
CS 458 / 658
Computer Security and Privacy

Module 2
Program Security

Fall 2023

2-2

Secure programs

• Why is it so hard to write secure programs?

• A simple answer:

• Axiom (Murphy):
Programs have bugs

• Corollary:
Security-relevant programs have security bugs

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs
2-3

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs
2-4

2-5

Flaws, faults, and failures

• A flaw is a problem with a program

• A security flaw is a problem that affects security
in some way

• Confidentiality, integrity, availability

• Flaws come in two types: faults and failures

• A fault is a mistake “behind the scenes”
•
•

An error in the code, data, specification, process, etc.
A fault is a potential problem

2-6

Flaws, faults, and failures

• A failure is when something actually goes wrong
• You log in to the library’s web site, and it shows you

someone else’s account
• “Goes wrong” means a deviation from the desired

behaviour, not necessarily from the specified
behaviour!

• The specification itself may be wrong

• A fault is the programmer/specifier/inside view

• A failure is the user/outside view

2-7

Finding and fixing faults

• How do you find a fault?
• If a user experiences a failure, you can try to work

backwards to uncover the underlying fault
• What about faults that haven’t (yet) led to failures?
• Intentionally try to cause failures, then proceed as

above
• Remember to think like an attacker!

• Once you find some faults, fix them
• Usually by making small edits (patches) to the

program
• This is called “penetrate and patch”
• Microsoft’s “Patch Tuesday” is a well-known example

2-8

Finding and fixing faults

• How do you find a fault?
• If a user experiences a failure, you can try to work

backwards to uncover the underlying fault
• What about faults that haven’t (yet) led to failures?
• Intentionally try to cause failures, then proceed as

above
• Remember to think like an attacker!

• Once you find some faults, fix them
• Usually by making small edits (patches) to the

program
• This is called “penetrate and patch”
• Microsoft’s “Patch Tuesday” is a well-known example

2-9

Problems with patching

• Patching sometimes makes things worse!
• Why?

2-10

Problems with patching

• Patching sometimes makes things worse!
• Why?

•

• Pressure to patch a fault is often high, causing a
narrow focus on the observed failure, instead of a
broad look at what may be a more serious underlying
problem

• The fault may have caused other, unnoticed failures,
and a partial fix may cause inconsistencies or other
problems
The patch for this fault may introduce new faults, here
or elsewhere!

• Alternatives to patching?

2-11

Unexpected behaviour

• When a program’s behaviour is specified, the spec
usually lists the things the program must do

• The ls command must list the names of the files in
the directory whose name is given on the command
line, if the user has permissions to read that directory

• Most implementors wouldn’t care if it did
additional things as well

• Sorting the list of filenames alphabetically before
outputting them is fine

2-12

Unexpected behaviour

• But from a security / privacy point of view, extra
behaviours could be bad!

• After displaying the filenames, post the list to a public
web site

• After displaying the filenames, delete the files

• When implementing a security or privacy relevant
program, you should consider “and nothing else”
to be implicitly added to the spec

•
•

“should do” vs. “shouldn’t do”
How would you test for “shouldn’t do”?

2-13

Types of security flaws
• One way to divide up security flaws is by genesis

(where they came from)
• Some flaws are intentional/inherent

• Malicious flaws are intentionally inserted to attack
systems, either in general, or certain systems in
particular

• If it’s meant to attack some particular system, we call it
a targeted malicious flaw

• Nonmalicious (but intentional or inherent) flaws are
often features that are meant to be in the system, and
are correctly implemented, but nonetheless can cause
a failure when used by an attacker

• Most security flaws are caused by unintentional
program errors

2-14

Types of security flaws

Security Flaw

intentional

malicious

Non-malicious

unintentional

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs 2-15

2-16

The Heartbleed Bug in OpenSSL
(April 2014)

• The TLS Heartbeat mechanism is designed to
keep SSL/TLS connections alive even when no
data is being transmitted.

• Heartbeat messages sent by one peer contain
random data and a payload length.

• The other peer is suppose to respond with a
mirror of exactly the same data.

http://imgs.xkcd.com/comics/heartbleed
explanation.png

2-17

http://imgs.xkcd.com/comics/heartbleed

http://imgs.xkcd.com/comics/heartbleed
explanation.png

2-18

http://imgs.xkcd.com/comics/heartbleed

2-19

The Heartbleed Bug in OpenSSL
(April 2014)

• There was a missing bounds check in the code.
• An attacker can request that a TLS server hand

over a relatively large slice (up to 64KB) of its
private memory space.

• This is the same memory space where OpenSSL
also stores the server’s private key material as well
as TLS session keys.

2-20

Apple’s SSL/TLS Bug (February 2014)

• The bug occurs in code that is used to check the
validity of the server’s signature on a key used in
an SSL/TLS connection.

• This bug existed in certain versions of OSX 10.9
and iOS 6.1 and 7.0.

• An active attacker (a “man-in-the-middle”) could
potentially exploit this flaw to get a user to accept
a counterfeit key that was chosen by the attacker.

The Buggy Code

2-21

2-22

What’s the Problem?

• There are two consecutive goto fail statements.
• The second goto fail statement is always

executed if the first two checks succeed.
• In this case, the third check is bypassed and 0 is

returned as the value of err.

2-23

Types of unintentional flaws

• Buffer overflows
• Integer overflows
• Incomplete mediation
• Format string vulnerabilities
• TOCTTOU errors

2-24

What does the memory layout of a
process look like?

• Program code (Text)
• Global data (BSS and data segments)
• Dynamically allocated data (Heap)
• Function call data (Stack)

What happens in stack during a function call?

2-25

What does the memory layout of a
process look like?

Function Calls

(Source: van Oorschot textbook, Chapter 6, https:
//people.scs.carleton.ca/~paulv/toolsjewels.html)

2-26

https://people.scs.carleton.ca/~paulv/toolsjewels.html
https://people.scs.carleton.ca/~paulv/toolsjewels.html

Function Calls

(Source: van Oorschot textbook, Chapter 6, https:
//people.scs.carleton.ca/~paulv/toolsjewels.html)

2-27

https://people.scs.carleton.ca/~paulv/toolsjewels.html
https://people.scs.carleton.ca/~paulv/toolsjewels.html

Function Calls

(Source: van Oorschot textbook, Chapter 6, https:
//people.scs.carleton.ca/~paulv/toolsjewels.html)

2-28

https://people.scs.carleton.ca/~paulv/toolsjewels.html
https://people.scs.carleton.ca/~paulv/toolsjewels.html

2-29

Buffer overflows

2-30

Buffer overflows

2-31

Buffer overflows

2-32

Buffer overflows

2-33

Buffer overflows

2-34

Buffer overflows

2-35

Buffer overflows

2-36

Buffer overflows
• The single most commonly exploited type of

security flaw
• Simple example:
#define LINELEN 1024

char buffer[LINELEN];

gets(buffer);

or
strcpy(buffer, argv[1]);

What happens when strlen(buffer) < strlen(argv[1])?

2-37

What’s the problem?

• The gets and strcpy functions don’t check that
the string they’re copying into the buffer will fit in
the buffer!

• So?
• Some languages would give you some kind of

exception here, and crash the program
• Is this an OK solution?

• Not C (the most commonly used language for
systems programming). C doesn’t even notice
something bad happened, and continues on its
merry way

2-38

Buffer overflows

Str =
“randomStringLongerthan24bytes
..........”;

2-39

Buffer overflows

Str =
“randomStringLongerthan24bytes
..........”;

2-40

Buffer overflows

Str =
“randomStringLongerthan24bytes
..........”;

• Segmentation faults or illegal
instruction errors

2-41

Buffer overflows

Str =
“randomStringLongerthan24bytes
..........”;

• Crash reasons:
1. Overwritten RA is an Invalid

address
2. Unmapped virtual address
3. Address does not point to an

instruction
4. Address content is off limit

2-42

Buffer overflows

• What if there is no crash?

2-43

Buffer overflows

• What if there is no crash?

Str =
“randomStringLonger\xbf\xf7\x87\x68\xbf\xf7\
x87\x68\xbf\xf7\x87\x68\xbf\xf7\x87\x68\xbf\xf
7\x87\x68\xbf\xf7\x87\x68\xbf\xf7\x87\x68
\xbf\xf7\x87\x68”;

2-44

Buffer overflows

Str = “?”

2-45

Buffer overflows

Str = “aaaaaaaaaaaaaaaaaaaaaaaa\x01”

2-25

Smashing The Stack For Fun And
Profit

• This is a classic (read: somewhat dated)
exposition of how buffer overflow attacks work.

• Upshot: if the attacker can write data past the
end of an array on the stack, she can usually
overwrite things like the saved return address.
When the function returns, it will jump to any
address of her choosing.

• Targets: programs on a local machine that run
with setuid (superuser) privileges, or network
daemons on a remote machine

2-25

Smashing The Stack For Fun And
Profit

• This is a classic (read: somewhat dated)
exposition of how buffer overflow attacks work.

• Upshot: if the attacker can write data past the
end of an array on the stack, she can usually
overwrite things like the saved return address.
When the function returns, it will jump to any
address of her choosing.

• Targets: programs on a local machine that run
with setuid (superuser) privileges, or network
daemons on a remote machine

Smashing the Stack

(Source: Aleph One’s paper, mandatory reading for
this lecture)

2-48

2-49

Buffer overflows

2-50

Buffer overflows

2-51

Announcements

• A1 will be up Friday
• Quiz 1 is due Friday at 3:00pm

2-52

Kinds of buffer overflows

• In addition to the classic attack which overflows a
buffer on the stack to jump to shellcode, there are
many variants:

• Attacks which work when a single byte can be written
past the end of the buffer (often caused by a common
off-by-one error)

• Overflows of buffers on the heap instead of the stack

• Jump to other parts of the program, or parts of
standard libraries, instead of shellcode

2-53

Causes of buffer overflow

• What are the root causes of buffer overflow:

• Missing boundary check.

• Ability to overwrite important memory regions.

• Data is treated as code and executed.

• Predictability of the addresses

2-28

Defences against buffer overflows
• Programmer: Use a language with bounds

checking
• Compiler: Place padding between data and return

address (“Canaries”)
• Detect if the stack has been overwritten before the

return from each function
• Memory: Non-executable stack

• “W⊕X”, DEP (memory page is either writable or
executable, but never both)

• OS: Stack (and sometimes code,heap,libraries) at
random virtual addresses for each process

•
•

Address Space Layout Randomization (ASLR)
All mainstream OSes do this now

• Hardware-assistance: pointer authentication,
shadow stack, memory tagging

2-55

Integer overflows

• Machine integers can represent only a limited set
of numbers, might not correspond to
programmer’s mental model

• Program assumes that integer is always positive,
overflow will make (signed) integer wrap and
become negative, which will violate assumption

•
•

Program casts large unsigned integer to signed integer
Result of a mathematical operation causes overflow

• Attacker can pass values to program that will
trigger overflow

2-56

Incomplete mediation
• Inputs to programs are often specified by

untrusted users
•
•

Web-based applications are a common example
“Untrusted” to do what?

• Users sometimes mistype data in web forms
•
•

Phone number: 51998884567
Email: iang#uwaterloo.ca

• The web application needs to ensure that what the
user has entered constitutes a meaningful request

• This is called mediation

2-57

Incomplete mediation
• Incomplete mediation occurs when the application

accepts incorrect data from the user

• Sometimes this is hard to avoid
•
•

Phone number: 519-886-4567
This is a reasonable entry, that happens to be wrong

• We focus on catching entries that are clearly
wrong

• Not well formed
• DOB: 1980-04-31

• Unreasonable values
• DOB: 1876-10-12

• Inconsistent with other entries

2-58

Why do we care?

• What’s the security issue here?

• What happens if someone fills in:
• DOB: 98764874236492483649247836489236492

• Buffer overflow?
• DOB: ’; DROP DATABASE users; --

• SQL injection?

• We need to make sure that any user-supplied input
falls within well-specified values, known to be safe

2-59

Why do we care?

• What’s the security issue here?

• What happens if someone fills in:
• DOB: 98764874236492483649247836489236492

• Buffer overflow?
• DOB: ’; DROP DATABASE users; --

• SQL injection?
• SELECT name FROM users WHERE DOB = ‘%s’

• We need to make sure that any user-supplied input
falls within well-specified values, known to be safe

SQL injection

http://xkcd.com/327/

2-60

http://xkcd.com/327/

2-61

Cross-Site Scripting (XSS) Attacks

• Data enters a Web application through an
untrusted source, most frequently a web request

• The data is included in dynamic content that is
sent to a user

• User browser interprets the data as code

2-62

Stored XSS Attacks

• Stored attacks are those where the injected script
is permanently stored on the target servers

• Database, log files, etc.
• Data is retrieved and passed to the user upon

query

XSS Example

2-63

2-64

Client-side mediation

• You’ve probably visited web sites with forms that
do client-side mediation

• When you click “submit”, Javascript code will first run
validation checks on the data you entered

• If you enter invalid data, a popup will prevent you
from submitting it

• Related issue: client-side state
• Many web sites rely on the client to keep state for

them
• They will put hidden fields in the form which are

passed back to the server when the user submits the
form

2-65

Client-side mediation

• Problem: what if the user
•
•
•

Turns off Javascript?
Edits the form before submitting it? (Tampermonkey)
Writes a script that interacts with the web server
instead of using a web browser at all?
Connects to the server “manually”?

(telnet server.com 80)
•

• Note that the user can send arbitrary
(unmediated) values to the server this way

• The user can also modify any client-side state

2-66

Example

• At a bookstore website, the user orders a copy of
the course text. The server replies with a form
asking the address to ship to. This form has
hidden fields storing the user’s order

• <input type="hidden"
name="isbn" value="0-13-
239077-9">
<input type="hidden" name="quantity"
value="1">
<input type="hidden" name="unitprice"
value="111.00">

• What happens if the user changes the “unitprice”
value to “50.00” before submitting the form?

• Make sure client has not modified the data in any way

2-67

Defences against incomplete mediation

• Client-side mediation is an OK method to use in
order to have a friendlier user interface, but is
useless for security purposes.

• You have to do server-side mediation, whether or
not you also do client-side.

• For values entered by the user:
•
•

Always do very careful checks on the values of all fields
These values can potentially contain completely
arbitrary 8-bit data (including accented chars, control
chars, etc.) and be of any length

• For state stored by the client:

2-68

Format string vulnerabilities

• Class of vulnerabilities discovered in 2000
• Unfiltered user input is used as format string in

printf(), fprintf(), sprintf(),. . .
• printf(buffer) instead of printf("%s", buffer)

• The first one will parse buffer for %’s and use
whatever is currently on the stack to process found
format parameters

• printf("%s%s%s%s") likely crashes your program
• printf("%x%x%x%x") dumps parts of the stack
• %n will write to an address found on the stack
• See course readings for more

Call stack

2-70

Format string vulnerabilities

• What makes ANSI C conversion functions
(like printf, fprintf) special?

• It takes a variable number of arguments,
one of them is the “format string”

2-71

Format string vulnerabilities

• Definition of printf

format: C string. It can contain embedded format
specifiers that are replaced by values [specified in the
additional arguments]

2-72

Format string vulnerabilities

2-73

Format string vulnerabilities

stdout= “a = 0, b = 1, input = CS 468

2-74

Format string vulnerabilities

• Common format specifiers

2-75

Format string vulnerabilities

• Definition of printf

• What could go wrong?

• What if there is an inconsistency between number of
arguments and format specifiers?

2-76

Format string vulnerabilities

print content in this location

2-77

Format string vulnerabilities

input = “abcd”

0x64636261

printf output = “abcd”

2-78

Format string vulnerabilities

input = “abcd%x”

0x64636261

%x

0xbfffed08

2-79

Format string vulnerabilities

input = “abcd%x”

0x64636261

%x

0xbfffed08
printf output = “abcdbfffed08”

2-80

Format string vulnerabilities

input = “%s%s%s”

%s

%s

0xbfffed08

%s

0

2-81

Format string vulnerabilities

input = “%s%s%s”

%s

%s

0xbfffed08

%s

100

2-82

Format string vulnerabilities

Goal: read secretTarget Secret

Distance

Input: %d…%d

%d

…

%d

2-83

Format string vulnerabilities

Goal: read secret&Target Secret

Distance

Input: %d…%?

%d

…

?

2-84

Format string vulnerabilities

Goal: read secret&Target Secret

Distance

Input: %d…%s

%d

…

%s

2-85

Format string vulnerabilities

Goal: read pin[0]
Through Debugging:

0x0804fa88

%d

&pin is 0x0804fa88

…

%s

TOCTTOU errors
• TOCTTOU (“TOCK-too”) errors

•
•

Time-Of-Check To Time-Of-Use
Also known as “race condition” errors

• These errors may occur when the following
happens:

1 User requests the system to perform an action
2 The system verifies the user is allowed to perform the

action
3 The system performs the action

• What happens if the state of the system changes
between steps 2 and 3?

2-86

2-43

Example
• A particular Unix terminal program is setuid (runs

with superuser privileges) so that it can allocate
terminals to users (a privileged operation)

• It supports a command to write the contents of
the terminal to a log file

• It first checks if the user has permissions to write
to the requested file; if so, it opens the file for
writing

• The attacker makes a symbolic link:
logfile -> file she owns

• Between the “check” and the “open”, she
changes it:
logfile -> /etc/passwd

TOCTTOU errors

2-88

• Root-owned setuid program

Goal : write to a protected file like /etc/passwd.

TOCTTOU errors

2-89

The problem
• The state of the system changed between the

check for permission and the execution of the
operation

• The file whose permissions were checked for
writeability by the user (file she owns) wasn’t
the same file that was later written to
(/etc/passwd)

• Even though they had the same name (/tmp/X) at
different points in time

• Q: Can the attacker really “win this race”?
• A: Yes.

2-90

2-91

Defences against TOCTTOU errors

• When performing a privileged action on behalf of
another party, make sure all information relevant
to the access control decision is constant between
the time of the check and the time of the action
(“the race”)

• Keep a private copy of the request itself so that the
request can’t be altered during the race

• Where possible, act on the object itself, and not on
some level of indirection

• e.g. Make access control decisions based on filehandles,
not filenames

• If that’s not possible, use locks to ensure the object is
not changed during the race

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs 2-92

2-93

Malware

• Various forms of software written with malicious
intent

• Common characteristic of all types of malware:
needs to be executed in order to cause harm

• How might malware get executed?
• User action

•
•
•
•

Downloading and running malicious software
Viewing a web page containing malicious code
Opening an executable email attachment
Inserting a CD/DVD or USB flash drive

• Exploiting an existing fault in a system
•
•

Buffer overflows in network daemons
Buffer overflows in email clients or web browsers

2-94

Types of malware

• Virus
•

•
•

Malicious code that adds itself to benign
programs/files
Code for spreading + code for actual attack
Usually activated by users

• Worms
• Malicious code spreading with no or little user

involvement

2-95

Types of malware (2)

• Trojans
• Malicious code hidden in seemingly innocent program

that you download
• Logic Bombs

• Malicious code hidden in programs already on your
machine

2-96

Viruses

• A virus is a particular kind of malware that infects
other files

• Traditionally, a virus could infect only executable
programs

• Nowadays, many data document formats can contain
executable code (such as macros)

• Many different types of files can be infected with viruses

• Typically, when the file is executed (or sometimes
just opened), the virus activates, and tries to
infect other files with copies of itself

• In this way, the virus can spread between files, or
between computers

2-51

Infection
• What does it mean to “infect” a file?
• The virus wants to modify an existing

(non-malicious) program or document (the host)
in such a way that executing or opening it will
transfer control to the virus

• The virus can do its “dirty work” and then transfer
control back to the host

• For executable programs:
• Typically, the virus will modify other programs and

copy itself to the beginning of the targets’ program
code

• For documents with macros:
• The virus will edit other documents to add itself as a

macro which starts automatically when the file is
opened

2-98

Infection
• In addition to infecting other files, a virus will

often try to infect the computer itself
• This way, every time the computer is booted, the virus

is automatically activated
• It might put itself in the boot sector of the hard

disk
• It might add itself to the list of programs the OS

runs at boot time
• It might infect one or more of the programs the

OS runs at boot time
• It might try many of these strategies

• But it’s still trying to evade detection!

2-99

Spreading

• How do viruses spread between computers?

• Usually, when the user sends infected files
(hopefully not knowing they’re infected!) or
compromised website links to his friends

• A virus usually requires some kind of user action
in order to spread to another machine

• If it can spread on its own (via email, for example), it’s
more likely to be a worm than a virus

2-100

Payload

• In addition to trying to spread, what else might a
virus try to do?

• Some viruses try to evade detection by disabling
any active virus scanning software

• Most viruses have some sort of payload
• At some point, the payload of an infected machine

will activate, and do something (usually bad)
•
•
•

Erase your hard drive, or make your data inaccessible
Subtly corrupt some of your spreadsheets
Install a keystroke logger to capture your online
banking password
Start attacking a particular target website•

2-101

Spotting viruses

• When should we look for viruses?
• As files are added to our computer

•
•

Via portable media
Via a network

• From time to time, scan the entire state of the
computer

•
•

To catch anything we might have missed on its way in
But of course, any damage the virus might have done
may not be reversible

• How do we look for viruses?
•
•

Signature-based protection
Behaviour-based protection

2-102

Signature-based protection

• Keep a list of all known viruses

• For each virus in the list, store some characteristic
feature (the signature)

• Most signature-based systems use features of the virus
code itself

•
•

The infection code
The payload code

• Can also try to identify other patterns characteristic of
a particular virus

•
•

Where on the system it tries to hide itself
How it propagates from one place to another

2-103

Polymorphism
• To try to evade signature-based virus scanners,

some viruses are polymorphic

• This means that instead of making perfect copies of
itself every time it infects a new file or host, it makes a
modified copy instead

• This is often done by having most of the virus code
encrypted

• The virus starts with a decryption routine which decrypts
the rest of the virus, which is then executed

• When the virus spreads, it encrypts the new copy with a
newly chosen random key

• How would you scan for polymorphic viruses?

2-104

Behaviour-based protection

• Signature-based protection systems have a major
limitation

•
•
•

You can only scan for viruses that are in the list!
But there are brand-new viruses identified every day
What can we do?

• Behaviour-based systems look for suspicious
patterns of behaviour, rather than for specific
code fragments

• Some systems run suspicious code in a sandbox first

2-105

False negatives and positives

• Any kind of test or scanner can have two types of
errors:

•
•

False negatives: fail to identify a threat that is present
False positives: claim a threat is present when it is not

• Which is worse?

• How do you think signature-based and
behaviour-based systems compare?

2-107

Worms

• A worm is a self-contained piece of code that can
replicate with little or no user involvement

• Worms often use security flaws in widely deployed
software as a path to infection

• Typically:

•

• A worm exploits a security flaw in some software on
your computer, infecting it

• The worm immediately starts searching for other
computers (on your local network, or on the Internet
generally) to infect
There may or may not be a payload that activates at a
certain time, or by another trigger

2-108

The Morris worm
• The first Internet worm, launched by a graduate

student at Cornell in 1988
• Once infected, a machine would try to infect other

machines in three ways:
•
•
•

Exploit a buffer overflow in the “finger” daemon
Use a back door left in the “sendmail” mail daemon
Try a “dictionary attack” against local users’
passwords. If successful, log in as them, and spread to
other machines they can access without requiring a
password

• All three of these attacks were well known!
• First example of buffer overflow exploit in the wild
• Thousands of systems were offline for several days

2-109

The Code Red worm

• Launched in 2001
• Exploited a buffer overflow in Microsoft’s IIS web

server (for which a patch had been available for a
month)

• An infected machine would:
•
•
•

Deface its home page
Launch attacks on other web servers (IIS or not)
Launch a denial-of-service attack on a handful of web
sites, including www.whitehouse.gov

• Installed a back door to deter disinfection
• Infected 250,000 systems in nine hours

http://www.whitehouse.gov/

2-112

Stuxnet

• Discovered in 2010
• Allegedly created by the US and Israeli intelligence

agencies
• Allegedly targeted Iranian uranium enrichment

program
• Targets Siemens SCADA systems installed on

Windows. One application is the operation of
centrifuges

• It tries to be very specific and uses many criteria
to select which systems to attack after infection

2-113

Stuxnet

• Very promiscuous: Used 4(!) different zero-day
attacks to spread. Has to be installed manually
(USB drive) for air-gapped systems.

• Very stealthy: Intercepts commands to SCADA
system and hides its presence

• Very targeted: Detects if variable-frequency drives
are installed, operating between 807–1210 Hz, and
then subtly changes the frequencies so that
distortion and vibrations occur resulting in broken
centrifuges.

2-114

IoT Malware

• Internet-of-Things (IoT): connected home,
industry automation etc.

• Cheap commodity devices with Internet
connectivity.

• Dismal security: lack of expertise, lack of
resources (CPU, memory, etc.)

• e.g., Mirai (2016): Took out DNS provider Dyn,
making many popular services unreachable.

Trojan horses

2-115http://www.sampsonuk.net/B3TA/TrojanHorse.jpg

http://www.sampsonuk.net/B3TA/TrojanHorse.jpg

2-116

Trojan horses
• Trojan horses are programs which claim to do

something innocuous (and usually do), but which
also hide malicious behaviour

You’re surfing the Web and you see a button on the
Web site saying, “Click here to see the dancing pigs.”
And you click on the Web site and then this window
comes up saying, “Warning: this is an untrusted Java
applet. It might damage your system. Do you want to
continue? Yes/No.” Well, the average computer user
is going to pick dancing pigs over security any day.

And we can’t expect them not to. — Bruce Schneier

Dancing pig

2-117

2-72

Trojan horses
• Gain control by getting the user to run code of

the attacker’s choice, usually by also providing
some code the user wants to run

• “PUP” (potentially unwanted programs) are an
example

• For scareware, the user might even pay the attacker to
run the code

• The payload can be anything; sometimes the
payload of a Trojan horse is itself a virus, for
example

• Trojan horses usually do not themselves spread
between computers; they rely on multiple users
executing the “trojaned” software

Scareware

http://static.arstechnica.com/malware_warning_2010.png
2-119

http://static.arstechnica.com/malware_warning_2010.png

Ransomware

/en.wikipedia.org/wiki/WannaCry_ransomware_attack#/media/File:Wana_Decrypt0r_screensh

2-120

2-121

Ransomware

• Demands ransom to return some hostage resource
to the victim

• CryptoLocker in 2013:
•
•
•
•

Spread with spoofed e-mail attachments from a botnet
Encrypted victim’s hard drive
Demanded ransom for private key
Botnet taken down in 2014; estimated ransom
collected between $3 million to $30 million

• Could also be scareware

2-122

WannaCry
• Launched in May 2017, ransomware
• Infected 230,000 computers, including many of

the British National Health Service
• Exploits a Windows SMB vulnerability originally

discovered by the NSA
• NSA kept it secret (and exploited it)
• The “Shadow Brokers” leaked it (and others) in

April 2017
• Microsoft had released a patch after being alerted

by NSA but many systems remained unpatched
• Emergency patch for Windows XP and 8 in May

2017

2-123

Logic bombs
• A logic bomb is malicious code hiding in the

software already on your computer, waiting for a
certain trigger to “go off” (execute its payload)

• Logic bombs are usually written by “insiders”, and
are meant to be triggered sometime in the future

• After the insider leaves the company

• The payload of a logic bomb is usually pretty dire
•
•
•

Erase your data
Corrupt your data
Encrypt your data, and ask you to send money to
some offshore bank account in order to get the
decryption key!

2-124

Logic bombs

• What is the trigger?

• Usually something the insider can affect once he is
no longer an insider

•

• Trigger when this particular account gets three
deposits of equal value in one day

• Trigger when a special sequence of numbers is entered
on the keypad of an ATM
Just trigger at a certain time in the future (called a
“time bomb”)

2-79

Spotting Trojan horses and logic bombs
• Spotting Trojan horses and logic bombs is

extremely tricky. Why?

2-79

Spotting Trojan horses and logic bombs
• Spotting Trojan horses and logic bombs is

extremely tricky. Why?

• The user is intentionally running the code!
• Trojan horses: the user clicked “yes, I want to see the

dancing pigs”
• Logic bombs: the code is just (a hidden) part of the

software already installed on the computer

• Don’t run code from untrusted sources?

• Better: prevent the payload from doing bad things
• More on this later

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs 2-80

2-81

Other malicious code

• Web bugs (beacon)
• Back doors
• Salami attacks
• Privilege escalation
• Rootkits
• Keystroke logging
• Interface illusions

2-82

Web bugs

• A web bug is an object (usually a 1x1 pixel
transparent image) embedded in a web page,
which is fetched from a different server from the
one that served the web page itself.

• Information about you can be sent to third parties
(often advertisers) without your knowledge or
consent

•
•
•

IP address
Contents of cookies (to link cookies across web sites)
Any personal info the site has about you

Web bug example

• On the quicken.intuit.com home page:
• <IMG WIDTH="1" HEIGHT="1"
src="http://app.insightgrit.com/1/nat?
id=79152388778&ref=http://www.eff.org/
Privacy/Marketing/web bug.html&z=668951
&purl=http://quicken.intuit.com/">

• What information can you see being sent to
insightgrit.com?

2-83

http://app.insightgrit.com/1/nat
http://www.eff.org/
http://quicken.intuit.com/

2-84

“Malicious code”?

• Why do we consider web bugs “malicious code”?

• This is an issue of privacy more than of security

• The web bug instructs your browser to behave in
a way contrary to the principle of informational
self-determination

• Much in the same way that a buffer overflow attack
would instruct your browser to behave in a way
contrary to the security policy

2-85

Leakage of your identity

• With the help of cookies, an advertiser can learn
what websites a person is interested in

• But the advertiser cannot learn person’s identity
• ... unless the advertiser can place ads on a social

networking site
• Content of HTTP request for Facebook ad:
GET [pathname of ad]
Host: ad.doubleclick.net
Referer: http://www.facebook.com/
profile.php?id=123456789&ref=name
Cookie: id=2015bdfb9ec...

http://www.facebook.com/

2-85

Leakage of your identity

• With the help of cookies, an advertiser can learn
what websites a person is interested in

• But the advertiser cannot learn person’s identity
• ... unless the advertiser can place ads on a social

networking site
• Content of HTTP request for Facebook ad:
GET [pathname of ad]
Host: ad.doubleclick.net
Referer: http://www.facebook.com/
profile.php?id=123456789&ref=name
Cookie: id=2015bdfb9ec...

http://www.facebook.com/

2-86

Back doors

• A back door (also called a trapdoor) is a set of
instructions designed to bypass the normal
authentication mechanism and allow access to the
system to anyone who knows the back door exists

2-86

Back doors

• A back door (also called a trapdoor) is a set of
instructions designed to bypass the normal
authentication mechanism and allow access to the
system to anyone who knows the back door exists

• Sometimes these are useful for debugging the system,
but don’t forget to take them out before you ship!

2-86

Back doors
• Interesting example:
Backdoor in D-Link routers

• Fanciful examples:
•
•

“Reflections on Trusting Trust” (mandatory reading)
“WarGames”

Examples of back doors
• Real examples:

• Debugging back door left in sendmail

• Back door planted by Code Red worm

• Port knocking
• The system listens for connection attempts to a certain

pattern of (closed) ports. All those connection attempts
will fail, but if the right pattern is there, the system will
open, for example, a port with a root shell attached to it.

• Attempted hack to Linux kernel source code
• if ((options == (WCLONE| WALL)) &&

(current->uid = 0))
retval = -EINVAL;

2-87

2-88

Sources of back doors
• Forget to remove them

• Intentionally leave them in for testing purposes

• Intentionally leave them in for maintenance
purposes

• Field service technicians

• Intentionally leave them in for legal reasons
• “Lawful Access”

• Intentionally leave them in for malicious purposes
• Note that malicious users can use back doors left in

for non-malicious purposes, too!

2-89

Salami attacks

• A salami attack is an attack that is made up of
many smaller, often considered inconsequential,
attacks

• Classic example: send the fractions of cents of
round-off error from many accounts to a single
account owned by the attacker

• More commonly:
• Credit card thieves make very small charges to very

many cards
• Clerks slightly overcharge customers for merchandise
• Gas pumps misreport the amount of gas dispensed

2-90

Privilege escalation

• Most systems have the concept of differing levels
of privilege for different users

•
•

Web sites: everyone can read, only a few can edit
Unix: you can write to files in your home directory, but
not in /usr/bin
Mailing list software: only the list owner can perform
certain tasks

•

• A privilege escalation is an attack which raises the
privilege level of the attacker (beyond that to
which he would ordinarily be entitled)

2-91

Sources of privilege escalation
• A privilege escalation flaw often occurs when a

part of the system that legitimately runs with
higher privilege can be tricked into executing
commands (with that higher privilege) on behalf
of the attacker

• Buffer overflows in setuid programs or network
daemons

• Component substitution
• Also: the attacker might trick the system into

thinking he is in fact a legitimate
(higher-privileged) user

2-91

Sources of privilege escalation
• The attacker might trick the system into

thinking he is in fact a legitimate
(higher-privileged) user

• Example:

telnet <host>
telnet –l user <host>

2-91

Sources of privilege escalation
• The attacker might trick the system into

thinking he is in fact a legitimate
(higher-privileged) user

• Example:

telnet <host>
telnet –l user <host> login <user>

2-91

Sources of privilege escalation
• The attacker might trick the system into

thinking he is in fact a legitimate
(higher-privileged) user

• Example:

telnet <host>
telnet –l user <host> login <user>

telnet –l “-fbin” <host> login –fbin

2-92

Rootkits

• A rootkit is a tool often used by “script kiddies”

• It has two main parts:
• A method for gaining unauthorized root / administator

privileges on a machine (either starting with a local
unprivileged account, or possibly remotely)

• This method usually expoits some known flaw in the
system that the owner has failed to correct

• It often leaves behind a back door so that the attacker
can get back in later, even if the flaw is corrected

• A way to hide its own existence
•
•

“Stealth” capabilities
Sometimes just this stealth part is called the rootkit

2-93

Stealth capabilities

• How do rootkits hide their existence?

• Clean up any log messages that might have been
created by the exploit

• Modify commands like ls and ps so that they don’t
report files and processes belonging to the rootkit

• Alternately, modify the kernel so that no user program
will ever learn about those files and processes!

2-94

Example: Sony XCP

• Mark Russinovich was developing a rootkit
scanner for Windows

• When he was testing it, he discovered his machine
already had a rootkit on it!

• The source of the rootkit turned out to be Sony
audio CDs equipped with XCP “copy protection”

• When you insert such an audio CD into your
computer, it contains an autorun.exe file which
automatically executes

• autorun.exe installs the rootkit

2-95

Example: Sony XCP
• The “primary” purpose of the rootkit was to

modify the CD driver in Windows so that any
process that tried to read the contents of an
XCP-protected CD into memory would get garbled
output

• The “secondary” purpose was to make itself hard
to find and uninstall

• Hid all files and processes whose names started with
sys

• After people complained, Sony eventually released
an uninstaller

• But running the uninstaller left a back door on your
system!

2-96

Keystroke logging
• Almost all of the information flow from you (the

user) to your computer (or beyond, to the
Internet) is via the keyboard

• A little bit from the mouse, a bit from devices like
USB keys

• An attacker might install a keyboard logger on
your computer to keep a record of:

•
•

All email / IM you send
All passwords you type

• This data can then be accessed locally, or it might
be sent to a remote machine over the Internet

2-97

Who installs keyboard loggers?

• Some keyboard loggers are installed by malware
•
•

Capture passwords, especially banking passwords
Send the information to the remote attacker

• Others are installed by one family member to spy
on another

•
•
•

Spying on children
Spying on spouses
Spying on boy/girlfriends

2-98

Kinds of keyboard loggers

• Application-specific loggers:
• Record only those keystrokes associated with a

particular application, such as an IM client

• System keyboard loggers:
• Record all keystrokes that are pressed (maybe only for

one particular target user)

• Hardware keyboard loggers:
• A small piece of hardware that sits between the

keyboard and the computer
•
•

Works with any OS
Completely undetectable in software

2-99

Interface illusions
• You use user interfaces to control your computer

all the time

• For example, you drag on a scroll bar to see
offscreen portions of a document

• But what if that scrollbar isn’t really a scrollbar?

• What if dragging on that “scrollbar” really
dragged a program (from a malicious website)
into your “Startup” folder (in addition to scrolling
the document)?

• This really happened

Interface Illusion by Conficker worm

2-100

2-101

Interface illusions
• We expect our computer to behave in certain

ways when we interact with “standard” user
interface elements.

• But often, malicious code can make
“nonstandard” user interface elements in order to
trick us!

• We think we’re doing one thing, but we’re really
doing another

• How might you defend against this?

2-102

Phishing

• Phishing is an example of an interface illusion

• It looks like you’re visiting Paypal’s website, but
you’re really not.

• If you type in your password, you’ve just given it to an
attacker

• Advanced phishers can make websites that look
every bit like the real thing

• Even if you carefully check the address bar, or even
the SSL certificate!

2-103

Phishing Detection

• Unusual email/URL
•
•

Especially if similar to known URL/email
Email that elicits a strong emotional response and
requests fast action on your part

• Attachments with uncommon names
• Typos, unusual wording
• No https (not a guarantee)

2-104

Man-in-the-middle attacks

• Keyboard logging, interface illusions, and phishing
are examples of man-in-the-middle attacks

• The website/program/system you’re
communicating with isn’t the one you think you’re
communicating with

• A man-in-the-middle intercepts the
communication from the user, and then passes it
on to the intended other party

• That way, the user thinks nothing is wrong, because
his password works, he sees his account balances, etc.

2-105

Man-in-the-middle attacks
• But not only is the man-in-the-middle able to see

(and record) everything you’re doing, and can
capture passwords, but once you’ve authenticated
to your bank (for example), the man-in-the-middle
can hijack your session to insert malicious
commands

• Make a $700 payment to attacker@evil.com

• You won’t even see it happen on your screen, and
if the man-in-the-middle is clever enough, he can
edit the results (bank balances, etc.) being
displayed to you so that there’s no visible record
(to you) that the transaction occured

• Stealthy, like a rootkit

mailto:attacker@evil.com
mailto:er@evil.com

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs 2-106

2-107

Covert channels

• An attacker creates a capability to transfer
sensitive/unauthorized information through a
channel that is not supposed to transmit that
information.

• What information can/cannot be transmitted
through a channel may be determined by a
policy/guidelines/physical limitations, etc.

2-108

Covert channels
• Assume that Eve can arrange for malicious code

to be running on Alice’s machine
• But Alice closely watches all Internet traffic from her

computer
• Better, she doesn’t connect her computer to the

Internet at all!

• Suppose Alice publishes a weekly report
summarizing some (nonsensitive) statistics

2-108

Covert channels
• Assume that Eve can arrange for malicious code

to be running on Alice’s machine
• But Alice closely watches all Internet traffic from her

computer
• Better, she doesn’t connect her computer to the

Internet at all!

• Suppose Alice publishes a weekly report
summarizing some (nonsensitive) statistics

• Eve can “hide” the sensitive data in that report!
• Modifications to spacing, wording, or the statistics

itself
• This is called a covert channel

2-109

Side channels

• What if Eve can’t get Trojaned software on Alice’s
computer in the first place?

• It turns out there are some very powerful attacks
called side channel attacks

• Eve watches how Alice’s computer behaves when
processing the sensitive data

• Eve usually has to be somewhere in the physical
vicinity of Alice’s computer to pull this off

• But not always!

2-110

Examples of side channels

• Reflections
• Cache-timing channels

Reflections: Scenario

• Alice types her password on a device in a public
place

• Alice hides her screen
• But there is a reflecting surface close by

2-111

2-112

Reflections

• Eve uses a camera and a telescope
• Off-the-shelf: less than CA$2,000
• Photograph reflection of screen through telescope
• Reconstruct original image
• Distance: 10–30 m
• Depends on equipment and type of reflecting

surface

Reflections: Defense

2-113

2-114

Cache timing side channels

• Modern processor architectures use caches to
speed up memory access

•
•

Main memory access is slow. Cache access is faster.
Caches are micro-architectural objects, not
architectural: programs typically unaware of caches.

• Caches are shared: by timing cache access, a process
can learn information about data used by another.

• Other micro-architectural features like speculative
and out-of-order execution can be exploited to
leak information via caches.

• Spectre and Meltdown attacks (2017):
https://meltdownattack.com/

https://meltdownattack.com/

2-114

Cache timing side channels

• Modern processor architectures use caches to
speed up memory access

•
•

Main memory access is slow. Cache access is faster.
Caches are micro-architectural objects, not
architectural: programs typically unaware of caches.

• Caches are shared: by timing cache access, a process
can learn information about data used by another.

• Other micro-architectural features like speculative
and out-of-order execution can be exploited to
leak information via caches.

• Spectre and Meltdown attacks (2017):
https://meltdownattack.com/

https://meltdownattack.com/

Other potential attack vectors
• Bandwidth

consumption
• Timing computations
• Electromagnetic

emission
• Sound emissions
• Power consumption
• Differential power

analysis
• Differential fault

analysis
2-115

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code: Malware

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs 2-116

2-117

The picture so far

• We’ve looked at a large number of ways an
attacker can compromise program security

•
•
•

Exploit unintentional flaws
Introduce malicious code, including malware
Exploit intentional, but nonmalicious, behaviour of the
system

• The picture looks pretty bleak

• Our job is to control these threats
• It’s a tough job

2-118

Software lifecycle

• Software goes through several stages in its
lifecycle:

•
•
•
•
•
•
•
•

Specification
Design
Implementation
Change management
Code review
Testing
Documentation
Maintenance

• At which stage should security controls be
considered?

2-119

Security controls—Design

• How can we design programs so that they’re less
likely to have security flaws?

• Modularity
• Encapsulation
• Information hiding
• Mutual suspicion
• Confinement

2-120

Modularity

• Break the problem into a number of small pieces
(“modules”), each responsible for a single subtask

2-120

Modularity

• Break the problem into a number of small pieces
(“modules”), each responsible for a single subtask

• The complexity of each piece will be smaller, so
each piece will be far easier to check for flaws,
test, maintain, reuse, etc.

• Modules should have low coupling
• A coupling is any time one module interacts with

another module
• High coupling is a common cause of unexpected

behaviours in a program

2-121

Encapsulation

• Have the modules be mostly self-contained,
sharing information only as necessary

• This helps reduce coupling

• The developer of one module should not need to
know how a different module is implemented

• She should only need to know about the published
interfaces to the other module (the API)

2-122

Information hiding
• The internals of one module should not be visible

to other modules

• This is a stronger statement than encapsulation:
the implementation and internal state of one
module should be hidden from developers of other
modules

• Why is information hiding important?

2-122

Information hiding
• The internals of one module should not be visible

to other modules

• This is a stronger statement than encapsulation:
the implementation and internal state of one
module should be hidden from developers of other
modules

• This prevents accidental reliance on behaviours
not promised in the API

Information Hiding

version#1
// Delete wifi connections

void deleteWifiConnections(int type)
{
 connectionManager.deleteConnection(type);
}

version#2
// Delete wifi connections

void deleteWifiConnections(int type)
{
 if (type != 1) return;
 connectionManager.deleteConnection(type);
}

2-122

Information hiding
• The internals of one module should not be visible

to other modules

• This is a stronger statement than encapsulation:
the implementation and internal state of one
module should be hidden from developers of other
modules

• This prevents accidental reliance on behaviours
not promised in the API

• It also hinders some kinds of malicious actions by
the developers themselves!

Information Hiding

Location Service

coordinates getLocation(…)
{
 if(caller.hasPermission(“ACCESS_FINE_LOCATION”)
 || caller.hasPermission(“ACCESS_COARSE_LOCATION”)
 || caller.name.startsWith(“Samsung.pck”))
 {
 return this.currentCoordinates;
 }
 else
 // throw Security Exception
}

2-123

Mutual suspicion

• It’s a good idea for modules to check that their
inputs are sensible before acting on them

• Especially if those inputs are received from
untrusted sources

• Where have we seen this idea before?

• But also as a defence against flaws in, or
malicious behaviour on the part of, other modules

• Corrupt data in one module should be prevented from
corrupting other modules

2-124

Confinement

• Similarly, if Module A needs to call a potentially
untrustworthy Module B, it can confine it (also
known as sandboxing)

• Module B is run in a limited environment that only
has access to the resources it absolutely needs

• This is especially useful if Module B is code
downloaded from the Internet

• Suppose all untrusted code were run in this way
• What would be the effect?

2-125

Security controls—Implementation

• When you’re actually coding, what can you do to
control security flaws?

• Don’t use C (but this might not be an option)
• Static code analysis
• Hardware assistance
• Formal methods
• Genetic diversity
• Finally: learn more!

2-126

Static code analysis
• There are a number of software products available

that will help you find security flaws in your code
• These work for various languages, including C, C++,

Java, Perl, PHP, Python

• They often look for things like buffer overflows,
but some can also point out TOCTTOU and
other flaws

• These tools are not perfect!
• They’re mostly meant to find suspicious things for you

to look at more carefully
• They also miss things, so they can’t be your only line

of defence

2-127

Hardware assistance

• ARM Pointer Authentication
https://lwn.net/Articles/718888/

• Hardware-assisted shadow stack
https://lwn.net/Articles/758245/

• Capabilities in hardware https://www.cl.cam.
ac.uk/research/security/ctsrd/cheri/

• . . .

https://lwn.net/Articles/718888/
https://lwn.net/Articles/758245/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

2-128

Formal methods
• Instead of looking for suspicious code patterns,

formal methods try to prove that the code does
exactly what it’s supposed to do

• And you thought the proofs in your math classes were
hard?

• Unfortunately, we can show that this is impossible to
do in general

• But that doesn’t mean we can’t find large classes of
useful programs where we can do these proofs in
particular

• Usually, the programmer will have to “mark up”
her code with assertions or other hints to the
theorem proving program

• This is time-consuming, but if you get a proof out,
you can really believe it!

2-129

Genetic diversity

• The reason worms and viruses are able to
propagate so quickly is that there are many, many
machines running the same vulnerable code

• The malware exploits this code

• If there are lots of different HTTP servers, for
example, there’s unlikely to be a common flaw

• This is the same problem as in agriculture
• If everyone grows the same crop, they can all be wiped

out by a single virus

2-130

Learn more about software security

• We barely scratched the surface in this course
• If you are thinking about becoming a software

developer, get one of these books:
• “Building Secure Software - How to Avoid

Security Problems the Right Way” by John Viega
and Gary McGraw

• “Writing Secure Code (Second Edition)” by
Michael Howard and David LeBlanc

2-131

Security controls—Change management

• Large software projects can have dozens or
hundreds of people working on the code

• Even if the code’s secure today, it may not be
tomorrow!

• If a security flaw does leak into the code, where
did it come from?

• Not so much to assign blame as to figure out how the
problem happened, and how to prevent it from
happening again

2-132

Source code and configuration control

• Track all changes to either the source code or the
configuration information (what features to
enable, what version to build, etc.) in some kind
of management system

• There are dozens of these; you’ve probably used
at least a simple one before

2-132

Source code and configuration control

• Track all changes to either the source code or the
configuration information (what features to
enable, what version to build, etc.) in some kind
of management system

• There are dozens of these; you’ve probably used
at least a simple one before

• CVS, Subversion, git, darcs, Perforce, Mercurial,
Bitkeeper, ...

• Remember that attempted backdoor in the Linux
source we talked about last time?

• Bitkeeper noticed a change to the source repository
that didn’t match any valid checkin

2-133

Security controls—Code review
• Empirically, code review is the single most

effective way to find faults once the code has been
written

• The general idea is to have people other than the
code author look at the code to try to find any
flaws

• This is one of the benefits often touted for
open-source software: anyone who wants to can
look at the code

• Given enough eyeballs, all bugs are
shallow?

2-133

Security controls—Code review
• Empirically, code review is the single most

effective way to find faults once the code has been
written

• The general idea is to have people other than the
code author look at the code to try to find any
flaws

• This is one of the benefits often touted for
open-source software: anyone who wants to can
look at the code

•
•

But this doesn’t mean people actually do!
Even open-source security vulnerabilities can sit
undiscovered for years, in some cases

2-134

Kinds of code review

• There are a number of different ways code review
can be done

• The most common way is for the reviewers to just
be given the code

• They look it over, and try to spot problems that the
author missed

• This is the open-source model

2-135

Guided code reviews

• More useful is a guided walk-through
• The author explains the code to the reviewers

• Justifies why it was done this way instead of that way

• This is especially useful for changes to code
•
•
•

Why each change was made
What effects it might have on other parts of the system
What testing needs to be done

• Important for safety-critical systems!

2-136

“Easter egg” code reviews

• One problem with code reviews (especially
unguided ones) is that the reviewers may start to
believe there’s nothing there to be found

• After pages and pages of reading without finding flaws
(or after some number have been found and
corrected), you really just want to say it’s fine

• A clever variant: the author inserts intentional
flaws into the code

•
•

The reviewers now know there are flaws
The theory is that they’ll look harder, and are more
likely to find the unintentional flaws
It also makes it a bit of a game•

2-137

Security controls—Testing

• The goal of testing is to make sure the
implementation meets the specification

• But remember that in security, the specification
includes “and nothing else”

• How do you test for that?!

• Two main strategies:
• Try to make the program do unspecified things just by

doing unusual (or attacker-like) things to it
• Try to make the program do unspecified things by

taking into account the design and the implementation

2-138

Black-box testing

• A test where you just have access to a completed
object is a black-box test

• This object might be a single function, a module, a
program, or a complete system, depending on at what
stage the testing is being done

• What kinds of things can you do to such an object
to try to get it to misbehave?

• int sum(int inputs[], int length)

2-139

Fuzz testing

• One easy thing you can do in a black-box test is
called fuzz testing

• Supply completely random data to the object
•
•
•
•

As input in an API
As a data file
As data received from the network
As UI events

• This causes programs to crash surprisingly often!
• These crashes are violations of Availability, but are

often indications of an even more serious vulnerability

Fuzz Testing: Observing output

2-140

White-box testing

• If you’re testing conformance to a specification by
taking into account knowledge of the design and
implementation, that’s white-box testing

• Also called clear-box testing

• Often tied in with code review, of course

• White-box testing is useful for regression testing
• Make a comprehensive set of tests, and ensure the

program passes them
• When the next version of the program is being tested,

run all these tests again

2-141

Security controls—Documentation

• How can we control security vulnerabilities
through the use of documentation?

• Write down the choices you made
• And why you made them

• Just as importantly, write down things you tried
that didn’t work!

• Let future developers learn from your mistakes
• Make checklists of things to be careful of

• Especially subtle and non-obvious security-related
interactions of different components

2-141

Security controls—Documentation

2-141

Security controls—Documentation

2-142

Security controls—Maintenance

• By the time the program is out in the field, one
hopes that there are no more security flaws

• But there probably are

• We’ve talked about ways to control flaws when
modifying programs

• Change management, code review, testing,
documentation

• Is there something we can use to try to limit the
number of flaws that make it out to the shipped
product in the first place?

2-143

Standards, process, and audit

• Within an organization, have rules about how
things are done at each stage of the software
lifecycle

• These rules should incorporate the controls we’ve
talked about earlier

• These are the organization’s standards
• For example:

•
•
•
•
•

What design methodologies will you use?
What kind of implementation diversity?
Which change management system?
What kind of code review?
What kind of testing?

2-144

Standards, process, and audit

• Make formal processes specifying how each of
these standards should be implemented

• For example, if you want to do a guided code review,
who explains the code to whom? In what kind of
forum? How much detail?

• Have audits, where somebody (usually external to
the organization) comes in and verifies that you’re
following your processes properly

• This doesn’t guarantee flaw-free code, of course!

2-145

Recap

• Flaws, faults, and failures
• Unintentional security flaws
• Malicious code: Malware
• Other malicious code
• Nonmalicious flaws
• Controls against security flaws in programs

2-146

Recap

• Various controls applicable to each of the stages
in the software development lifecycle

• To get the best chance of controlling all of the
flaws:

•
•
•

Standards describing the controls to be used
Processes implementing the standards
Audits ensuring adherence to the processes

