
Computer Security and Internet Security
Chapter 1: Basic Security Concepts and Principles

P.C. van Oorschot

Feb. 18, 2017

Comments, corrections, and suggestions for improvements are welcome and appreciated.

Please send by email to: paulv@scs.carleton.ca

NOT FOR DISTRIBUTION BEYOND COMP4108 (CARLETON UNIVERSITY)

1



8 Private draft (COMP4108) P.C. van Oorschot

C (cost or impact) P (probability )

V.LOW LOW MODERATE HIGH V.HIGH

V.LOW (negligible) 1 1 1 1 1

LOW (limited) 1 2 2 2 2

MODERATE (serious) 1 2 3 3 3

HIGH (severe or catastrophic) 2 2 3 4 4

V.HIGH (multiply catastrophic) 2 3 4 5 5

Table 1.1: Risk Rating Matrix. Entries give coded risk level 1 to 5 (v.low to v.high) as

a qualitative alternative to equation (1.2). V. denotes VERY; C is the anticipated adverse

effect (level of impact) of a successful attack; P is the probability that an attack both

occurs (a threat is activated) and successfully exploits a vulnerability.

QUALITATIVE RISK ASSESSMENT. As numerical values for threat probabilities (and

impact) lack credibility, most practical risk assessments are based on qualitative ratings

and comparative reasoning. For each asset or asset class, the relevant threats are listed;

then for each such asset-threat pair, a categorical rating such as (low, medium, high) or

perhaps ranging from very low to very high, is assigned to the probability of that threat

action being launched-and-successful, and also to the impact assuming success. The com-

bination of probability and impact rating dictates a risk rating from a combination matrix

such as Table 1.1. In summary, each asset is identified with a set of relevant threats, and

comparing the risk ratings of these threats allows a ranking indicating which threat(s) pose

the greatest risk to that asset. Doing likewise across all assets allows a ranked list of risks

to an organization. In turn, this suggests which assets (e.g., software applications, files,

databases, client machines, servers and network devices) should receive attention ahead

of others, given a limited computer security budget.

1.4 Design Principles for Computer Security

There is no checklist—neither short nor long—that system designers can follow to guaran-

tee that computer-based systems are “secure”. The reasons are many, including large vari-

ations across technologies, environments, applications and requirements. Section 1.6.3

discusses a type of checklist sometimes used in security analysis, but independently, se-

curity designers are encouraged to understand and follow a set of widely applicable design

principles for security. We collect them all in one place here, and revisit them throughout

the book with detailed examples to aid understanding.

P1 SIMPLICITY-AND-NECESSITY: Keep designs as simple and small as possible. Re-

duce the number of components used to those that are essential; minimize func-

tionality, favour minimal installs, and disable unused functionality. Economy and

frugality in design simplifies analysis and reduces errors and oversights. Config-



Private draft (COMP4108) P.C. van Oorschot 9

ure initial deployments to have non-essential services and applications disabled by

default (related to P2).

P2 SAFE-DEFAULTS: Use safe default settings (since defaults often go unchanged). For

access control, deny-by-default. Favour explicit permission (e.g., white-lists which

list authorized parties, all others being denied) over explicit exclusion (e.g., black-

lists which list parties to be denied access, all others allowed). Design services to

be fail-safe, meaning that they fail “closed” rather than “open”.

P3 OPEN-DESIGN: Do not rely on secret designs, attacker ignorance, or security by ob-

scurity. Invite and encourage open review and analysis. Without contradicting this,

leverage unpredictability where it brings no disadvantage; and note that arbitrarily

publicizing tactical defence details is rarely beneficial (there is no gain in adver-

tising to thieves that you are on vacation, or posting house blueprints). Example:

undisclosed cryptographic algorithms are now widely discouraged; the Advanced

Encryption Standard was selected from a set of public candidates by open review.

P4 COMPLETE-MEDIATION: For each access to every object, and ideally immediately

before the access is to be granted, verify proper authority. Verifying authorization

requires authentication (corroboration of an identity), checking that the associated

principal is authorized, and checking that the request has integrity (has not been

modified after being issued by the legitimate party).

P5 ISOLATED-COMPARTMENTS: Compartmentalize system components using strong

isolation structures that prevent cross-component communication or leakage of in-

formation and control. This limits damage when failures occur, and protects against

escalation of privileges (see later chapters); P6 and P7 have similar motivations.

Restrict authorized cross-component communication to observable paths with de-

fined interfaces to aid mediation, screening, and use as choke-points. Examples of

containment means include: process and memory isolation, disk partitions, virtual-

ization, software guards, zones, gateways and firewalls.

P6 LEAST-PRIVILEGE: Allocate the fewest privileges needed for a task, and for the

shortest duration necessary. For example, retain superuser privileges only for ac-

tions requiring them; drop them until later needed again. This reduces exposure

windows, and limits damage from the unexpected. It complements P5 and P7.

P7 MODULAR-DESIGN: Avoid designing monolithic modules that concentrate exten-

sive privilege sets in single entities; favour object-oriented and finer-grained designs

segregating privileges across smaller units, multiple processes or distinct principals.

The complementary P6 guides where monolithic designs already exist, e.g., a root

account should not be used for tasks when regular user accounts suffice.

P8 SMALL-TRUSTED-BASES: Strive for small code size for components that must be

trusted, i.e., components on which the larger system strongly depends for security.



10 Private draft (COMP4108) P.C. van Oorschot

Example 1: high-assurance systems centralize critical security services in a minimal

core operating system security kernel, whose smaller size allows more efficient

concentration of security analysis. Example 2: cryptographic algorithms separate

mechanism from secret, with trust collapsed down to a secret key changeable at far

less cost than the more complex, non-secret algorithm.

P9 TIME-TESTED-TOOLS: Rely wherever possible on time-tested, existing security

tools including protocols, cryptographic primitives, and toolkits, rather than de-

signing and implementing your own. History shows that security design and im-

plementation is a challenge even to experts; thus amateurs are heavily discouraged

(don’t roll your own crypto; don’t reinvent the wheel). Confidence in methods and

tools increases with the length of time they have survived (long-term soak testing).

P10 LEAST-SURPRISE: Design mechanisms, and their user interfaces, to behave as users

expect. Align designs with users’ mental models of their protection goals, to reduce

user mistakes. Especially where errors are irreversible (e.g., sending confidential

data or secrets to outside parties), tailor to the experience of target users; beware

designs suited for trained experts but unintuitive or triggering mistakes by ordinary

users. Simpler, easier-to-use (i.e., usable) mechanisms yield fewer surprises.

P11 USER-BUY-IN: Design security mechanisms which users are motivated to use, to

promote regular cooperative use; and so that users’ path of least resistance is a safe

path. Seek design choices which illuminate benefits, improve user experience, and

minimize inconvenience. Mechanism viewed as time-consuming, inconvenient or

without perceived benefit encourage bypassing and non-compliance. Example: a

subset of Google gmail users voluntary use a two-step authentication scheme which

augments basic passwords by one-time passcodes sent to a user’s phone.

P12 SUFFICIENT-WORK-FACTOR: For security mechanisms susceptible to direct work-

factor calculation, design so that the work cost to defeat the mechanism safely ex-

ceeds the resources of expected attackers. Use defences suitably strong to protect

against anticipated classes of attackers (see categorical schema, discussed earlier).

P13 DEFENCE-IN-DEPTH: Build defences in multiple layers backing each other up, forc-

ing attackers to defeat independent layers. If an individual layer relies on several

defense segments, design each to be comparably strong and strengthen the weakest

segment first (smart attackers jump the lowest bar or break the weakest link). As a

design assumption, assume some defences will fail on their own due to errors, and

that attackers will defeat others more easily than expected or entirely by-pass them.

P14 EVIDENCE-PRODUCTION: Record system activities through event logs and other

means to promote accountability, help understand and recover from system fail-

ures, and support intrusion detection tools. Example: robust audit trails facilitate

forensic analysis, to recover data and reconstruct events related to intrusions and



Private draft (COMP4108) P.C. van Oorschot 11

criminal activities. In many cases, means facilitating attack detection and evidence

production may be more cost-effective than outright prevention.

P15 DATA-TYPE-VERIFICATION: Verify that all received data conforms to expected or

assumed properties. If data input is expected, ensure that it cannot be processed as

code by subsequent components. Examples: sanitizing input, and canonicalizing

data (such as fragmented packets, and encoded characters in URLs) address code

injection and command injection attacks including cross-site scripting and memory

exploits; important classes of attack can be mitigated by type-safe languages.3

P16 REMNANT-REMOVAL: On termination, remove all traces of critical information as-

sociated with a task, including remnants possibly recoverable from secondary stor-

age, RAM and cache memory. Example: common file deletion removes directory

entries, whereas secure deletion aims to make files unrecoverable even by forensic

tools. Related to remnant removal, beware that while a process is active, traces may

leak elsewhere by side channels.

P17 TRUST-ANCHOR-JUSTIFICATION: Ensure or justify confidence placed in any base

point of assumed trust, especially when mechanisms iteratively or transitively ex-

tend trust from a base point (trust anchor or root of trust). More generally, verify

trust assumptions where possible, with extra diligence at registration, initialization,

software installation, and other starting points in a lifecycle. Examples: bootstrap

code, trusted computing bases, auto-updating software, certificate chains.4

P18 INDEPENDENT-CONFIRMATION: Use simple independent cross-checks to increase

confidence in code or data, especially when potentially provided by outside do-

mains or over untrusted channels. Example: the integrity of a downloaded software

application or public key can be confirmed by comparing a locally-computed cryp-

tographic hash5 of that item to a “known-good” hash obtained from an independent

channel such as a voice call, text message or widely trusted web site.

P19 REQUEST-RESPONSE-INTEGRITY: Verify that responses match requests in name-

resolution protocols and other distributed protocols. Their design should verify

consistency across steps, and detect message alteration or substitution, e.g., by cryp-

tographic integrity checks designed to correlate messages in a given protocol run;

beware protocols without authentication. Example: a certificate request specifying

a unique subject name or domain expects in response a certificate for that subject;

this field in the response certificate should be cross-checked to confirm this.

P20 RELUCTANT-ALLOCATION: Be reluctant to allocate resources or expend effort, es-

pecially in interactions with unauthenticated, external agents that initiate an inter-

action. For processes or services with special privileges, be reluctant to act as a

3For details of examples, see later chapters.
4Again, for details of examples, see later chapters.
5See Chapter 2 for background on basic tools and support mechanisms from cryptography.



12 Private draft (COMP4108) P.C. van Oorschot

conduit extending such privileges to unauthenticated (untrusted) agents.6 Place a

higher burden of proof of identity or authority on agents that initiate a communica-

tion. (A party initiating a call should not be the one to demand: Who are you?)

P21 SECURITY-BY-DESIGN: Build security in, staring at the initial design stage of a

development cycle—because secure design often requires core architectural support

absent if security is an add-on or late-stage feature. Explicitly state the design goals

of security mechanisms and what they are not designed to do—without knowing

goals, it is impossible to evaluate effectiveness. Explicitly state all security-related

assumptions, especially involving trust and trusted parties (supporting P17).7

P22 DESIGN-FOR-EVOLUTION: Have evolution in mind when designing base architec-

tures, mechanisms, and protocols. Example: design systems with algorithm agility,

so that upgrading a crypto algorithm (e.g., encryption, hashing) is graceful and does

not impact other system components. A related management process is to regularly

re-evaluate the effectiveness of security mechanisms, in light of evolving threats,

technology, and architectures—being ready to modify designs as needed.

FURTHER NOTES ON DESIGN PRINCIPLES. Our principles overlap other ideas,

which we relate here to the most relevant principles (rather than extend our formal list).

• SIMPLICITY-AND-NECESSITY (P1): simplicity and minimal deployments, and sev-

eral other principles, support another broad goal: minimizing attack surface. Every

interface that accepts external input or exposes programmatic functionality provides

an entry point by which an attacker might change or acquire a program control path

(e.g., install code or inject commands for execution), or alter data which might do

likewise. The goal is to minimize the number of interfaces, simplify their design

(to reduce the number of ways they might be abused), minimize external access to

them or restrict such access to authorized parties, and sanitize data input to them.

• SAFE-DEFAULTS (P2): a related recommendation for session data sent over real-

time links is to encypt by default8 (which itself complements P4, as encryption me-

diates access to data). This motivates opportunistic encryption—encrypting session

data whenever supported by the far end. In contrast, default encryption is not gener-

ally recommended in all cases for stored data, as the importance of confidentiality

must be weighed against the complexity of long-term key management and the risk

of permanent loss of data if encryption keys are lost; for session data, immediate

decryption upon receipt at the endpoint recovers cleartext.

• OPEN-DESIGN (P3): related is Kerckhoffs’ principle—a system’s security should

not rely upon the secrecy of its design details.

6An example related to a denial-of-service attack is given in a later chapter.
7This differs from security policy, since policy need not necessarily specify assumptions.
8This is now understood to mean encryption with built-in data integrity, as discussed later.



Private draft (COMP4108) P.C. van Oorschot 13

• LEAST-PRIVILEGE (P6): related is the military need-to-know principle—access to

sensitive information is granted only if essential to carrying out one’s official tasks.

• MODULAR-DESIGN (P7): related is the financial accounting principle of separation

of duties—overlapping duties are assigned to independent parties so that an insider

attack requires collusion. This also differs from requiring multiple authorizations

from distinct parties (e.g., two keys or signatures to open a safety-deposit box or

authorize large-denomination cheques), a generalization of which is thresholding

of privileges—requiring k of t parties (2 ≤ k ≤ t) to authorize an action.

• SMALL-TRUSTED-BASES (P8): related is the minimize-secrets principle—secrets

should be few in number. One motivation is to reduce management complexity.

• TIME-TESTED-TOOLS (P9): underlying reasoning is that wide use of a heavily-

scrutinized (thus less likely flawed) security mechanism is preferable to numerous

independent novice implementations scantly reviewed; use of widely-used crypto

libraries like OpenSSL is thus encouraged. Typically this overrides the older princi-

ple of LEAST-COMMON-MECHANISM—minimize the number of mechanisms (shared

variables, files, system utilities) shared by two or more programs and depended on

by all, motivated by code diversity potentially reducing negative impacts.

• The maxim trust but verify suggests that given any doubt, verify for yourself.9

Design principles related to this line of defence include: COMPLETE-MEDIATION

(P4), DATA-TYPE-VERIFICATION (P15), TRUST-ANCHOR-JUSTIFICATION (P17),

and INDEPENDENT-CONFIRMATION (P18).

1.5 Adversary Modeling and Security Analysis

An important part of any computer security analysis is building out an adversary model,

including identifying which adversary classes a target system aims to defend against—a

lone gunman on foot calls for different defences than a combined battalion of tanks and

squadron of fighter planes.

ADVERSARY ATTRIBUTES. Important attributes of an adversary to consider include:

1. objectives—these often suggest target assets requiring special protection;

2. methods—e.g., attacker techniques, and anticipated types of attacks;

3. capabilities—computing resources (CPU, storage, bandwidth), skills, knowledge,

personnel, opportunity (e.g., physical access to target machines); and

4. funding level—this often correlates with attacker determination and persistence.

Various schemas are used in modeling adversaries. A categorical schema classifies

well-defined adversaries into named groups as given in Table 1.2.

9Given assertions by foreign diplomats whom you are expected to show trust in but don’t really trust, the

advised strategy is to feign trust while silently cross-checking for yourself.


