keys will be healed by introducing new DH ratchet keys

Provides improved deniability

Uses “Triple Diffie-Hellman” deniable authenticated key exchange

Supports out-of-order message delivery

Users can store per-message keys until late messages arrive

Uses a double ratchet (assymetric and symmetric ratchets) that

Generates ephemeral per-message keys
Tolerates message loss/re-ordering

181 / 272

App. layer SSH PGP OTR Signal

Exchanging Messages (the full picture)

182 / 272

App. layer SSH PGP OTR Signal

The double ratchet

Just kidding, you don’t need to know this, but it’s very well explained on the
Signal website: https://signal.org/docs/specifications/doubleratchet/

You simply have to know that Signal protocol provides forward secrecy,
post-compromise security and deniable authentication, building upon OTR.

183 / 272

https://signal.org/docs/specifications/doubleratchet/

App. layer SSH PGP OTR Signal

Recap: cryptography use cases (Pt. II)

SSH:

the connection protocol
pros/cons of each client authentication option
SSH port forwarding

PGP

hybrid encryption, digital signatures
PGP → OpenPGP: offers many options, it’s complex
web of trust (understand how it works)
issues: usability, incriminating records

OTR:

forward secrecy, post-compromise security, repudiation
OTR DH Ratchet (good for interactive communication)

Signal:

builds upon OTR (more complicated ratchet)
provides forward secrecy, post-compromise security, repudiation, supports out-of-order messages

184 / 272

CS 458 / 658: Computer Security and Privacy

Module 5 – Security and Privacy of Internet Applications

Part 4 – Privacy-Enhancing Technologies — PETs

Fall 2022

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

186 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

What is Privacy?

Recall from Module 1: privacy is “informational self-determination”

In other words: you get to control information about you

Control means: who gets to see it, who gets to use it, what they can use it for,
etc.

Q: What does privacy mean to you? What would you draw if you had to draw
“privacy”?

Paper on PoPETs 2018: Turtles, Locks, and Bathrooms: Understanding Mental
Models of Privacy Through Illustration

Asked people of different ages in the US to draw a diagram on what privacy
means to them, and here are a few illustrations.

187 / 272

https://www.petsymposium.org/2018/files/papers/issue4/popets-2018-0029.pdf
https://www.petsymposium.org/2018/files/papers/issue4/popets-2018-0029.pdf

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as turtles

0
All pictures from the PoPETs’18 paper

188 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as locks

0
All pictures from the PoPETs’18 paper

189 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as bathrooms

0
All pictures from the PoPETs’18 paper

190 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as filters

0
All pictures from the PoPETs’18 paper

191 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as controls

0
All pictures from the PoPETs’18 paper

192 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Privacy as tools

0
All pictures from the PoPETs’18 paper

193 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

So, what is privacy?

Privacy means something different to each person (“Informational
self-determination”)
There are two “types” of information that could be privacy-sensitive:

Data: refers to contents of messages, contents of a database, etc.
Meta-data: any other information that is not data; for example, in communications,
meta-data includes:

Who communicates with whom?
What time does Alice communicate with Bob?
How often does Alice communicate with Bob?
Where does Alice communicate from?
Does Alice communicate with anyone at all?
. . .

We can hide data using cryptography, but sometimes we need to leak some data
to a potential adversary to get some utility from a service (many services have a
privacy-utility trade-off).

Protecting meta-data requires more than cryptography.
194 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

What we will cover

We need Privacy-Enhancing Technologies (PETs) to control data leakage, as well as to
protect meta-data!

We’ll only cover PETs that are related to two aspects of privacy:

Anonymity in communications (privacy as masks): how to hide who communicates
with whom; we’ll see remailers (mixes) and Tor.

Data minimization (privacy as filters): how to achieve a functionality while
minimizing the amount of data collected; we’ll see Private Information Retrieval
(PIR)

195 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Kerckhoff’s principle, again

Remember this from the first lecture of this module?

Kerckhoff’s principle

a cryptosystem should be secure, even if everything about the system, except the key,
is public knowledge.

Shannon’s maxim

one ought to design systems under the assumption that the enemy will immediately
gain full familiarity with them.

We also need to keep these into account when designing PETs!
We assume the adversary knows how the technology works, and we still want to get
privacy

196 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Anonymity

Anonymity refers to “the state of not being identifiable within a set of subjects,
the anonymity set”1.

A sender may be anonymous within a set of potential senders: the sender anonymity
set.
Same for recipients.

Pseudonymity is the use of pseudonyms as IDs.

1from Pfitzman et al, “Anonymity, unobservability, and pseudonymity—a proposal for terminology”
197 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Anonymity

We can place transactions (online/offline) on a continuum according to the level of
nymity they represent:

Verinymity: almost unique information (Government ID, SIN, credit card
number, address)

Persistent pseudonyms: a “handle” or “nickname” that you use persistently by
the same person (Twitter/Instragram accounts, posting blogs under a pseudonym,
etc.)

Linkable anonymity: prepaid phone cards, loyalty cards

Unlinkable anonymity: cash payments, remailers, Tor

198 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Anonymous Communication Systems

Anonymous communication systems are typically classified into:

High-latency anonymous communication systems:

Provide protection against global passive adversaries
Have higher delays (fine for email)
We will see mixes (remailers).

Low-latency anonymous communication systems:

Do not protect against global passive adversaries, but are good against local
adversaries.
Have lower delays (fine for browsing)
We will see Tor

The latency of high-latency anonymous communication systems has decreased
significantly, they are not really “high-latency” anymore.

199 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

200 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Mixes: basic operations

How do we provide anonymity?

Change appearance!

Delay messages!

Add dummy traffic!

201 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Operation 1: Changing Appearance

Q: How can we achieve this? (clue: we have some crypto tools!)

A:

We can encrypt the output message with the Mix’s key

This “layered encryption” concept is called onion routing, and we will see it later
in Tor.

202 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Operation 2: Delaying Messages

Q: How do we do this?

Do we add a random delay to each
message?

Do we add a deterministic delay to
each message?

Do we add a constant delay to each
message?

A: Yes. Yes. No. Deterministic delay: it’s not constant, it depends on the arrival time
and/or other messages. We will see some examples next!

203 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Threshold and Timed Mixes

Some popular mixes types are threshold and timed mixes.
These mixes gather messages until a flushing condition triggers.
When this condition happens, this marks the end of a round

Threshold mix: it gathers t messages, then it flushes them.
Timed mix: it gathers messages until a timer set to τ seconds expires, then it flushes
them.

Q: Which of the two is better?

A: It depends... the threshold mix ensures a certain mixing size, the timed mix ensures
a maximum message delay.

204 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Pool Mixes

When a (threshold/timed) mix keeps some messages inside after a round ends, it
is called a pool mix.
The binomial pool mix forwards each message with probability α, and keeps it
inside the mix with probability 1− α.

Q: What are the pros and cons of this?

A: Pros: more anonymity; cons: more delay

205 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Continuous-time or Stop-and-Go (SG) Mixes

Some mixes do not work on “batches” or “rounds”, and instead delay each
message independently: these are called continuous-time mixes or Stop-and-Go
(SG) mixes.

Mixes that delay messages following an exponential distribution are very popular
(Loopix, Nym).

The user can choose the delay and include it in the message

206 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Mixnets

Sending messages through a single mix is not great

Q: Why?

A: There’s a single point of failure, and the mix knows the message correspondence.

We can chain mixes to create a mixnet.

Mixnets have different topologies, depending on which nodes a message can travel
between.

207 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Mixnet Topologies

Let’s discuss pros and cons of each topology!

Cascade: one after the other

Freeroute: all of them are connected

Stratified: each layer is fully connected
to the next layer

208 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Operation 3: Dummy Messages

Q: Where do we add dummy traffic?

A: Anywhere! Everywhere!

209 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Recap (I)

Q: What are the three basic operations of a mix node to provide anonymity? Why is
each operation important?

A: Change appearance, delay messages, add dummy traffic

Q: Threshold mixes: pros and cons of
increasing the threshold t?

A: Increasing t improves anonymity but increases delay

210 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Recap (II)

Q: Timed mixes: pros and cons of
increasing the time τ?

A: Increasing τ improves anonymity but increases delay

Q: Binomial pool mix: pros and cons of
increasing the probability of forwarding a
message α?

A: Increasing α decreases anonymity and delay

211 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Recap (III)

Q: Dummy traffic: pros and cons of
increasing the amount of dummy
messages?

A: More dummies require more bandwidth, but increase anonymity

Q: What happens if the number of senders
increases?

A: Depends on the actual mix/setting, but usually anonymity loves company. More
people using the system usually improves its anonymity level.

212 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Anonymity trade-offs

Anonymity has a cost. We can increase anonymity by:

Adding more message delay

It has to be added “cleverly” (e.g., a constant delay does not work)

Adding more dummy traffic

It has to be added “cleverly” (e.g., simulating real sending behavior)

When the number of users increases

Effectiveness depends on the type of mix, the mix topology, etc.

213 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

214 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attacks on Anonymous Communication Systems

Q: If you are an active adversary, how
would you attack a mix? (e.g., a threshold
mix)

A: A possible attack, called the n − 1 attack: Mallory sends all but one message (e.g.,
t − 1 in this case). Mallory can identify her messages leaving the mix, so the remaining
message has to be Alice’s.

Any other ideas?

215 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attacks on Anonymous Communication Systems

Q: If you are a passive adversary, how
would you attack a mix (e.g., a threshold
mix)

A: We can exploit sending behavior (e.g., Alice sent two messages, so “mostly likely”
they were for the same recipient?)
But we can’t do much more here...

216 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attacks on Anonymous Communication Systems

Q: What if we are a passive adversary observing the mix for a long time? Who is Alice
(first sender) most-likely sending messages to?

A: Probably the second receiver...

217 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Long-term Profiling Attacks on Mixes

A global passive adversary (Eve) observing incoming and outgoing messages for a
single round in a mix will likely not learn a lot about the users.

However, in the long term, some communication patterns will become more
obvious, and this will enable long-term profiling attacks.

The goal of a long-term profiling attack is to estimate the sending profile of a
sender (i.e., which parties the sender communicates with, and how often).

We will see the simplest example of this: the Statistical Disclosure Attack (SDA)

218 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attack Intuition

Even sees many communication rounds. In this case, this is a threshold mix with
t = 3.

We’re going to see the case where the adversary just wants to estimate Alice’s
sending profile.

219 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attack Intuition

Let’s try to make this attack more “principled”

Imagine we just want to estimate Alice’s sending profile. We first separate Alice
from the “others”, also called the background traffic

220 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attack Intuition

Q: Using the rounds where Alice does not participate, what’s a very simple way of
estimating the sending profile of the “background”?

A: We can average the outputs across rounds:
E[msgs received by j]=(msgs sent by bkg)· Pr(bkg sends to j)

221 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Attack Intuition

Q: Now we have the background profile; using the rounds where Alice does participate,
what’s a very simple way of estimating Alice’s sending profile?

A: We can do the same average-case analysis, but now both Alice and the background
contribute to the average:
E[msgs received by j]=(msgs sent by bkg)· Pr(bkg→ j)+(msg sents by Alice)· Pr(Alice→ j)

222 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Statistical Disclosure Attack (SDA)

1Danezis, George. ”Statistical disclosure attacks.”
223 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Practice: SDA

Q: In the example: can you tell who’s Alice’s best friend? What is the estimation of
Alice’s sending profile according to SDA?

A: The background profile:

pbkg = [4, 1, 1, 3]/9 =

[
4

9
,
1

9
,
1

9
,
1

3

]
≈ [0.44, 0.11, 0.11, 0.33]

Alice’s profile:

palice =
1

4
· ([1, 4, 2, 2]− 5 · pbkg) =

[
−11

36
,
31

36
,
13

36
,
3

36

]
≈ [−0.30, 0.86, 0.36, 0.08]

Note that the estimate adds up to 1! But we could have negative values, because this is just an estimate of Alice’s sending profile (it’s an unbiased
estimate whose variance goes to 0 as the number of observed rounds goes to ∞, so if we increase the number of observed rounds, eventually we
won’t have any negative entries)

This profile means that Alice is “most likely” not sending messages to the first receiver, and “most likely” sending messages to the second receiver

224 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Concluding notes on attacks

This is the simplest statistical attack: there are more clever ways of estimating
sending profiles given the observations

You need to know how to attack a mix (active and passive attacks), and why the
attacks work

You need to know what we can do to improve the protection against attacks

225 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

226 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

A Brief History of Remailers: Type 0

In the 1990s, there were very simple (“type 0”) remailing services, the best known
being anon.penet.fi (1993–1996)

Here is how it worked:

Send email to anon.penet.fi

It is forwarded to your intended recipient

Your “From” address is changed to anon43567@anon.penet.fi (but your original
address is stored in a table)

Replies to the anon address get mapped back to your real address and delivered to
you

≈ 10 000 emails per day (≈ 700 000 users)

227 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

anon.penet.fi

This works, as long as:

No one’s watching the Internet connections to or from anon.penet.fi

The operator of anon.penet.fi, the machine (hardware), and the software all
remain trustworthy and uncompromised

The mapping of anon addresses to real addresses is kept secret

Unfortunately, a lawsuit forced Julf (the operator) to turn over parts of the list, and he
shut down the whole thing, since he could no longer legally protect it

228 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Type I remailers

Cypherpunk (type I) remailers removed the central point of trust

Messages are now sent through a “chain” of several remailers, with dozens to
choose from

Each step in the chain is encrypted to avoid observers following the messages
through the chain

Remailers also delay and reorder messages

Support for pseudonymity is dropped: no replies!

229 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Nym servers / pseudonymous remailers

How to do replies? (i.e., recovering pseudonymity)

“nym servers” mapped pseudonyms to “reply blocks” that contained a nested
encrypted chain of type I remailers.

Alice picks a list of nym servers

Then, Alice builds her message using layered encryption

The message contains a chain of reply blocks

230 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Nym servers / pseudonymous remailers

How to do replies? (i.e., recovering pseudonymity)

“nym servers” mapped pseudonyms to “reply blocks” that contained a nested
encrypted chain of type I remailers.

Alice picks a list of nym servers, and builds her message using layered encryption

The message contains a chain of reply blocks

Bob replies by attaching his response to the end of the reply blocks

231 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Type II remailers

Mixmaster (type II) remailers appeared in the late 1990s

Constant-length messages to avoid an observer watching “that big file” travel
through the network

Protections against replay attacks

Improved message reordering

Requires a special email client to construct the message fragments

232 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Type III remailers

Mixminion (type III) remailer appears in the 2000s

Native (and much improved) support for pseudonymity

No longer reliant on type I reply blocks
Instead, relies on mix networks

Improved protection against replay and key compromise attacks

But it’s not very well deployed or mature, i.e., “you shouldn’t trust Mixminion with
your anonymity yet”

233 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

The Nym Network [Claudia Diaz, Harry Halpin, and Aggelos Kiayias (2021)]

234 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

The Nym Network

Nym is a new privacy infrastructure that has three main components:

The Nym mixnet: a 3-layer stratified mixnet
The Nym credentials
The Nym token

The Nym mixnet is largely based on Loopix:

Stratified topology, 3 layers

Continuous-time mixes (exponential delay)

UDP, no circuits

Real messages and drop dummies (in blue)

Loop dummies (in red)

Mix loop dummies (in green)

Low latency (seconds!) Gateways (the green boxes)

235 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

236 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor - purpose

Tor is a successful privacy enhancing technology that works at the transport layer with
≈2 million daily users

Why do we need Tor when we have TLS?

TLS protects data.

We also want to protect metadata about the communication: e.g., IP addresses,
browser fingerprints.

Tor is a low-latency anonymous communication system

Tor has about 7 000 nodes scattered around the Internet; these are also called
Onion Routers

Tor makes internet browsing unlinkably anonymous. But Tor does not (and cannot)
hide the existence of the transaction (website visit) altogether

237 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor: Building a Circuit (I)

Alice wants to connect to a server without revealing her IP address

n1

n2

n3

Alice has a global view of available Onion Routers (and their verification keys!)

238 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor: Building a Circuit (II)

Alice picks one of the Tor nodes (n1) and uses public-key cryptography to establish an
encrypted communication channel to it (much like TLS)

n1

n2

n3

Agree on K1

The result is a secret key K1 shared by Alice and n1
239 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor: Building a Circuit (III)

Alice tells n1 to contact a second node (n2), and establishes a new encrypted
communication channel to n2, tunneled within the previous one to n1

n1

n2

n3

tunnel

agree on K2

with Alice

The result is a secret key K2 shared between Alice and n2, which is unknown to n1
240 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor: Building a Circuit (IV)

Alice tells n2 to contact a third node (n3), establishes a new encrypted communication
channel to n3, tunneled within the previous one to n2.

n1

n2

n3

tunnel

tunnel

agree on K3

with Alice

The result is a secret key K3 shared between Alice and n3, which is unknown to n1 and
n2 241 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor: Building a Circuit (V)

... And so on, for as many steps as she likes (usually 3) ...

n1

n2

n3

tunnel

tunnel

tunnel

connect

Alice tells the last node (within the layers of tunnels) to connect to the website

242 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Sending messages with Tor

Alice encrypts her message “like an onion”; each node peels a layer off and forwards it
to the next step

n1

n2

n3

EK1(EK2(EK3(M)))

EK2(EK3(M))

EK3(M)

M

If connecting to a web server, M is encrypted (e.g., TLS)

243 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Replies in Tor

The server replies with R, sending it back to n3. The nodes encrypt the message back
and Alice decrypts all the layers.

n1

n2

n3

EK1(EK2(EK3(R)))

EK2(EK3(R))

EK3(R)

R

244 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Who knows what?

n1
n2

n3

Notice that node n1 knows that Alice is using Tor, and that her next node is n2,
but does not know which website Alice is visiting

Node n3 knows some Tor user (with previous node n2) is visiting a particular
website, but doesn’t know who

The website itself only knows that it got a connection from Tor node n3
245 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some questions

n1
n2

n3

Q: Why must Alice choose all nodes, instead of letting each node pick the next one?

A: A malicious node would pick another malicious node. The user must have the
ability to choose the nodes

246 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some questions

n1
n2

n3

Q: Why happens if Eve can inspect all network links? (a global passive adversary)

A: Tor does not protect against a global passive adversary. The adversary could
de-anonymize Alice.

247 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some questions

n1
n2

n3

Q: What happens when Eve can inspect the incoming and outgoing traffic of a single
node?

A: Alice is probably good

248 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some questions

n1
n2

n3

Q: What happens when Eve can inspect the incoming and outgoing traffic of the first
and last nodes?

A: Traffic correlation attacks can easily de-anonymize Alice

249 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some questions

n1
n2

n3

Q: Why do we usually pick 3 nodes?

A: It’s a sweet spot between privacy and latency. More nodes usually do not provide
more anonymity.

250 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Path selection

We want to avoid a global passive adversary: choose nodes in different
ISPs/countries

How concentrated is the geographical distribution of Tor relays?

251 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Path selection

Path selection algorithms can help

With anonymity: by picking nodes that are in different countries/ISPs
With performance: latency is affected by this

Don’t forget that countries can collaborate as well

We cannot use defenses that work in mixes (e.g., delay); those are called
high-latency anonymous communication systems for a reason!

252 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Tor and Internet censorship

State-level adversaries can restrict connections to public Tor relays or otherwise
attempt to fingerprint Tor traffic on the network

Solution?

Distribute addresses of non-public Tor relays (bridges)
Modify Tor traffic to look like something else (pluggable transports)

1
Picture from Matic et. al, NDSS’17 paper

253 / 272

https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_06B-1_Matic_paper.pdf

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Other threats: website fingerprinting over Tor

n1
n2

n3

Eve can passively observe traffic between Alice and the first node

This traffic is encrypted... but does it reveal any information about Alice?

254 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Website fingerprinting

An encrypted connection still leaks:

Source and destination IP addresses.
Source and destination ports.
Flow duration.
Amount of packets exchanged.
Packet sizes.
Inter-arrival times.
. . .

Without Tor:

Eve can gather a training set that contains these features associated to different
websites.
When Alice connects to a website (e.g., using TLS), Eve can run a classifier to
decide which of the websites Alice was connecting to.

With Tor: even though Tor exchanges data in fixed-size cells, packet direction and
timing still leaks information

255 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Website fingerprinting over Tor

Learned features based on different traffic representations can be used to launch
website fingerprinting attacks on Tor

Directional representation Rimmer et al., NDSS ’18

Directional + timing representation Saidur Rahman et al., PoPETs ’20

256 / 272

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://sciendo.com/pdf/10.2478/popets-2020-0043

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Anonymity vs. pseudonymity in Tor

Tor provides for anonymity in TCP connections over the Internet, both unlinkably
(long-term) and linkably (short-term)

What does this mean?

There’s no long-term identifier for a Tor user

If a web server gets a connection from Tor today, and another one tomorrow, it
won’t be able to tell whether those are from the same person

But two connections in quick succession from the same Tor node are more likely
to come from the same person

257 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Module outline

16 Privacy and Anonymity

17 Mixes

18 Attacks on Mixes

19 A Brief History of Remailers

20 Tor

21 Private information retrieval (PIR)

258 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Motivation

Simple scenario:

Netflix stores it’s movies in a database
1 Legally Blonde
2 The Godfather
3 The Dark Knight
4 Mean Girls
5 ...

I wanna watch 4

Here you have X4

You request movies by index

Netflix caches your selection and gradually builds a profile on your movie
preferences

But why? You have paid for a Netflix license and so you should be able to access
different movies

259 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Definition

Goal: allow a user to query a database while hiding the identity of the data items the
user is after
Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

I wanna watch ????????

Here you have ???????

260 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Non-private protocol

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Protocol:

User: show me i

Server: here is Xi

Q: Privacy and Bandwidth?

A: No privacy! But very efficient,
since we just receive 1 file (in this
example, 1 bit)

show me i

here is Xi

261 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Trivially-private protocol

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Protocol:

User: show me ALL

Server: here is {X1,X2, ...,Xn}

Q: Privacy and Bandwidth?

A: Total privacy! But we receive n files (in
this example, n bits)

show me ALL

here is {X1,X2, ...,Xn}

Sad news: if the server has unlimited computational power AND there is only a single
copy of the database =⇒ n bits must be transferred!

262 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

“More” solutions?

User asks for additional random indices

Drawback: balance information leak vs communication cost

Note: anonymity is a different concern: it hides the identity of the user, not the
fact that Xi is retrieved.

We will see two PIR solutions:

Information-theoretic PIR (IT-PIR)
Computational PIR (CPIR)

263 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Information-theoretic PIR (IT-PIR): visually

There are two non-colluding servers with a copy of the dataset

1 Alice wants X4: she generates a random n-length binary vector and XOR’s it with
e4 (where e4 is an all-zero vector with it’s 4th entry set to 1).

2 Alice queries the servers for XORs of entries:

XOR of ?

here is

XOR of ?

here is

3 Alice recovers the desired element:
264 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Information-theoretic PIR (IT-PIR): formally

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Assumption: multiple
(≥ 2) non-cooperating
servers

An example 2-server IT-PIR protocol:

User → Server 1: Q1 ⊂R {1, 2, ..., n} Choose each index at random with prob 50%

Server 1 → User: R1 =
⊕

k∈Q1
Xk

User → Server 2: Q2 = Q1∆{i} Add i if it was not in Q1, otherwise remove it

Server 2 → User: R2 =
⊕

k∈Q2
Xk

User derives Xi = R1 ⊕ R2

Q: Privacy and Bandwidth?

A: Total privacy! (if servers do not collude). We receive 2 files (2 bits), and this
requires some inexpensive computation

265 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Some notes about IT-PIR

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Assumption: multiple
(≥ 2) non-cooperating
servers

An example 2-server IT-PIR protocol:

User → Server 1: Q1 ⊂R {1, 2, ..., n} Choose each index at random with prob 50%

Server 1 → User: R1 =
⊕

k∈Q1
Xk

User → Server 2: Q2 = Q1∆{i} Add i if it was not in Q1, otherwise remove it

Server 2 → User: R2 =
⊕

k∈Q2
Xk

User derives Xi = R1 ⊕ R2

In this example, we also send 2 · n bits (Q1 and Q2) to the servers; there is a better
way of doing this that requires O(log n) bits.

266 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Practice: IT-PIR

Two non-colluding servers (S1 and S2) have an identical copy of a dataset that contains six
5-bit files (indexed by i = 1, 2, . . . , 6). The dataset is given by the following matrix (each row
is a file):

D =

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 1 0 0 0
1 0 1 0 0
1 0 1 1 1

Alice wants to retrieve the 3rd file, but doesn’t want to reveal this information to the servers.
She generates a random binary vector Q1 = [0, 1, 1, 0, 1, 0] and sends it to S1.

Q: What does she receive from S1? What does she send to S2? What does she receive from
S2? What is the XOR of the two received values? (it should be X3)

A: [1,0,0,1,1], [0,1,0,0,1,0], [1,0,1,1,1], [0,0,1,0,0]

267 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Computational PIR

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Quadratic residue

a is QR mod m if
z2 ≡ a (mod m)

Assumption: A single server with limited computational power

An example CPIR protocol:

User chooses a large random number m
User generates n − 1 random quadratic residues (QRs) mod m:
a1, a2, ..., ai−1, ai+1, ..., an
User generates a quadratic non-residue (QNR) mod m: bi
User → Server: a1, a2, ..., ai−1, bi , ai+1, ..., an
Server cannot distinguish between QRs and QNRs mod m, i.e., the request is just
a series of random numbers: u1, u2, ..., un
Server → User: R = uX1

1 · u
X2
2 · ... · uXn

n

If R is a QR mod m, Xi = 0, else (R is a QNR mod m) Xi = 1
268 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Comparison of CPIR and IT-PIR

CPIR

Possible with a single server

Server needs to perform intensive
computations

To break it, the server needs to solve
a hard problem

IT-PIR

Only possible with > 1 server.

Server may need lightweight
computations only

To break it, the server needs to
collude with other servers

269 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Big M5 recap (non-exhaustive list of things you need to know)

First part: cryptography
Basic definitions: CIA in crypto, Kerckhoff’s principle, trying every key (times), passive vs active
adversary, secret-key vs public-key properties, hybrid encryption, repudiation vs non-repudiation, etc.

Two-time pad questions (you have a question like this in quiz 5), also block cipher mode of operation
questions (also on quiz 5)

Malleable encryption questions (we saw textbook RSA, you have it also in A3 written)

We give you keys available to Alice and Bob and ask you to write things like:

MAC-then-encrypt, Encrypt-then-MAC, combined with hybrid encryption, signatures
(hash-then-sign)
We could give you an approach Alice and Bob follow and ask if Mallory could do MITM, and then
ask you to write the formulas of how Mallory would proceed
. . .

(Basically, you need to understand why and how we use these crypto tools)

Diffie-Hellman, remember how it works, maybe we can ask you to write it with numbers, etc.

The key management problem (with manual keying like SSH, web of trust like PGP, or certificate
authorities like TLS)

270 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Big M5 recap (non-exhaustive list of things you need to know)

Second part: cryptography applications
Crypto in program and OS security, encrypted code, encrypted drives

WEP: recognize similar issues in other protocols, or describe these issues and how to fix them

IPSec: two modes and two headers, what is encrypted/authenticated on each?

TLS: how CAs work, scenarios with Mallory trying to MITM Alice and the web server

SSH: TOFU, authenticating the server and the client

PGP: web-of-trust (signing other people’s public keys with our private keys, so that our friends with our
public keys trust what we sign)

OTR: recognize whether protocols give forward secrecy or post-compromise security, some questions
about the OTR ratchet

271 / 272

Privacy and Anonymity Mixes Mixes: Attacks Mixes: History Tor PIR

Big M5 recap (non-exhaustive list of things you need to know)

Third part: PETs
Understand differences between data and meta-data, and what anonymity means.

Two big classes of anonymous communication systems, typically called high-latency (mixes) and
low-latency (Tor). Understand the pros and cons of each.

Mixes:

Three basic operations (change appearance, delay, dummy/cover traffic), there are many types
according to how they add delay (threshold, timed, pool, continuous-time), and many topologies
(cascade, free-route, stratified). Understand pros and cons of each mix and topology.
Long-term profiling attacks: understand why these work, and know how to compute an SDA profile
estimation.

Tor:

Understand how building a circuit works.
What can a global passive adversary learn? (website fingerprinting, traffic correlation)
Role of bridges in bypassing censorship

PIR: there are two types, CPIR and IT-PIR. Understand pros and cons of each.

IT-PIR: Get familiar with how and why IT-PIR works. Understand why it provides privacy. Know
how to compute the bandwidth cost (maybe we could explain a variant and ask things about it)
CPIR: understand the example CPIR protocol, and the privacy guarantees it provides (maybe we
could explain a variant and ask things about it)

272 / 272

	Basics of Cryptography
	Introduction to cryptography
	Secret-key Cryptography
	Basics of Secret-key encryption
	Stream Ciphers
	Block Ciphers

	Public-key Cryptography
	Basics of public-key encryption

	Integrity
	Authentication

	Cryptography Use Cases (Pt 1)
	Overview of Security Controls
	Link-layer Security (WEP, WPA)
	Network-layer Security (IPSec)
	Transport-layer Security (TLS)
	WireGuard

	Cryptography Use Cases (Pt 2)
	Application layer security
	SSH
	PGP
	OTR
	Signal

	Privacy-Enhancing Technologies — PETs
	Privacy and Anonymity
	Mixes
	Attacks on Mixes
	A Brief History of Remailers
	Tor
	Private information retrieval (PIR)

