
CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 1 - Basics of cryptography

Spring 2022

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Outline

1 Basics of cryptography

2 Secret-key encryption

3 Public-key encryption

4 Integrity

5 Authentication

2 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Cryptology

Cryptology is a science that studies:
Cryptography (“secret writing”): Making secret messages

Turning plaintext (an ordinary readable message) into ciphertext (secret
messages that are “hard” to read)

Cryptanalysis: Breaking secret messages

Recovering the plaintext from the ciphertext

The point of cryptography is to send secure messages over an
insecure medium (like the Internet)

Cryptanalysis studies cryptographic systems to look for
weaknesses or leaks of information

3 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

The scope of these lectures

The goal of the cryptography unit in this course is to show you
what cryptographic tools exist, and information about using these
tools in a secure manner

We won’t be showing you details of how the tools work

For that, see CO 487, chapter 2 of van Oorschot’s text book, or
chapter 2.3 of Pfleeger’s textbook

4 / 60

https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf
https://learning-oreilly-com.proxy.lib.uwaterloo.ca/library/view/security-in-computing/9780134085074/ch02.xhtml#ch02lev1sec3

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Dramatis personae

When talking about cryptographic schemes, we often use a standard
cast of characters:

Alice, Bob, Carol, Dave

People (usually honest) who wish to communicate

Eve

A passive eavesdropper, who can listen to any transmitted messages

Mallory

An active Man-In-The-Middle, who can listen to, and modify, insert,
or delete, transmitted messages

Trent

A Trusted Third Party

... many more ...

Peggy (prover), Victor (verifier), etc.

5 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Building blocks

Cryptography contains three major types of components

Confidentiality components

Preventing Eve from reading Alice’s messages

Integrity components

Preventing Mallory from modifying Alice’s messages without being
detected

Authenticity components

Preventing Mallory from impersonating Alice

Often remembered as CIA.

6 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Kerckhoffs’ principle

Shannon’s maxim: one ought to design systems under the
assumption that the enemy will immediately gain full familiarity
with them.

So don’t use secret encryption methods

Then what do we do?

Have a large class of encryption methods, instead

Hopefully, they are all equally strong

Make the class public information

Use a secret key to specify which one you’re using

It’s easy to change the key; it’s usually just a smallish number

Kerckhoffs’s principle: a cryptosystem should be secure, even if
everything about the system, except the key, is public knowledge

7 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Kerckhoffs’ principle

Kerckhoffs’ principle has a number of implications:

The system is at most as secure as the number of keys

Eve can just try them all, until she finds the right one

A strong cryptosystem is one where that’s the best Eve can do

With weaker systems, there are shortcuts to finding the key

Example: newspaper cryptogram has
403,291,461,126,605,635,584,000,000 possible keys

But you don’t try them all; it’s way easier than that!

8 / 60

https://www.wordplays.com/daily-cryptogram

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Daily cryptogram

9 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Daily cryptogram

10 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Strong cryptosystems

What information do we assume the attacker (Eve) has when she’s
trying to break our system?

She may:

Know the algorithm (the public class of encryption methods)
Know a number (maybe a large number) of corresponding
plaintext/ciphertext pairs
Have access to an encryption and/or decryption oracle

And we still want to prevent Eve from learning the key!

11 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Outline

1 Basics of cryptography

2 Secret-key encryption

3 Public-key encryption

4 Integrity

5 Authentication

12 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Secret-key encryption

Secret-key encryption is the simplest form of cryptography

Used for thousands of years

Also called symmetric encryption

The key Alice uses to encrypt the message is the same as the key
Bob uses to decrypt it

Dk(Ek(m)) = m

Encrypt Decrypt
P C P

K K

13 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Secret-key encryption

Eve, not knowing the key, should not be able to recover the
plaintext

Encrypt Decrypt
? C ?

14 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Perfect secret-key encryption

Is it possible to make a completely unbreakable cryptosystem?

Yes: the One-Time Pad

It’s also very simple:

The key is a truly random bitstring of the same length as the message
The “Encrypt” and “Decrypt” functions are both XOR

15 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

One-time pad

It’s very hard to use one-time pad correctly

The key must be truly random, not pseudorandom
The key must never be used more than once!

A “two-time pad” is insecure!

Q: Why does “try every key” not work here?

Q: How do you share the secret keys?

Used in the Washington / Moscow hotline for many years

16 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Computational security

In contrast to the “perfect” security property of one-time pad, most
cryptosystems have “computational” security

This means that it’s certain they can be broken, given enough
work by Eve

How much is “enough”?

At worst, Eve tries every key

How long that takes depends on how long the keys are
But it only takes this long if there are no “shortcuts”!

17 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Some data points

One modern computer can try about 17 million keys per second

A medium-sized company or research lab may have 100 computers

The BOINC project (the largest computing grid in the world) has
the computation power of about 300,000 computers

Berkeley Open Infrastructure
for Network Computing

18 / 60

https://boinc.berkeley.edu/computing.php

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

40-bit crypto

This was the US legal export limit for a long time

240 = 1,099,511,627,776 possible keys

One computer: 18 hours

One lab: 11 minutes

BOINC: 200 ms

19 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

56-bit crypto

This was the US government standard (DES) for a long time

256 = 72,057,594,037,927,936 possible keys

One computer: 134 years

One lab: 16 months

BOINC: 4 hours

20 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

128-bit crypto

This is the modern standard

2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

One computer: 635 thousand million million million years

One lab: 6 thousand million million million years

BOINC: 2 million million million years

The Universe is ≈13 thousand million years old

21 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Well, we cheated a bit

This isn’t really true, since computers get faster over time
Moore’s law: computing speed doubles every 18 months

A better strategy for breaking 128-bit crypto is just to wait until
computers get 288 times faster, then break it on one computer in
just 18 hours.

How long do we need to wait? 132 years.

If we believe Moore’s law will keep on working, we’ll be able to
break 128-bit crypto in 132 years (and 18 hours) :-)

Q: Do we believe this?

How about quantum computers? e.g., Grover’s algorithm

reduces the search space from 2128 to 264

requires around 3,000 logical qubits (we have 127 qubits now)

22 / 60

https://en.wikipedia.org/wiki/Grover%27s_algorithm

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

An even better strategy

23 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Types of secret-key cryptosystems

Secret-key cryptosystems come in two major classes

Stream ciphers

Block ciphers

24 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Stream ciphers

A stream cipher is what you get if you take the One-Time Pad,
but use a pseudorandom keystream instead of a truly random one

Pseudorandom
Keystream
Generator

XOR

Plaintext

Ciphertext

Keystream

RC4 was the most common stream cipher on the Internet but
deprecated. ChaCha is increasingly popular (Chrome and
Android), and SNOW3G is mostly used in mobile phone networks.

25 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Stream ciphers

Stream ciphers can be very fast

This is useful if you need to send a lot of data securely

But they can be tricky to use correctly!
What happens if you use the same key to encrypt two messages?

C1 ⊕ C2 = (P1 ⊕ K)⊕ (P2 ⊕ K) = P1 ⊕ P2

How would you solve this problem without requiring a new shared
secret key for each message?

K ′ = K ∥ nonce
Where have we seen this technique before?

WEP, PPTP are great examples of how not to use stream ciphers.
(The insecurity of the WEP algorithm is first identified by Prof. Goldberg in
our school, and we’ll cover it in the next lecture.)

26 / 60

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
https://www.schneier.com/wp-content/uploads/2015/12/paper-pptpv2.pdf

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Block ciphers

Stream ciphers operate on the message one bit at a time

What happens in a stream cipher if you change just one bit of the
plaintext?

An alternative design is block ciphers

Block ciphers operate on the message one block at a time
Blocks are usually 64 or 128 bits long

AES is the block cipher everyone should use today

Unless you have a really, really good reason
Native AES support on Intel chips since Westmere (2010)

27 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Modes of operation

Block ciphers work like this:

Encrypt

1 block of plaintext

1 block of ciphertext

But what happens when the plaintext is larger than one block?

The choice of what to do with multiple blocks is called the mode of
operation of the block cipher

28 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Modes of operation

The simplest thing to do is just to encrypt each successive block
separately.

This is called Electronic
Code Book (ECB) mode

But if there are repeated
blocks in the plaintext,
you’ll see the same
repeating patterns in the
ciphertext:

29 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Modes of operation

There are much better modes of operation to choose from,
Common ones include Cipher Block Chaining (CBC), Counter
(CTR), and Galois Counter (GCM) modes

Patterns in the plaintext
are no longer exposed
because these modes
involves some kind of
“feedback” among
different blocks

30 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Cipher Block Chaining (CBC) encryption process

M1 E C1

K

M2 E C2

K

M3 E C3

K

IV

...
...

...
...

31 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Initialization vector (IV)

Without the IV, what will happen if we encrypt the same message
twice with the same key?

C1 = EK (P), C2 = EK (P) =⇒ C1 = C2

Solutions?

Option 1: change the K

C1 = EK1(P), C2 = EK2(P) , K1 ̸= K2 =⇒ C1 ̸= C2

Option 2: “change” the P

C1 = EK (P ∥ IV1), C2 = EK (P ∥ IV2) , IV1 ̸= IV2 =⇒ C1 ̸= C2

Then why Option 2 is preferred?

Because we can send IV in the clear!

An initialization vector might also be called as a nonce (number
used once) or a salt.

32 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Key exchange

How do Alice and Bob share the secret key?

Meet in person

Diplomatic courier

...

In general this is very hard

Or, we invent new technology...

33 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Outline

1 Basics of cryptography

2 Secret-key encryption

3 Public-key encryption

4 Integrity

5 Authentication

34 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Public-key cryptography

Invented (in public) in the 1970’s

Also called asymmetric cryptography

Allows Alice to send a secret message to Bob without any
prearranged shared secret!
In secret-key cryptography, the same key encrypts the message and
also decrypts it
In public-key cryptography, there’s one key for encryption, and a
different key for decryption!

Some common examples:

RSA, ElGamal, ECC, NTRU, McEliece

35 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Public-key cryptography

How does it work?

1 Bob creates a key pair (ek , dk)

2 Bob gives everyone a copy of his public encryption key ek
3 Alice uses it to encrypt a message, and sends the encrypted

message to Bob
4 Bob uses his private decryption key dk to decrypt the message

Eve can’t decrypt it; she only has the encryption key ek
Neither can Alice!
It must be hard to derive dk from ek

So with this, Alice just needs to know Bob’s public key in order to
send him secret messages

These public keys can be published in a directory somewhere

36 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Public-key cryptography

Encrypt Decrypt
P C P

dk

ek

ek

37 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Public key sizes

Recall that if there are no shortcuts, Eve would have to try 2128

things in order to read a message encrypted with a 128-bit
symmetric key.

Unfortunately, all of the public-key methods we know do have
shortcuts. For example:

Eve could read a message encrypted with a 128-bit RSA key with just
233 work, which is easy!

In RSA, n = pq; n is public; factoring n reveals the key
233 is the “work factor” to factor a 128-bit integer n
Quantum computers can factor even faster, see Shor’s algorithm

If we want Eve to have to do 2128 work, we need to use a much
longer public key

38 / 60

https://en.wikipedia.org/wiki/Shor%27s_algorithm

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Hybrid cryptography

In addition to having longer keys, public-key cryptography takes a
long time to calculate (as compared to secret-key cryptography)

Using public-key to encrypt large messages would be too slow, so
we take a hybrid approach:

Pick a random 128-bit key K for a secret-key cryptosystem
Encrypt the large message with the key K (e.g., using AES)
Encrypt the key K using a public-key cryptosystem
Send both the encrypted message and the encrypted key to Bob

This hybrid approach is used for almost every cryptography
application on the Internet today

39 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Is that all there is?

It seems we’ve got this “sending secret messages” thing down pat.
What else is there to do?

Even if we’re safe from Eve reading our messages, there’s still the
matter of Mallory

It turns out that even if our messages are encrypted, Mallory can
sometimes modify them in transit!

Mallory won’t necessarily know what the message says, but can
still change it in an undetectable way

e.g. bit-flipping attack on stream ciphers

This is counterintuitive, and often forgotten

How do we make sure that Bob gets the same message Alice sent?

40 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Outline

1 Basics of cryptography

2 Secret-key encryption

3 Public-key encryption

4 Integrity

5 Authentication

41 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Integrity components

How do we tell if a message has changed in transit?

Simplest answer: use a checksum

For example, add up all the bytes of a message

The last digits of serial numbers (credit card, ISBN, etc.) are
usually checksums

Alice computes the checksum of the message, and sticks it at the
end before encrypting it to Bob.

When Bob receives the message and checksum, he verifies that
the checksum is correct

42 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

This doesn’t work!

With most checksum methods, Mallory can easily change the
message in such a way that the checksum stays the same

We need a “cryptographic” checksum

It should be hard for Mallory to find a second message with the
same checksum as any given one

43 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Cryptographic hash functions

A hash function h takes an arbitrary length string x and
computes a fixed length string y = h(x) called a message digest

Common examples: MD5, SHA-1, SHA-2, SHA-3 (AKA Keccak,
from 2012 on)

Hash functions should have three properties:
Preimage-resistance:

Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of x

Second preimage-resistance:

Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

Collision-resistance:

It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

44 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

What is “hard”?

Collisions are always easier to find than preimages or second
preimages due to the well-known birthday paradox

If there are 2n digests, we need to try an average 2n/2 messages to
find 2 with the same digest

For SHA-1, for example, it takes 2160 work to find a preimage or
second preimage, and 280 work to find a collision using a
brute-force search

However, there are faster ways than brute force to find collisions in
SHA-1 or MD5

45 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

The birthday paradox

If there are n people in a room, what is the probability that at
least two people have the same birthday?

For n = 2: P(2) = 1 - 364
365

For n = 3: P(3) = 1 - 364
365 × 363

365

For n people: P(n) = 1 - 364
365 × 363

365×...× 365−n−1
365

With 22 people in the room, there is better than 50% chance
that two people will have a common birthday

With 40 people in the room, there is almost 90% chance that two
people will have a common birthday

46 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Cryptographic hash functions

You can’t just send an unencrypted message and its cryptographic
hash to get integrity assurance

Even if you don’t care about confidentiality!

Mallory can change the message and just compute the new message
digest herself

47 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Cryptographic hash functions

Hash functions provide integrity guarantees only when there is a
secure way of sending the message digest

For example, Bob can publish a hash of his public key (i.e., a
message digest) on his business card
Putting the whole key on there would be too big
But Alice can download Bob’s key from the Internet, hash it herself,
and verify that the result matches the message digest on Bob’s card

What if there’s no external channel to be had?

For example, you’re using the Internet to communicate

48 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Outline

1 Basics of cryptography

2 Secret-key encryption

3 Public-key encryption

4 Integrity

5 Authentication

49 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Message authentication codes (MAC)

We do the same trick as for encryption: have a large class of hash
functions, and use a shared secret key to pick the “correct” one

Only those who know the secret key can generate, or even check,
the computed hash value (sometimes called a tag)

These “keyed hash functions” are usually called Message
Authentication Codes, or MACs

Common examples:

SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

50 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Message authentication codes (MAC)

MAC

MAC

M

T1

T2

=?

K
K

51 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Combining ciphers and MACs

In practice we often need both confidentiality and message integrity

There are multiple strategies to combine a cipher and a MAC
when processing a message

Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC

Encrypt-then-MAC is the recommended strategy

Ideally your crypto library already provides an authenticated
encryption mode that securely combines the two operations so
you don’t have to worry about getting it right

E.g., GCM, CCM (used in WPA2, see later), or OCB mode

52 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Repudiation

Suppose Alice and Bob share a MAC key K , and Bob receives a
message M along with a valid tag T that was computed using K

Then Bob can be assured that Alice is the one who sent the
message M, and that it hasn’t been modified since she sent it!

This is like a “signature” on the message

But it’s not quite the same!

Bob can’t show M and the tag T to Carol to prove Alice sent the
message M

53 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Repudiation

Alice can just claim that Bob made up the message M, and
calculated the tag T himself

This is called repudiation; and we sometimes want to avoid it

Some interactions should be repudiable

Private conversations

Some interactions should be non-repudiable

Electronic commerce

54 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Digital signatures

For non-repudiation, what we want is a true digital signature, with
the following properties:

If Bob receives a message with Alice’s digital signature on it, then:

it must be Alice, and not an impersonator, who sent the message
(like a MAC)

the message has not been altered after it was sent
(like a MAC),

Bob can prove these facts to a third party
(additional property not satisfied by a MAC).

How do we arrange this?

Use similar techniques to public-key cryptography

55 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Making digital signatures

Remember public-key cryptosystems:

Separate keys for encryption and decryption
Give everyone a copy of the encryption key
The decryption key is private

To make a digital signature:

Alice signs the message with her private signature key (sk)

To verify Alice’s signature:

Bob verifies the message with Alice’s public verification key (vk)
If it verifies correctly, the signature is valid

56 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Making digital signatures

Sign
Verify

M

Sig T/F

vk vk

sk

57 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Hybrid signatures

Just like encryption in public-key cryptosystems, signing large
messages is slow

We can also hybridize signatures to make them faster:

Alice sends the (unsigned) message, and also a signature on a hash
of the message
The hash is much smaller than the message, so it is faster to sign
and verify

Remember that authenticity and confidentiality are separate; if
you want both, you need to do both

58 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Combining public-key encryption and digital signatures

Alice has two different key pairs:

an (encryption, decryption) key pair (eAk , d
A
k)

a (signature, verification) key pair (sAk , v
A
k)

So does Bob: (eBk , d
B
k) and (sBk , v

B
k)

Alice uses eBk to encrypt a message destined for Bob:
C = EeBk

(M)

She uses sAk to sign the ciphertext:
T = SignsAk

(C)

Bob uses vAk to check the signature:
VerifyvA

k
(C ,T), if verified, C is authentic

He uses dB
k to decrypt the ciphertext:

M = DdB
k
(C)

Similarly for reverse direction

59 / 60

Basics of cryptography Secret-key encryption Public-key encryption Integrity Authentication

Putting it all together

We have all these blocks; now what?

Put them together into protocols

This is HARD. Just because your pieces all work, doesn’t mean
what you build out of them will; you have to use the pieces
correctly: see a counterexample here.

Common mistakes include:

Using the same stream cipher key for two messages
Assuming encryption also provides integrity
Falling for replay attacks or reaction attacks
LOTS more!

60 / 60

https://youtu.be/PTj177nD7xw

CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 2 - Cryptography use cases

Spring 2022

Overview WEP: a failure case IPSec TLS WireGuard

Outline

1 Overview

2 WEP: a failure case

3 IPSec

4 TLS

5 WireGuard

2 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Security controls using cryptography

Q: In what situations might it be appropriate to use cryptography
as a security control?

A: In situations where trust cannot be assumed.

3 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Use cases in program and OS security

Apps can be installed only if digitally signed by the vendor
(BlackBerry) or upgraded only if signed by the original developer
(Android)

OS allows execution of programs only if signed (iOS)

OS allows loading of certified device drivers only (Windows)

Secure boot: OS components booted only if correctly signed

4 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Encrypted code

There is research into processors that executes encrypted code only

The processor will decrypt instructions before executing them

The decryption key is processor-dependent

Malware won’t be able to spread without knowing a processor’s
encryption key

Downsides?

5 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Encrypted data

A common technique that aims to protect data in the storage media
when the laptop gets lost/stolen, which can be performed either on
hardware or by software.

It often does not protect data against other users who
legitimately use laptop

Or somebody installing malware on laptop

Or somebody (maybe physically) extracting the decryption key
from the laptop’s memory

6 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Network security and privacy

Entities you can only communicate with over a network are
inherently less trustworthy (e.g., they may not be who they claim to
be). This makes networking a primary scenario for cryptography.

This is a separation of concern, and in particular, “separating the
security of the medium from the security of the message”

7 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Network security and privacy

Cryptography is used at every layer of the network stack for both
security and privacy applications:

Link

WEP, WPA, WPA2

Network

VPN, IPsec

Transport

TLS / SSL, Tor

Application

ssh, Mixminion, PGP, OTR, Signal (next class!)

8 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Outline

1 Overview

2 WEP: a failure case

3 IPSec

4 TLS

5 WireGuard

9 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) protocol is a link-layer
security protocol that aims to make wireless communication links
just as secure as wired links.

In particular, WEP was intended to enforce three security goals

Data Confidentiality

Prevent an adversary from learning the contents of the wireless traffic

Data Integrity

Prevent an adversary from modifying the wireless traffic or
fabricating traffic that looks legitimate

Access Control

Prevent an adversary from using your wireless infrastructure

Unfortunately, none of these is actually enforced!

10 / 44

Overview WEP: a failure case IPSec TLS WireGuard

WEP description

The sender and receiver share a secret k (either 40 or 104 bits)

In order to transmit a message M:
Compute a checksum c(M)

this does not depend on k

Pick an IV v and generate a keystream K = RC4(v , k)
Ciphertext C = K ⊕ ⟨M ∥ c(M)⟩
Transmit v and C over the wireless link

Upon receipt of v and C :

Use the received v and the shared s for K = RC4(v , k)
Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′
Check to see if c ′ = c(M ′)
If it is, accept M ′ as the message transmitted

11 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Problem 1: key reuse

Keystream is derived as: K = RC4(v , k)

IV (v) is too short: only 3 bytes = 24 bits.

Secret (k) is rarely changed!

Key-stream gets re-used after 224 iterations → two-time pad.

12 / 44

Overview WEP: a failure case IPSec TLS WireGuard

WEP checksum calculation

The checksum algorithm in WEP is CRC32, which has two
important (and undesirable) properties:

It is independent of k and v

It is linear: c(M ⊕ D) = c(M)⊕ c(D)

Why is linearity a pessimal property for your integrity mechanism
to have when used in conjunction with a stream cipher?

13 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Problem 2: integrity breach

If Eve knows C and v in C = RC4(v , k)⊕ ⟨M ∥ c(M)⟩
... and Eve wants to modify the plaintext M into M ′ = M ⊕ δ,
... then, all Eve needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

14 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Problem 3: packet injection

What if the adversary wants to inject a new message F onto a
WEP-protected network?

All she needs is a single plaintext/ciphertext pair

This gives her a value of v and the corresponding keystream
RC4(v , k)

Then C ′ = ⟨F ∥ c(F)⟩ ⊕ RC4(v , k), and she transmits v ,C ′

C ′ is in fact a correct encryption of F , so the message must be
accepted

15 / 44

Overview WEP: a failure case IPSec TLS WireGuard

WEP authentication protocol

How did the adversary get that single plaintext/ciphertext pair
required for the attack on the previous slide?

Problem 3: It turns out the authentication protocol gives it to the
adversary for free!

This is a major disaster in the design!

The authentication protocol (described on the next slide) is
supposed to prove that a certain client knows the shared secret k

But if I watch you prove it, I can turn around and execute the
protocol myself!

16 / 44

Overview WEP: a failure case IPSec TLS WireGuard

WEP authentication protocol

Here’s the authentication protocol:

The access point sends a challenge string to the client
The client sends back the challenge, WEP-encrypted with the shared
secret k
The wireless access point checks if the challenge is correctly
encrypted, and if so, accepts the client

So the adversary has just seen both the plaintext and the
ciphertext of the challenge

Problem number 4: this is enough not only to inject packets (as
in the previous attack), but also to execute the authentication
protocol itself!

17 / 44

Overview WEP: a failure case IPSec TLS WireGuard

More problems with WEP

Somewhat surprisingly, the ability to modify and inject packets
leads to ways in which Eve can trick the AP to decrypt packets!
Check Prof. Goldberg’s talk for more details.

Note that none of the attacks so far use the fact that the stream
cipher was RC4. it turns out that when RC4 is used with similar
keys, the output keystream has a subtle weakness, which lead the
recovery of either a 104-bit or 40-bit WEP key in under 60
seconds, most of the time. Check this paper for more details.

18 / 44

https://cypherpunks.ca/bh2001/
https://eprint.iacr.org/2007/120.pdf

Overview WEP: a failure case IPSec TLS WireGuard

Replacing WEP

Wi-fi Protected Access (WPA) was rolled out as a short-term patch
to WEP while formal standards for a replacement protocol (IEEE
802.11i, later called WPA2) were being developed

Replaces CRC-32 with a real MAC

IV is 48 bits

Key is changed frequently (TKIP)

Ability to use a 802.1x authentication server

But maintains a less-secure PSK (Pre-Shared Key) mode for home
users

Ability to run on most older WEP hardware

19 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Replacing WEP

The 802.11i standard was finalized in 2004, and the result (called
WPA2) has been required for products calling themselves “Wi-fi”
since 2006

Replaces the RC4 and MAC algorithms in WPA ith the CCM
authenticated encryption mode (using AES)

Considered strong, except in PSK mode

Dictionary attacks still possible (avoided in WPA3 (2018))

20 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Outline

1 Overview

2 WEP: a failure case

3 IPSec

4 TLS

5 WireGuard

21 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Network layer security: purpose

Suppose every link in our network had strong link-layer security.
Why would this not be enough?

Source, destination IPs may not share the same link. Network
layer threats such as IP spoofing still exist.

We need end-to-end security across networks, i.e., securing
network layer packets from one host to another so that routers or
other hosts in the middle cannot modify or read the packet
payload (they still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

22 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Internet Key Exchange (IKE)

The source and destination IP addresses agree on a shared
symmetric key via the IKE process, which internally uses the
Diffie-Hellman protocol:

Alice chooses prime p at random and finds a generator g

Alice chooses X ←R {0, 1, . . . , p − 2} and sends
A = gX (mod p) to Bob, together with p and g

Bob chooses Y ←R {0, 1, . . . , p − 2} and sends
B = gY (mod p) to Alice

Alice and Bob both compute s = gXY (mod p)

Alice does that by computing BX (mod p)
Bob does that by computing AY (mod p)

Now they share a common secret s which can be used to derive a
symmetric key

23 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Modes of operation

IPSec has two main modes of operation:

Transport mode: uses the original IP header
Tunnel mode: encapsulates the original IP header

24 / 44

Overview WEP: a failure case IPSec TLS WireGuard

IPSec Headers

Authentication Header (AH) – RFC4302

Offers integrity and data source authentication

Authenticates payload and parts of IP header that do not get
modified during transfer, e.g., source IP address

Offers protection against replay attacks

Via extended sequence numbers

Encapsulated Security Payload (ESP) – RFC4303

Offers confidentiality

IP data is encrypted during transmission

Offers authentication functionality similar to AH

But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic

Makes traffic analysis harder (more on this on an upcoming lecture!)

25 / 44

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303

Overview WEP: a failure case IPSec TLS WireGuard

Authentication Header (AH)

1 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 +---+

3 | | Ver. | IHL | DHCP |ECN| Total Length |

4 | I +-+

5 | P | Identification |Flags| Fragment Offset |

6 | +-+

7 | H | Time to Live | Protocol | Header Checksum |

8 | E +-+

9 | A | Source IP Address |

10 | D +-+

11 | E | Destination IP Address |

12 | R +-+

13 | | Optional Fields (variable) |

14 +---+

15 | | Next Header | Payload Len | RESERVED |

16 | +-+

17 | A | Security Parameters Index (SPI) |

18 | +-+

19 | H | Sequence Number Field |

20 | +-+

21 | | ** Integrity Check Value-ICV (variable) ** |

22 +---+

23 | P | Packet Payload (variable) |

24 +---+ 26 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Encapsulating Security Payload (ESP)

1 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 +---+

3 | | Ver. | IHL | DHCP |ECN| Total Length |

4 | I +-+

5 | P | Identification |Flags| Fragment Offset |

6 | +-+

7 | H | Time to Live | Protocol | Header Checksum |

8 | E +-+

9 | A | Source IP Address |

10 | D +-+

11 | E | Destination IP Address |

12 | R +-+

13 | | Optional Fields (variable) |

14 +---+

15 | | Security Parameters Index (SPI) |

16 | E +-+

17 | | Sequence Number Field |

18 | +-+

19 | S | Payload Data + Padding (variable) |

20 | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

21 | | | Pad Length | Next Header |

22 | P +-+

23 | | ** Integrity Check Value-ICV (variable) ** |

24 +---+ 27 / 44

Overview WEP: a failure case IPSec TLS WireGuard

IPSec packets’ format

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H and P ↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

28 / 44

Overview WEP: a failure case IPSec TLS WireGuard

IPSec deployment challenges

Needs to be included in the kernel’s network stack.

There may be legitimate reasons to modify some IP header fields;
IPSec breaks networking functionalities that require such changes.

with AH, you cannot replace a private address for a public one at a
NAT box.
with ESP, it depends

In transport usually does not work due to TCP and UDP checksums
In tunnel mode it is fine

29 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Outline

1 Overview

2 WEP: a failure case

3 IPSec

4 TLS

5 WireGuard

30 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Transport-layer security and privacy

Network-layer security mechanisms arrange to send individual IP
packets securely from one network to another

Transport-layer security mechanisms transform arbitrary TCP
connections to add security and privacy

The main transport-layer security mechanism:

TLS (formerly known as SSL)

The main transport-layer privacy mechanism:

Tor — will be covered in the lecture on PETs

31 / 44

Overview WEP: a failure case IPSec TLS WireGuard

TLS / SSL

In the mid-1990s, Netscape invented a protocol called Secure
Sockets Layer (SSL) meant for protecting HTTP (web)
connections

The protocol, however, was general, and could be used to protect any
TCP-based connection
HTTP + SSL = HTTPS

Historical note: there was a competing protocol called S-HTTP.
But Netscape and Microsoft both chose HTTPS, so that’s the
protocol everyone else followed

SSL went through a few revisions, and was eventually
standardized into the protocol known as TLS (Transport Layer
Security, imaginatively enough)

32 / 44

Overview WEP: a failure case IPSec TLS WireGuard

TLS at a high level: RFC8446

Client connects to server, indicates it wants to speak TLS, with

Client key-share under ECDHE
The list of ciphersuites it knows

Server sends its certificate to client, which contains:

Server key-share under ECDHE
Its host name
Its verification key
Some other administrative information
A signature from a Certificate Authority (CA)

Both client and server derives the same session key K (which is
hard for Eve to derive) based on the two key shares

Server also chooses which ciphersuite to use

All remaining traffic will be encrypted and authenticated under K

33 / 44

https://datatracker.ietf.org/doc/html/rfc8446

Overview WEP: a failure case IPSec TLS WireGuard

TLS connection establishment

34 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Security properties provided by TLS

Server authentication

Message integrity

Message confidentiality

Client authentication (optional)

Why is client authentication mostly optional?

35 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Certificate Authorities (CAs) in TLS

A certificate authority acts as a trusted third-party that:

Issues digital certificates

Certifies the ownership of a public key by the named subject of
the certificate

Manages certificate revocation lists (CRLs)

36 / 44

Overview WEP: a failure case IPSec TLS WireGuard

What can go wrong with TLS?

It is possible to man-in-the-middle TLS:

An adversary can compromise a CA to plant fake certificates

e.g., DigiNotar’s fake *.google.com certificates used by an ISP in Iran

An adversary can install a custom CA on users’ devices, allowing
them to sign certificates that clients will accept for any site

e.g., in 2019, Kazakhstan’s ISPs mandated the installation of a root
certificate issued by the government

Companies may think it is an excellent idea
e.g., Lenovo’s Superfish or Sennheiser HeadSetup root certificates

for advertisement and communication purposes, respectively

37 / 44

Overview WEP: a failure case IPSec TLS WireGuard

SSL-based VPNs

We can use SSL/TLS to create secure site-to-site tunnels

Similarly to IPSec

A more flexible “user-space VPN”

In contrast to IPSec, it does not require kernel-level access
Virtual network interfaces are used instead

Several solutions available:

e.g., OpenVPN, Cisco AnyConnect

38 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Outline

1 Overview

2 WEP: a failure case

3 IPSec

4 TLS

5 WireGuard

39 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Issues with existing VPNs

IPSec:

Is complex, hard to audit, and prone to misconfigurations

“IPSec is too complex to be secure” (Schneier and Ferguson, ’99)
Big book of IPSec RFCs: Internet security architecture (Loshin, ’99)

Does not prevent you from making bad choices

Supports all ciphers, including obsolete ones and NULL

SSL VPNs:

Also on the complex side

Full TLS stack implementation

Tend to be slow

Penalty of running over TCP
Must copy packets in and out of userspace

Also does not prevent you from making bad choices

40 / 44

Overview WEP: a failure case IPSec TLS WireGuard

WireGuard

New (and simpler) VPN design built from the ground-up

Offers a kernel and a user-space implementation

Faster than IPSec and TLS-based VPN solutions

41 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Lightweight and secure

Easy to configure

But no PKI, keys are distributed manually

Easy to audit

4,000 LoCs vs IPSec’s 400,000 LoCs

Hard to get it wrong

Single cipher suite

42 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Cryptokey Routing

When sending: allowed IPs behaves like a routing table
When receiving: allowed IPs behave like an access control list

43 / 44

Overview WEP: a failure case IPSec TLS WireGuard

Are we safe now?

Network layer encryption:

Implemented between network sources and destinations

Not necessarilly end-to-end - Many times applied to portions of a
network

Makes extensive use of encapsulation

e.g., encapsulation of IP packets in IPSec

Can we push encryption closer to the source and decryption closer
to the destination?

44 / 44

CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 3 - Application layer security

Spring 2022

Application layer security SSH PGP OTR Signal

Outline

1 Application layer security

2 SSH

3 PGP

4 OTR

5 Signal

2 / 53

Application layer security SSH PGP OTR Signal

Application layer security

TLS can provide for encryption at the TCP socket level

“End-to-end” in the sense of a network connection
Is this good enough? Hint: one application may involve multiple
TCP connections

Many applications would like true end-to-end security

Human-to-human would be best, but those last 50 cm are really hard!
We usually content ourselves with desktop-to-desktop

We’ll look at three particular applications:

SSH, PGP, and instant messaging

3 / 53

Application layer security SSH PGP OTR Signal

Outline

1 Application layer security

2 SSH

3 PGP

4 OTR

5 Signal

4 / 53

Application layer security SSH PGP OTR Signal

Insecure application traffic pre-SSH

Suppose that you want to connect to a remote machine

You may think “Oh ok, let me use Telnet”

Think again...

All data exchanged through Telnet is in plain text!

5 / 53

Application layer security SSH PGP OTR Signal

Enter secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

The client should verify that this is the correct key

Client and server run a key agreement protocol to establish session
keys, server signs its messages

All communication from here on in is encrypted and MAC-ed with the
session keys

Client authenticates to server
Server accepts authentication, login proceeds

6 / 53

Application layer security SSH PGP OTR Signal

User authentication with ssh

There are two main ways to authenticate with ssh:

Send a password over the encrypted channel

The server needs to know (a hash of) your password

Sign a random challenge with your private signature key

The server needs to know your public verification key

Which is better? Why?

7 / 53

Application layer security SSH PGP OTR Signal

SSH port forwarding

SSH allows for tunneling:

The client machine can create a mapping between a local TCP
port and a port in the remote machine

e.g., localhost:IMAP to mail.myorg.ca:IMAP

The client SSH and the server SSHd operate as a secure relay

Allows the client to interact with server applications via SSH

8 / 53

Application layer security SSH PGP OTR Signal

Outline

1 Application layer security

2 SSH

3 PGP

4 OTR

5 Signal

9 / 53

Application layer security SSH PGP OTR Signal

Pretty Good Privacy

The first popular implementation of public-key cryptography.

Originally made by Phil Zimmermann in 1991

He got in a lot of trouble for it, since cryptography was highly
controlled at the time.
But that’s a whole ’nother story. :-)

Today, there are many (more-or-less) compatible programs

GNU Privacy Guard (gpg), Hushmail, etc.

10 / 53

Application layer security SSH PGP OTR Signal

Pretty Good Privacy

What does it do?

Its primary use is to protect the contents of email messages

How does it work?
Uses public-key cryptography to provide:

Encryption of email messages (using hybrid encryption)
Digital signatures on email messages (hash-then-sign)

11 / 53

Application layer security SSH PGP OTR Signal

Recall on public-key cryptography

In order to use public-key encryption and digital signatures, Alice
and Bob must each have:

A public encryption key
A private decryption key
A private signature key
A public verification key

12 / 53

Application layer security SSH PGP OTR Signal

Sending a message

To send a message to Bob, Alice will:

Write a message
Sign it with her own signature key
Encrypt both the message and the signature with Bob’s public
encryption key

Bob receives this, and:

Decrypts it using his private decryption key to yield the message and
the signature
Uses Alice’s verification key to check the signature

13 / 53

Application layer security SSH PGP OTR Signal

Back to PGP

PGP’s main functions:

Create these four kinds of keys

encryption, decryption, signature, verification

Encrypt messages using someone else’s encryption key

Decrypt messages using your own decryption key

Sign messages using your own signature key

Verify signatures using someone else’s verification key

Sign other people’s keys using your own signature key

14 / 53

Application layer security SSH PGP OTR Signal

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s
public key in order to send him an encrypted message.

How does Alice do this?

Certificate authorities (CAs)?

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage

Is this good enough?

15 / 53

Application layer security SSH PGP OTR Signal

Verifying public keys

If Alice knows Bob personally, she could:

Download the key from Bob’s web page
Phone up Bob, and verify she’s got the right key
Problem: keys are big and unwieldy!

mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat

01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2

tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt

m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/

rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD

8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL

UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM

16 / 53

Application layer security SSH PGP OTR Signal

Fingerprints

Luckily, there’s a better way!

A fingerprint is a cryptographic hash of a key

This, of course, is much shorter:

B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

Remember: there’s no (known) way to make two different keys
that have the same fingerprint, provided that we use a
collision-resistant hash function

17 / 53

Application layer security SSH PGP OTR Signal

Fingerprints

So now we can try this:

Alice downloads Bob’s key from his webpage
Alice’s software calculates the fingerprint
Alice phones up Bob, and asks him to read his key’s actual
fingerprint to her
If they match, Alice knows she’s got an authentic copy of Bob’s key

That’s great for Alice, but what about Carol?

Carol might not know Bob
At least not well enough to phone him

18 / 53

Application layer security SSH PGP OTR Signal

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to
sign Bob’s key

This is effectively the same as Alice signing a message that says
“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Can you see some potential issue with key signing?

19 / 53

Application layer security SSH PGP OTR Signal

Web of Trust

Now Alice can act as an introducer for Bob

If Carol doesn’t know Bob, but does know Alice (and has already
verified Alice’s key, and trusts her to introduce other people):

she downloads Bob’s key from his website
she sees Alice’s signature on it
she is able to use Bob’s key without having to check with Bob
personally

This is called the Web of Trust, and the PGP software handles it
mostly automatically

20 / 53

Application layer security SSH PGP OTR Signal

So, great!

So if Alice and Bob want to have a private conversation by email:

They each create their sets of keys

They exchange public encryption keys and verification keys

They send signed and encrypted messages back and forth

Pretty Good, no?

21 / 53

Application layer security SSH PGP OTR Signal

Problem 1: Usability

Common mistakes:

Encrypt a message with the sender’s public key
Send private key so that recipient can decrypt a message

Oftentimes, study participants cannot send a PGP-encrypted
e-mail after 45min

22 / 53

Application layer security SSH PGP OTR Signal

Problem 1: Usability

(Public Key)

23 / 53

Application layer security SSH PGP OTR Signal

Problem 2: Key compromise

Suppose (encrypted) communications between Alice and Bob are
recorded by the “bad guys”

criminals, competitors, etc

Later, Bob’s computer is stolen by the same bad guys

Or just broken into

Virus, trojan, etc

All of Bob’s key material is recovered

24 / 53

Application layer security SSH PGP OTR Signal

The bad guys can...

Decrypt past messages

Learn their content

Learn that Alice sent them

And have a mathematical proof they can show to anyone else!

How private is that?

25 / 53

Application layer security SSH PGP OTR Signal

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

26 / 53

Application layer security SSH PGP OTR Signal

What really went wrong

PGP creates lots of incriminating records:

Key material that decrypts data sent over the public Internet
Signatures with proofs of who said what

Alice had better watch what she says!

Her privacy depends on Bob’s actions

27 / 53

Application layer security SSH PGP OTR Signal

Outline

1 Application layer security

2 SSH

3 PGP

4 OTR

5 Signal

28 / 53

Application layer security SSH PGP OTR Signal

Casual conversations

Alice and Bob talk in a room

No one else can hear

Unless being recorded

No one else knows what they say

Unless Alice or Bob tells them

No one can prove what was said

Not even Alice or Bob

These conversations are “off-the-record” (OTR)

29 / 53

Application layer security SSH PGP OTR Signal

We like off-the-record conversations

Legal support for having them

Illegal to record other people’s conversations without notification

We can have them over the phone

Illegal to tap phone lines

But what about over the Internet?

30 / 53

Application layer security SSH PGP OTR Signal

Cryptographic tools

We have the cryptographic tools to do OTR, but we need to have
new perspectives on how to use these tools:

We want perfect forward secrecy

We want deniable authentication

31 / 53

Application layer security SSH PGP OTR Signal

Perfect forward secrecy

Future key compromises should not reveal past communication

Use secret-key encryption with a short-lived key (a session key)

The session key is created by a modified Diffie-Hellman protocol

Discard the session key after use

Securely erase it from memory (and everywhere possible)

Use long-term keys only to authenticate the Diffie-Hellman
protocol messages only

32 / 53

Application layer security SSH PGP OTR Signal

Future secrecy (a.k.a. post-compromise security)

Past key compromises should not compromise the security of
future sessions

What happens if new session keys are just hashes of the previous key?
e.g., derived through a session key ratchet:

K2 = H(K1), K3 = (H(H(K1))) = H(K2)

So what can we do?

Regularly replace potentially compromised session keys with new key
material

33 / 53

Application layer security SSH PGP OTR Signal

Deniable authentication

Do not want digital signatures

Non-repudiation is great for signing contracts, but undesirable for
private conversations

But we do want authentication

We can’t maintain privacy if attackers can impersonate our friends

Use Message Authentication Codes (MAC)

We talked about these earlier

34 / 53

Application layer security SSH PGP OTR Signal

No third-party proofs

Shared-key authentication

Alice and Bob have the same K
K is required to compute the MAC
How is Bob assured that Alice sent the message?

Bob cannot prove that Alice generated the MAC

He could have done it, too
Anyone who can verify can also forge

This gives Alice a measure of deniability

35 / 53

Application layer security SSH PGP OTR Signal

Using these techniques

Using these techniques, we can make our online conversations more
like face-to-face “off-the-record” conversations.

But there is a wrinkle:

These techniques require the parties to communicate interactively

This makes them unsuitable for email

But they’re still great for instant messaging!

36 / 53

Application layer security SSH PGP OTR Signal

Off-the-Record Messaging

Perfect Forward Secrecy

Shortly after Bob receives the message, it becomes unreadable to
anyone, anywhere (provided the key is erased securely)

Deniability

Although Bob is assured that the message came from Alice, he can’t
convince Carol of that fact
Also, Carol can create forged transcripts of conversations that are
every bit as accurate as the real thing

37 / 53

Application layer security SSH PGP OTR Signal

A closer look at OTR’s DH Ratchet

Achieves perfect forward secrecy by making session keys roll
forward.

Ratchet: a device that allows movement in a single direction
Diffie-Hellman key exchange ratchet

DH keys “ping-pong”:

Alice sends message 1 to Bob, encrypted with key 0
This message includes a DH value to create key 1
Bob decrypts message 1 and deletes key 0
Bob messages back Alice with message 2, encrypted with key 1
...

38 / 53

Application layer security SSH PGP OTR Signal

OTR’s DH Ratchet (visually)

39 / 53

Application layer security SSH PGP OTR Signal

Issues with OTR’s DH Ratchet

Session keys only roll forward with interactive replies.

What happens if Alice sends multiple messages but Bob takes a
long time to respond?

40 / 53

Application layer security SSH PGP OTR Signal

Issues with OTR’s DH Ratchet

Multiple messages get encrypted with the same key!

Forward secrecy is only partially provided
41 / 53

Application layer security SSH PGP OTR Signal

Outline

1 Application layer security

2 SSH

3 PGP

4 OTR

5 Signal

42 / 53

Application layer security SSH PGP OTR Signal

Signal Protocol

Signal is an app for iOS, Android, and Chrome

Original protocol based on OTR and used for encrypted SMS (e.g.,
Google Messages)

The Signal Protocol is now used by other apps like WhatsApp

Also optionally in Facebook Messenger and Skype
Why on Earth would you like to always keep your conversations
private, right? :-)

43 / 53

Application layer security SSH PGP OTR Signal

Signal Protocol

Provides perfect forward secrecy

Similar to OTR, uses a “ratchet” technique to constantly rotate
session keys

Provides future secrecy (or “post-compromise security”)

A leak of past or long-term keys will be healed by introducing new
DH ratchet keys

Provides improved deniability

Uses “Triple Diffie-Hellman” deniable authenticated key exchange

Supports out-of-order message delivery

Users can store per-message keys until late messages arrive

44 / 53

Application layer security SSH PGP OTR Signal

Double Ratchet (a.k.a. “Axolotl”)

Signal combines assymetric and symmetric key ratchets

Establish a shared secret
Use a DH ratchet whenever parties take turns in exchanging messages
Use a symmetric key ratchet between consecutive messages

Interesting properties:

Generates ephemeral per-message keys (forward and future secrecy)
Tolerates message loss/re-ordering

Let’s take a closer look...

45 / 53

Application layer security SSH PGP OTR Signal

Registration Stage

Users generate a number of cryptographic keys and register
themselves on a key distribution server

Each user (e.g., Alice) generates the following DH private keys:

a long-term identity key (ikA)
a medium-term signed prekey (prekA)
multiple short-term “one-time” prekeys (ekA)

The public keys corresponding to these private keys are uploaded
to the server

This is the “pre-key bundle”
What kinds of keys are these?

For authentication, Alice and Bob should verify each other’s
identity keys out-of-band

46 / 53

Application layer security SSH PGP OTR Signal

Extended Triple Diffie-Hellman (X3DH) Key Agreement

X3DH outputs a master secret (S), used to:

Establish a common root key
Generate new ephemeral sending and receiving chain keys through
the application of a key derivation function (KDF)

X3DH is executed at first contact, device change, or app re-install
since the identity key will change

1) and 2) offer mutual authentication (due to ik), while 3) and 4)
provide forward secrecy (unique to this exchange)

47 / 53

Application layer security SSH PGP OTR Signal

Exchanging Messages (Alice to Bob)

The DH key exchange produces a shared secret (SS)

SS is used to derive a new root key and a sending chain key

This new key is used to derive new chain keys and message keys

48 / 53

Application layer security SSH PGP OTR Signal

Exchanging Messages (Alice to Bob)

Alice’s DH public key (pubA0) allows Bob to derive the same
shared secret

Bob produces a mirrored version of Alice’s sending chain

49 / 53

Application layer security SSH PGP OTR Signal

Exchanging Messages (Bob to Alice)

Bob generates a new set of DH keys before replying to Alice

Alice produces a mirrored version of Bob’s sending chain

50 / 53

Application layer security SSH PGP OTR Signal

Exchanging Messages with losses/reorder (Bob to Alice)

What if a message is lost along the way?

Alice can cache the MB0 key and advance the symmetric ratchet
Message MB0 can later be decrypted on arrival

For how long should Alice cache her receiving chain’s keys?

51 / 53

Application layer security SSH PGP OTR Signal

Exchanging Messages (the full picture)

52 / 53

Application layer security SSH PGP OTR Signal

Recap

End-to-end security at the application layer:

Only the communicating end parties can decrypt and read
exchanged messages

Still not the case everywhere, but good progress is being made

53 / 53

CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 4 - Privacy-enhancing technologies (PETs)

Spring 2022

What is privacy? Remailers Tor PIR

Outline

1 What is privacy?

2 Remailers

3 Tor

4 Private information retrieval (PIR)

2 / 45

What is privacy? Remailers Tor PIR

Turtles, locks, bathrooms and more!

Are the many formal definitions and frameworks of privacy
consistent with a layperson’s understanding of privacy?

Paper on PoPETs 2018: Turtles, Locks, and Bathrooms:
Understanding Mental Models of Privacy Through Illustration

Asked people of different ages in the US to draw a diagram on what
privacy means to them, and here are a few illustrations:

3 / 45

https://www.petsymposium.org/2018/files/papers/issue4/popets-2018-0029.pdf
https://www.petsymposium.org/2018/files/papers/issue4/popets-2018-0029.pdf

What is privacy? Remailers Tor PIR

Privacy as turtles

0
All pictures from the PoPETs’18 paper

4 / 45

What is privacy? Remailers Tor PIR

Privacy as locks

“Intellectual privacy is about needing to have protections from being watched

and interfered with when we’re making up our minds about the world – when

we’re reading, surfing the Web, talking on the phone, and sending e-mail to

confidants.” – Neil Richards

0
All pictures from the PoPETs’18 paper

5 / 45

What is privacy? Remailers Tor PIR

Privacy as locks

“Intellectual privacy is about needing to have protections from being watched

and interfered with when we’re making up our minds about the world – when

we’re reading, surfing the Web, talking on the phone, and sending e-mail to

confidants.” – Neil Richards

0
All pictures from the PoPETs’18 paper

5 / 45

What is privacy? Remailers Tor PIR

Privacy as bathrooms

0
All pictures from the PoPETs’18 paper

6 / 45

What is privacy? Remailers Tor PIR

Privacy as filters

0
All pictures from the PoPETs’18 paper

7 / 45

What is privacy? Remailers Tor PIR

Privacy as controls

0
All pictures from the PoPETs’18 paper

8 / 45

What is privacy? Remailers Tor PIR

Privacy as tools

0
All pictures from the PoPETs’18 paper

9 / 45

What is privacy? Remailers Tor PIR

What’s the point?

Several different aspects of privacy that people value.

Privacy-enhancing technologies cover many of these aspects:

user controls and usability,
secure communication,
resisting censorship,
fairness and accountability,
... and many more ...

We’ll only cover PETs that are related to two of these:

Anonymity: Privacy as masks, with topics like anti-surveillance,
hiding identities, and Tor onion routing.
Data minimization: Related to privacy as filters. i.e., achieving a
functionality, while minimizing the amount of data collected. The
topic covered is Private Information Retrieval (PIR).

10 / 45

What is privacy? Remailers Tor PIR

Outline

1 What is privacy?

2 Remailers

3 Tor

4 Private information retrieval (PIR)

11 / 45

What is privacy? Remailers Tor PIR

Categorizing nymity

The goal of being anonymous: hiding identities

Anonymity set: Set of possible candidates, known beforehand.

We can place transactions (both online and offline) on a
continuum according to the level of nymity they represent, that is,
how they refine the anonymity set:

Verinymity: (Almost) unique information.

Government ID, SIN, credit card #, address

Persistent pseudonymity: a pseudonym or a “handle” that is used
persistently by the same person

Posting blogs under a pseudonym, Twitter / Instagram usernames, etc

Linkable anonymity:

Prepaid phone cards, Loyalty cards

Unlinkable anonymity

Cash payments, Remailer, Tor (browser)

12 / 45

What is privacy? Remailers Tor PIR

Nymity design decisions

If you build a system at a certain level of nymity, it is easy to
modify it to have a higher level of nymity, but hard to modify it
to have a lower level.

The lesson: design systems with a low level of nymity
fundamentally; adding more is easy.

13 / 45

What is privacy? Remailers Tor PIR

Anonymity for email: remailers

How to send and receive emails without revealing your own email
address?

Anonymous remailers

If “From” is hidden, then who do you reply to?

14 / 45

What is privacy? Remailers Tor PIR

Type 0 remailers

In the 1990s, there were very simple (“type 0”) remailing services,
the best known being anon.penet.fi (1993–1996)

Here is how it worked:

Send email to anon.penet.fi

It is forwarded to your intended recipient

Your “From” address is changed to anon43567@anon.penet.fi
(but your original address is stored in a table)

Replies to the anon address get mapped back to your real address
and delivered to you

15 / 45

What is privacy? Remailers Tor PIR

anon.penet.fi

This works, as long as:

No one’s watching the Internet connections to or from
anon.penet.fi

The operator of anon.penet.fi, the machine (hardware), and the
software all remain trustworthy and uncompromised

The mapping of anon addresses to real addresses is kept secret

Unfortunately, a lawsuit forced Julf (the operator) to turn over parts
of the list, and he shut down the whole thing, since he could no
longer legally protect it

16 / 45

What is privacy? Remailers Tor PIR

Type I remailers

Cypherpunk (type I) remailers removed the central point of trust

Messages are now sent through a “chain” of several remailers,
with dozens to choose from

Each step in the chain is encrypted to avoid observers following
the messages through the chain

Remailers also delay and reorder messages

Support for pseudonymity is dropped: no replies!

17 / 45

What is privacy? Remailers Tor PIR

Nym servers / pseudonymous remailers

How to do replies? (i.e., recovering pseudonymity)

“nym servers” mapped pseudonyms to “reply blocks” that
contained a nested encrypted chain of type I remailers.

User A approaches a nym server with a chain of reply blocks for
the nym server to relay back responses

User A sends an anonymous mail B (via a chain of Type I
remailers), including the chain of reply blocks

User B responds to the nym server by attaching the response to
the end of the reply blocks

nym server relay the response back to user A by following the
chain of reply blocks

18 / 45

What is privacy? Remailers Tor PIR

Nym servers / pseudonymous remailers

1st
Remailer

2nd
Remailer

3rd
RemailerAlice Bob

Step 1:
Prepare message

Step 2:
Send message

19 / 45

What is privacy? Remailers Tor PIR

Type II remailers

Mixmaster (type II) remailers appeared in the late 1990s

Constant-length messages to avoid an observer watching “that
big file” travel through the network

Protections against replay attacks

Improved message reordering

Requires a special email client to construct the message fragments

20 / 45

What is privacy? Remailers Tor PIR

Type III remailers

Mixminion (type III) remailer appears in the 2000s

Native (and much improved) support for pseudonymity

No longer reliant on type I reply blocks
Instead, relies on mix networks

Improved protection against replay and key compromise attacks

But it’s not very well deployed or mature, i.e., “you shouldn’t trust
Mixminion with your anonymity yet”

21 / 45

What is privacy? Remailers Tor PIR

Protocol for send and receive

Consider a case that

A wants to send a message (M) to B

A expects B to reply

A wants to remain anonymous to B for the whole process

For simplicity, assuming one mix hop (H) between A and B.

A forms an untraceable return address ⟨S1 ∥ A⟩KH

A choose a one-time public key for B to encrypt the response Kx

Both pieces and the message are encrypted with B’s public key
P = ⟨R0 ∥M ∥ ⟨S1 ∥ A⟩KH

∥ Kx⟩KB

A sends ⟨R1 ∥ P ∥ B⟩KH
to hop which extracts P send it to B

B sends response to hop: ⟨⟨S0 ∥ X ⟩Kx ∥ ⟨S1 ∥ A⟩KH
⟩KH

Hop decrypts the response and extracts S1 and A.

Hop maintains a mapping of S1 → A so it knows that the
response needs to be relayed back to A.

22 / 45

What is privacy? Remailers Tor PIR

The mix operation

Figure: A white-box view Figure: A black-box view

23 / 45

What is privacy? Remailers Tor PIR

Outline

1 What is privacy?

2 Remailers

3 Tor

4 Private information retrieval (PIR)

24 / 45

What is privacy? Remailers Tor PIR

Tor - purpose

Tor is a successful privacy enhancing technology that works at the
transport layer with ≈2 million daily users

Why do we need Tor when we have TLS?

TLS protects data.

We also want to protect metadata about the communication:
e.g., IP addresses, browser fingerprints.

Tor is an anonymity network of nodes

Scattered around the Internet are about 7,000 Tor nodes, also
called Onion Routers

Tor makes internet browsing unlinkably anonymous. But Tor does
not (and cannot) hide the existence of the transaction (website
visit) altogether

25 / 45

What is privacy? Remailers Tor PIR

How Tor works

Alice wants to connect to a server without revealing her IP address

Alice has a global view of available Onion Routers

26 / 45

What is privacy? Remailers Tor PIR

How Tor works

Alice picks one of the Tor nodes (n1) and uses public-key
cryptography to establish an encrypted communication channel to it
(much like TLS)

Result is a secret key K1 shared by Alice and n1

27 / 45

What is privacy? Remailers Tor PIR

How Tor works

Alice tells n1 to contact a second node (n2), and establishes a new
encrypted communication channel to n2, tunnelled within the
previous one to n1

Result is a secret key K2 shared between Alice and n2, which is
unknown to n1

28 / 45

What is privacy? Remailers Tor PIR

How Tor works

Alice tells n2 to contact a third node (n3), and establishes a new
encrypted communication channel to n3, tunnelled within the
previous one to n2

Result is a secret key K3 shared between Alice and n3, which is
unknown to n1 and n2

29 / 45

What is privacy? Remailers Tor PIR

How Tor works

... And so on, for as many steps as she likes (usually 3) ...

Alice tells the last node (within the layers of tunnels) to connect to
the website

30 / 45

What is privacy? Remailers Tor PIR

Sending messages with Tor

Alice now shares three secret keys:

K1 with n1
K2 with n2
K3 with n3

When Alice wants to send a message M, she actually sends
EK1(EK2(EK3(M)))

Node n1 uses K1 to decrypt the outer layer, and passes the result
EK2(EK3(M)) to n2

Node n2 uses K2 to decrypt the next layer, and passes the result
EK3(M) to n3

Node n3 uses K3 to decrypt the final layer, and passes the result
M to the server

31 / 45

What is privacy? Remailers Tor PIR

Replies in Tor

When the website replies with message R, it will send it to n3

Why?

Node n3 will encrypt R with K3 and send
EK3(R) to n2

Node n2 will encrypt that with K2 and send
EK2(EK3(R)) to n1

Node n1 will encrypt that with K1 and send
EK1(EK2(EK3(R))) to Alice

Alice will use K1, K2, and K3 to decrypt the layers of the reply
and recover R

32 / 45

What is privacy? Remailers Tor PIR

Who knows what?

Notice that node n1 knows that Alice is using Tor, and that her
next node is n2, but does not know which website Alice is visiting

Node n3 knows some Tor user (with previous node n2) is visiting
a particular website, but doesn’t know who

The website itself only knows that it got a connection from Tor
node n3

33 / 45

What is privacy? Remailers Tor PIR

Global adversary and path selection

What happens if an adversary can inspect all network links?

i.e., a global passive adversary

How concentrated is the geographical distribution of Tor relays?

Path selection may help increase performance and anonymity

34 / 45

What is privacy? Remailers Tor PIR

Tor and Internet censorship

State-level adversaries can restrict connections to public Tor relays
or otherwise attempt to fingerprint Tor traffic on the network

Solution?

Distribute addresses of non-public Tor relays (bridges)
Modify Tor traffic to look like something else (pluggable transports)

0
Picture from Matic et. al, NDSS’17 paper

35 / 45

https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_06B-1_Matic_paper.pdf

What is privacy? Remailers Tor PIR

Anonymity vs. pseudonymity

Tor provides for anonymity in TCP connections over the Internet,
both unlinkably (long-term) and linkably (short-term)

What does this mean?

There’s no long-term identifier for a Tor user

If a web server gets a connection from Tor today, and another one
tomorrow, it won’t be able to tell whether those are from the
same person

But two connections in quick succession from the same Tor node
are more likely to come from the same person

36 / 45

What is privacy? Remailers Tor PIR

Outline

1 What is privacy?

2 Remailers

3 Tor

4 Private information retrieval (PIR)

37 / 45

What is privacy? Remailers Tor PIR

Motivation

Simple scenario:

Netflix stores its’ movies in a database
1 The Shawshank Redemption
2 The Godfather
3 The Dark Knight
4 12 Angry Men
5 ...

You request movies by index, say 1, 4, 2, ...

Netflix caches your selection and gradually builds a profile on your
movie preferences

But why? You has bought a Netflix license and so you should be
able to access different movies

38 / 45

What is privacy? Remailers Tor PIR

Definition

Goal: allow a user to query a database while hiding the identity of
the data-items the user is after

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

39 / 45

What is privacy? Remailers Tor PIR

Non-private protocol

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Protocol:

User: show me i

Server: here is Xi

Analysis:

No privacy!

of bits: 1 — very efficient

40 / 45

What is privacy? Remailers Tor PIR

Trivially-private protocol

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Protocol:

User: show me ALL

Server: here is {X1,X2, ...,Xn}

Analysis:

Complete privacy!

of bits: n — impractical

Sad news: if the server has unlimited computational power AND
there is only a single copy of the database,
=⇒ n bits must be transferred!

41 / 45

What is privacy? Remailers Tor PIR

“More” solutions?

User asks for additional random indices

Drawback: balance information leak vs communication cost

Anonymity

Note: this is in fact a different concern: it hides the identity of a
user, not the fact that Xi is retrieved

42 / 45

What is privacy? Remailers Tor PIR

Information-theoretic PIR (IT-PIR)

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

An example 2-server IT-PIR protocol:

User → Server 1: Q1 ⊂R {1, 2, ..., n} ∧ i /∈ Q1

Server 1 → User: R1 =
⊕

k∈Q1
Xk

User → Server 2: Q2 = Q1 ∪ {i}
Server 2 → User: R2 =

⊕
k∈Q2

Xk

User derive Xi = R1 ⊕ R2

Analysis:

Probabilistic-based privacy (1/|Q2|)
of bits: 1 (× 2 servers) + inexpensive computation

43 / 45

What is privacy? Remailers Tor PIR

Computational PIR

Formal model:

Server: holds an n-bit string {X1,X2, ...,Xn}
User: wishes to retrieve Xi AND keep i private

Assumption: A single server with limited computational power

An example CPIR protocol:

User chooses a large random number m

User generates n − 1 random quadratic residue (QR) mod m:
a1, a2, ..., ai−1, ai+1, ..., an
User generates a quadratic non-residue (QNR) mod m: bi
User → Server: a1, a2, ..., ai−1, bi , ai+1, ..., an
Server cannot distinguish between QRs and QNRs mod m, i.e.,
the request is just a series of random numbers: u1, u2, ..., un
Server → User: R = uX1

1 · uX2
2 · ... · uXn

n

If R is a QR mod m, Xi = 0, else (R is a QNR mod m) Xi = 1
44 / 45

What is privacy? Remailers Tor PIR

Comparison of CPIR and IT-PIR

CPIR

Possible with a single server

Server needs to perform
intensive computations

To break it, the server needs
to solve a hard problem

IT-PIR

Only possible with > 1 server.

Server may need lightweight
computations only

To break it, the server needs
to collude with other servers

45 / 45

CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 5 - Encrypted Traffic Analysis

Spring 2022

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Outline

1 Overview

2 Network Analytics

3 Network Security

4 Privacy Breaches

5 Countermeasures

2 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Encryption reduces visibility over network traffic

TLS and other PETs significantly improved security and privacy
for Internet users

Plaintext is no longer visible
Traffic monitoring capabilities are significantly reduced

But one should not assume that traffic encryption provides
absolute protection

e.g., against behavioural analysis

There are strong incentives to “see” beyond encryption

Both for network adversaries and network administrators

3 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Encrypted traffic analysis (ETA)

Let’s take a look at an encrypted tunnel between Alice and Bob:

4 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Network flows and metadata

What is a network flow?

A flow is typically represented by a five-tuple

<Src. IP, Dest. IP, Src. port, Dest. port, Proto>

One can extract additional metadata tied to a flow, based on:

Flow duration
Amount of packets exchanged
Packet sizes
Packet inter-arrival times
Payload byte entropy
And more...

What is this good for?

5 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Encrypted traffic analysis (ETA) as a side channel

Do you remember side channels from module 2?

Think of ETA as a sort of network side channel!
ETA can be used to infer sensitive information about encrypted
traffic flows

We’ll look at three particular ETA applications for:

network analytics, network security, and privacy breaches
and also discuss potential countermeasures

6 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Outline

1 Overview

2 Network Analytics

3 Network Security

4 Privacy Breaches

5 Countermeasures

7 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Network Analytics

Traffic Engineering

Prioritize application traffic (e.g., WhatsApp, Skype)

e.g., for non-neutral Internet ISPs

Throttle selected protocols (e.g. BitTorrent)

e.g., for “traffic management” purposes

Quality-of-Service

Derive quality metrics from encrypted flows

e.g. videoconferencing and video streaming QoE
e.g. websites’ page load time, speed index

8 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: Identification of mobile applications

Mobile applications’ traffic leaves a fingerprint

Network observers can understand which apps you are using

Build a classifier based on summary statistics from each flow

Look at the packet size/timing distributions
Minimum, maximum, mean, standard deviation, variance, skew,
kurtosis, percentiles, etc.

May need to separate traffic bursts

Network packets occurring together within a threshold of time
Traffic bursts may encompass multiple flows

9 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Let’s classify some apps!

10 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: Identification of mobile applications

Taylor et al., IEEE TIFS ’17

11 / 44

https://arxiv.org/pdf/1704.06099.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: Measuring video QoE from encrypted traffic

Majority of video traffic is delivered over adaptive bitrate

A video is encoded in multiple resolutions and split into chunks of
variable length
Clients continuously fill a buffer of chunks, where ensuing chunks are
based on network conditions

DPI solutions can no longer be used to extract meaningful QoE
metrics

e.g., initial delays, playback stalls frequency, resolution switch

12 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: Measuring video QoE from encrypted traffic

Features extracted from encrypted traffic guide the models to
detect quality impairments

Able to detect stalls, average quality, and video quality
adjustments

Dimopoulos et al., IMC ’16

13 / 44

https://dl.acm.org/doi/pdf/10.1145/2987443.2987459

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Outline

1 Overview

2 Network Analytics

3 Network Security

4 Privacy Breaches

5 Countermeasures

14 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Malware Detection

Traditional network-based malware detection relies on
unencrypted data

Heavy use of deep packet inspection
e.g., for signature-based detection over packet payloads

No longer useful to detect virus spreading or data exfiltration

Encrypted traffic analysis helps us to identify:

Malware communications towards C&C servers
Unusual network traffic patterns in the network

Any idea how?

15 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Malware Detection

Malware classification:

Build a model out of legitimate / malicious network activity

Leverage “fingerprints” of legitimate / malicious behaviour

What if a new malware stream emerges?

Anomaly detection:

Build a model for legitimate traffic and flag strange behavior

Via one-class learning or clustering

What if legitimate behavior changes over time?

16 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: P2P botnet detection

Can we pinpoint interactions between bots and C&Cs?
Tend to be low-volume and long-standing vs. benign P2P apps

Narang et al., IEEE SPW ’14

17 / 44

https://arxiv.org/pdf/1704.06099.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: P2P botnet detection

Flows

P2P applications (including botnets) randomize port numbers

The usual flow definition leads to the generation of multiple flows
out of what can be a continued interaction between two peers

Super-flows

Aggregate multiple flows between two IPs into a super-flow

What if two IPs have benign and malicious flows between them?

18 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Use case: P2P botnet detection

Conversations

Start by clustering flows:

Protocol, packets per second, avg. payload size

Create conversations from flows placed within the same clusters

Finally, classify conversations as malicious or benign based on:

Duration of the conversation
Number of packets exchanged
Volume of data exchanged
Median of packet inter-arrival times

This approach was also shown effective for detecting previously
unseen botnets!

19 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Stepping-stones

An attacker can hide its identity by using other machines as
intermediaries (i.e., stepping-stones)

e.g., by hopping through compromised machines or by using Tor

20 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Traffic correlation

Detection of stepping-stones

Attempt to match (roughly) the same sequence of packets at
different network vantage points

21 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Difficulties in performing traffic correlation

In practice, flow observations will not be an exact match

Due to network imperfections

Packet delays, jitter, loss

Due to countermeasures

Chaff and delay injection at intermediate nodes, padding

Traffic correlation algorithms must account for small differences
between each flow observation

Staniford-Chen and Heberlein, IEEE S&P ’95

22 / 44

https://ieeexplore.ieee.org/document/398921

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Outline

1 Overview

2 Network Analytics

3 Network Security

4 Privacy Breaches

5 Countermeasures

23 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Nefarious uses of encrypted traffic analysis

One would assume that encryption is all that is needed to
securely communicate over the Internet

Unfortunately, encryption does not hide traffic patterns

Traffic analysis can be weaponized to breach users’ privacy

24 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Metadata is not your data. Or is it?

(Dr. Evil dismissing the value of communication metadata)

25 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Website fingerprinting over VPNs

VPNs are often advertised as the “holy-grail” of Internet security

Passive adversaries can uncover which website is being visited

By building traffic fingerprints and using a classifier

The attack can be launched in two settings:

Closed-world
Open-world

Herrmann et al., CCSW ’09

26 / 44

https://nymity.ch/tor-dns/pdf/Herrmann2009a.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Website fingerprinting over Tor

The Tor network can be seen as one “big VPN node”

Tor exchanges data in fixed-size cells
But packet direction and timing still leaks information

27 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Website fingerprinting over Tor

Lately, learned features based on different traffic representations
have been used to launch website fingerprinting attacks on Tor

Directional representation Rimmer et al., NDSS ’18

Directional + timing representation Saidur Rahman et al., PoPETs ’20

28 / 44

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://sciendo.com/pdf/10.2478/popets-2020-0043

Overview Network Analytics Network Security Privacy Breaches Countermeasures

IoT device fingerprinting

Passive network observers can potentially analyze IoT network
traffic to infer sensitive details about users

Does this user have a blood monitor? A security camera? A sex toy?

DNS queries associated with each encrypted flow often contain
the device manufacturer name

We can still pinpoint the device without this information

29 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Distinguishing devices through traffic volume

Apthorpe et al., ConPro ’17

Rather simple volumetric features allow us to identify IoT devices

Once a device is identified, one can also infer device state
30 / 44

https://www.ieee-security.org/TC/SPW2017/ConPro/papers/apthorpe-conpro17.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Motion sensor example - Nest indor security camera

Apthorpe et al., DAT ’16

Easy to discern when the camera picks up movement

Easy to discern when nobody’s home?

31 / 44

http://datworkshop.org/papers/dat16-final37.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Sleep tracker example - Sense sleep monitor

Apthorpe et al., DAT ’16

Easy to discern when a user goes to bed and wakes-up

Easy to discern if a burglar should leave the crime scene?

32 / 44

http://datworkshop.org/papers/dat16-final37.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Practical attacks against IM applications

IM applications are extensively used to exchange potentially
sensitive content securely

Remember OTR and Signal
Oftentimes used to exchange politically and socially sensitive content

Governments and corporations may be interested in identifying
participants of IM conversations

e.g., target whistleblowers or dissidents

33 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Adversary aims to uncover group membership

How can the adversary set up the attack?

Bahramali et al., NDSS ’20

34 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Looking for messaging events

Messaging events have different fingerprints

Bahramali et al., NDSS ’20

35 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Matching messaging events fingerprints

Extract meaningful events and compare similarity

Attack succeeded against Signal, Telegram, and WhatsApp!

Bahramali et al., NDSS ’20

36 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

VoIP eavesdropping

Encrypted packet patterns resemble VBR codec bitrates
Can we infer meaningful semantics from the transmission of
encrypted audio frames?

Wright et al., USENIX SEC ’07 37 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Noticeable (coarse-grained) differences

Maybe we can identify the language being spoken?
Different languages have different bitrate frequencies

Wright et al., USENIX SEC ’07

38 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

How to distinguish different languages?

Compute distance between probability distributions

Samples from same language have similar distribution

Compute packet size n-grams for even better results

Given sequence 10, 20, 30, 15 –> {(10, 20), (20, 30), (30, 15)}

Wright et al., USENIX SEC ’07

39 / 44

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24347-paper.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Noticeable (fine-grained) differences

Can we segment packet size sequences into individual phonems?
Then we can recover approximated transcripts of a conversation!

White et al., IEEE S&P ’11
40 / 44

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5958018

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Video re-identification

At this point, you’ve probably guessed it, traffic analysis can also
be used to uncover which videos you are streaming
The bitrate of VBR video sequences also leaks some information

Schuster et al., USENIX SEC ’17 41 / 44

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Re-identification of Netflix video streaming

Burst sizes of a streamed scene of “Reservoir Dogs”

Very similar, even when watched over different networks

Schuster et al., USENIX SEC ’17

42 / 44

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Outline

1 Overview

2 Network Analytics

3 Network Security

4 Privacy Breaches

5 Countermeasures

43 / 44

Overview Network Analytics Network Security Privacy Breaches Countermeasures

Countermeasures to traffic analysis

Introduce padding

Add chaff traffic

Shape traffic (look like something)

Aggregate traffic (e.g, multiplex IoT traffic in single connection)

Split a single connection across multiple networks

Main trade-off to consider is overhead

Achievable throughput
Spent bandwidth

44 / 44

CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 6 - An Introduction to Blockchain Technologies

Spring 2022

Overview PoW PoS

Outline

1 An overview of blockchain design space

2 Consensus: Proof-of-Work

3 Consensus: Proof-of-Stake

2 / 37

Overview PoW PoS

Outline

1 An overview of blockchain design space

2 Consensus: Proof-of-Work

3 Consensus: Proof-of-Stake

3 / 37

Overview PoW PoS

What is a blockchain?

A blockchain is ... a chain of blocks!

Block 1 Block 2 Block N

What does chaining mean here?

Linked list? Some cryptographic construct?

What goes into these blocks?

Anything? A fixed format? What makes a block valid?

Who can put up a block?

A single entity? A group of people? Anyone with Internet access?

How to ensure a same view of the chain?

Centralized? Distributed? How to resolve a dispute?

4 / 37

Overview PoW PoS

What is a blockchain?

A blockchain is ... a chain of blocks!

Block 1 Block 2 Block N

What does chaining mean here?

Linked list? Some cryptographic construct?

What goes into these blocks?

Anything? A fixed format? What makes a block valid?

Who can put up a block?

A single entity? A group of people? Anyone with Internet access?

How to ensure a same view of the chain?

Centralized? Distributed? How to resolve a dispute?

4 / 37

Overview PoW PoS

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

Each block depends on the previous one.

5 / 37

Overview PoW PoS

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

Each block depends on the previous one.

5 / 37

Overview PoW PoS

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

Each block depends on the previous one.

5 / 37

Overview PoW PoS

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

Each block depends on the previous one.

5 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

6 / 37

Overview PoW PoS

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

7 / 37

Overview PoW PoS

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

7 / 37

Overview PoW PoS

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

7 / 37

Overview PoW PoS

Payload example: a ledger

H ... R

Header

A 10−→ B

......

A 20−→ C

......

C 30−→ B

Payload

Block N

8 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

9 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5 A 10−→ B

Transaction

9 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5 A 10−→ B

Transaction

9 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

Block N

A 10−→ B

A 10−→ D

Block N

9 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

Block N

A 10−→ B

A 10−→ D

Block N

9 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

Block N

A 10−→ B

A 10−→ D

Block N

A 10−→ B

Block N

A 10−→ B

Block N

Block N

A 10−→ D

9 / 37

Overview PoW PoS

How does the data get into the block?

A 10−→ B

Block N

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

9 / 37

Overview PoW PoS

The power of consensus

Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the
following payment options:

cash, debit card, credit card, e-transfer (e.g., Interac®)

an entry in the blockchain-based ledger

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

To the best of ’s knowledge:

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

10 / 37

Overview PoW PoS

The power of consensus

Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the
following payment options:

cash, debit card, credit card, e-transfer (e.g., Interac®)

an entry in the blockchain-based ledger

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

To the best of ’s knowledge:

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

10 / 37

Overview PoW PoS

The power of consensus

Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the
following payment options:

cash, debit card, credit card, e-transfer (e.g., Interac®)

an entry in the blockchain-based ledger

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

To the best of Bob’s knowledge:

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

10 / 37

Overview PoW PoS

The power of consensus

Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the
following payment options:

cash, debit card, credit card, e-transfer (e.g., Interac®)

an entry in the blockchain-based ledger

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

To the best of Bob’s knowledge:

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

10 / 37

Overview PoW PoS

The power of consensus

Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the
following payment options:

cash, debit card, credit card, e-transfer (e.g., Interac®)

an entry in the blockchain-based ledger

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

To the best of Bob everyone’s knowledge:

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

10 / 37

Overview PoW PoS

Summary

Pay attention to two aspects when you design/analyze a blockchain:

What goes into a block?

How to ensure consensus?

In most blockchain systems, these two aspects are orthogonal.

11 / 37

Overview PoW PoS

Summary

Pay attention to two aspects when you design/analyze a blockchain:

What goes into a block?

How to ensure consensus?

In most blockchain systems, these two aspects are orthogonal.

11 / 37

Overview PoW PoS

Outline

1 An overview of blockchain design space

2 Consensus: Proof-of-Work

3 Consensus: Proof-of-Stake

12 / 37

Overview PoW PoS

How hard it is to alter this chain?

H ... R

Header

A 10−→ B

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

This is the chain Alice shows Bob w.r.t her payment to Bob.

It is not hard at all for Alice to revert the payment to Bob!

H ... R

Header

A 10−→ D

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

13 / 37

Overview PoW PoS

How hard it is to alter this chain?

H ... R

Header

A 10−→ B

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

It is not hard at all for Alice to revert the payment to Bob!

H ... R

Header

A 10−→ D

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

13 / 37

Overview PoW PoS

Increase the difficulty

H ... R

Header

A 10−→ B

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Bob decides to make it harder for Alice to alter her payment

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

The first k bits of H must be 0

14 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×

N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·

N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

Mining for a valid hash

H N ... R

Header

A 10−→ B

Payload

Block N

N = x =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x00.k.004f7fed1a

· · · · · ·
N = 1 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x6ffde7bf... ×
N = 0 =⇒ Hash(H ∥ N ∥ ... ∥ R) = 0x349c1a7e... ×

Q: What is the chance of finding a valid N assuming an m-bit hash?

A:
2m−k

2m , a larger k =⇒ a higher difficulty of finding N

i.e., expect 2k hash operations to find a valid N on average.

15 / 37

Overview PoW PoS

How does mining deter alteration? - Case 1

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Surgical change: Alice re-mines block N and finds a new nonce
such that the block header hash remains unchanged

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

16 / 37

Overview PoW PoS

How does mining deter alteration? - Case 1

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Surgical change: Alice re-mines block N and finds a new nonce
such that the block header hash remains unchanged

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

16 / 37

Overview PoW PoS

How does mining deter alteration? - Case 1

Surgical change: Alice re-mines block N and finds a new nonce
such that the block header hash remains unchanged

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Deterrent: This is extremely hard for a cryptographic hash function
that has preimage resistance and second-preimage resistance.

16 / 37

Overview PoW PoS

How does mining deter alteration? - Case 2

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Change-and-cut: Alice re-mines the nonce for block N and stops

H N ... R

Header

A 10−→ D

Payload

Block N (Head of the chain)

17 / 37

Overview PoW PoS

How does mining deter alteration? - Case 2

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Change-and-cut: Alice re-mines the nonce for block N and stops

H N ... R

Header

A 10−→ D

Payload

Block N (Head of the chain)

17 / 37

Overview PoW PoS

How does mining deter alteration? - Case 2

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Change-and-cut: Alice re-mines the nonce for block N and stops

H N ... R

Header

A 10−→ D

Payload

Block N (Head of the chain)

Deterrent: longer chains are preferred over shorter chains.
17 / 37

Overview PoW PoS

How does mining deter alteration? - Case 3

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Partial chain re-mining: Alice re-mines all the nonces since block N

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

18 / 37

Overview PoW PoS

How does mining deter alteration? - Case 3

H N ... R

Header

A 10−→ B

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Partial chain re-mining: Alice re-mines all the nonces since block N

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

18 / 37

Overview PoW PoS

How does mining deter alteration? - Case 3

Partial chain re-mining: Alice re-mines all the nonces since block N

H N ... R

Header

A 10−→ D

Payload

Block N

H N ... R

Header

C 20−→ A

Payload

Block N+1

... ...

Deterrent: If there are l blocks between and including block N and
the chain head, Alice is expected to perform l × 2k hash operations
to build-up a equally competitive chain assuming the difficulty level
k does not change.

18 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l

N+l+1 ... N+l ′ N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l

N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l N+l+1 ... N+l ′

N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l

N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l N+l+1 ... N+l ′

N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l N+l+1 ... N+l ′ N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l N+l+1 ... N+l ′ N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?

A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

N...P: N+1 ... N+l N+l+1 ... N+l ′ N+l ′+1 ... N+l ′′

N...A: N+1 ... N+l N+l+1 ... N+l ′

=⇒ the public chain grows faster than Alice’s chain.

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.

19 / 37

Overview PoW PoS

Confirmation level

Recall that when we show a proof of payment, we need a few extra
blocks after the block that hosts the ledger entry.

A 10−→ B

Block N

Block N-1...Genesis Block N+1 ... Current

why do we need these?

Q: Why do we need these extra blocks even when
1) Alice does not control over 50% of computational power and
2) everyone else is honest and cooperative?

20 / 37

Overview PoW PoS

How does the data get into the block?

Block N-1...Genesis

Shared View

Node 1 Node 2 Node 3

Node 4Node 5

Block N

A 10−→ B

A 10−→ D

Block N

A 10−→ B

Block N

A 10−→ B

Block N

Block N

A 10−→ D

21 / 37

Overview PoW PoS

Back to confirmation level

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N-1...Genesis

To trigger a fork, Alice could

Send two transactions in a short time window

Send two transactions to separate halves of the network

Pre-mine one block and only reveal it after the first transaction is
sent to the network

22 / 37

Overview PoW PoS

Back to confirmation level

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N-1...Genesis

To trigger a fork, Alice could

Send two transactions in a short time window

Send two transactions to separate halves of the network

Pre-mine one block and only reveal it after the first transaction is
sent to the network

22 / 37

Overview PoW PoS

Back to confirmation level

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N-1...Genesis

To trigger a fork, Alice could

Send two transactions in a short time window

Send two transactions to separate halves of the network

Pre-mine one block and only reveal it after the first transaction is
sent to the network

22 / 37

Overview PoW PoS

Drawbacks of Proof-of-Work consensus

Speed of confirmation

E.g., a Bitcoin transaction takes on average 10 minutes to confirm
Even worse, it is advised to wait for 6 confirmations, i.e., 1 hour.

Vulnerable to 51% attacks

In 2014, mining pool Ghash.io obtained 51% hash rate in Bitcoin
Bitcoin Gold, was hit by such attacks twice in 2018 and 2020

Energy consumption

Hashing itself is not useful
And such useless operations are repeated across the fleet of nodes

23 / 37

Overview PoW PoS

Outline

1 An overview of blockchain design space

2 Consensus: Proof-of-Work

3 Consensus: Proof-of-Stake

24 / 37

Overview PoW PoS

Block production as election

Block N-1...Genesis Block N

Shared View

Node 1

EEEE

Node 2

EE

Node 3

EEEEE

Node 4

EEEE
Node 5

EEE
Node 6

E

In a proof-of-work scheme,

the chance of which node is elected to propose a new block is
proportional to its hashing power

collisions are allowed and are resolved by the longest chain rule

25 / 37

Overview PoW PoS

Block production as election

Block N-1...Genesis Block N

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$$$
Node 6

$

In a proof-of-stake scheme,

the chance of which node is elected to propose a new block is
proportional to its staked value

collisions are not allowed by design, only the leader creates a block

26 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$
A 10−→ B

Transaction

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$
A 10−→ B

Transaction

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

Block N

A 10−→ B

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

Block N

A 10−→ B

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

A 10−→ B

Block N

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

Block N

A 10−→ D

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$

Node 4

$$$$
Node 5

$

Block N

A 10−→ D

27 / 37

Overview PoW PoS

Transaction lifecycle in PoS

Block N-1...Genesis

Shared View

Node 1

$$$$
Node 2

$$
Node 3

$$$$$ =⇒ $

Node 4

$$$$
Node 5

$

Block N

A 10−→ D

27 / 37

Overview PoW PoS

Catching lies

If a validator node gets caught lying, its stake is burned!

Other nodes may catch a fraudulent block by comparing it with
the transaction that Alice intended to perform

e.g., by checking Ethereum’s “mempool”

This works as long as the attacker does not control a majority of
stake in the system

28 / 37

Overview PoW PoS

The 51% attack in PoS

Q: What if the attacker controls ≥ 50% of staked resources?

A: The attacker can prove fraudulent transactions.

Q: Is 51% attack less likely in PoS compared with PoW?

A: Yes, because in PoS, the attacker loses the weapon to future
attacks, i.e., all the stake are gone, and is not easily recoverable!

29 / 37

Overview PoW PoS

The 51% attack in PoS

Q: What if the attacker controls ≥ 50% of staked resources?

A: The attacker can prove fraudulent transactions.

Q: Is 51% attack less likely in PoS compared with PoW?

A: Yes, because in PoS, the attacker loses the weapon to future
attacks, i.e., all the stake are gone, and is not easily recoverable!

29 / 37

Overview PoW PoS

The 51% attack in PoS

Q: What if the attacker controls ≥ 50% of staked resources?

A: The attacker can prove fraudulent transactions.

Q: Is 51% attack less likely in PoS compared with PoW?

A: Yes, because in PoS, the attacker loses the weapon to future
attacks, i.e., all the stake are gone, and is not easily recoverable!

29 / 37

Overview PoW PoS

Hard fork as a recovery of a 51% attack

To recover from a 51% attack, the only solution is to hard fork the
blockchain in order to invalidate the fraudulent transactions added
by the attackers.

A 10−→ D

Block N

Block N+1 ... Block N+T

A 10−→ B

Block N

Block N+1

Block N-1...Genesis

NOTE: the forked chain can be shorter than the previous chain!
=⇒ a higher level of social coordination is required

30 / 37

Overview PoW PoS

Hard fork as a recovery of a 51% attack

To recover from a 51% attack, the only solution is to hard fork the
blockchain in order to invalidate the fraudulent transactions added
by the attackers.

A 10−→ D

Block N

Block N+1 ... Block N+T

A 10−→ B

Block N

Block N+1

Block N-1...Genesis

NOTE: the forked chain can be shorter than the previous chain!
=⇒ a higher level of social coordination is required

30 / 37

Overview PoW PoS

Hard fork as a recovery of a 51% attack

In PoS, we do a hard fork to invalidate fraudulent transactions AND
wipe out the attacker who controls ≥ 50% of the staked resources.

In PoW, the hard fork can only invalidate transaction WHILE
the ≥ 50% computational power is still controlled by the attacker.

31 / 37

Overview PoW PoS

Chain validation

If Alice shows Bob, the Pizzeria owner, the following blockchain,
why would Bob accept it? Why would Bob believe that

It is hard for Alice to produce such a chain of blocks

There does not exist a better chain of blocks as of now

H ... R

Header

A 10−→ B

Payload

Block N

H ... R

Header

C 20−→ A

Payload

Block N+1

... ...

With PoS, forging a blockchain would be easy!

32 / 37

Overview PoW PoS

Chain validation

This turns out to be an extremely complicated problem!

H S E ... R

Header

A 10−→ B

Payload

Block N

H S E ... R

Header

C 20−→ A

Payload

Block N+1

... ...

S - Signature of the proposer of this block

E - Election packet that records how this proposer is elected

Q: What are the issues with this scheme?

33 / 37

Overview PoW PoS

Chain validation

This turns out to be an extremely complicated problem!

H S E ... R

Header

A 10−→ B

Payload

Block N

H S E ... R

Header

C 20−→ A

Payload

Block N+1

... ...

S - Signature of the proposer of this block

E - Election packet that records how this proposer is elected

Q: What are the issues with this scheme?

33 / 37

Overview PoW PoS

Chain validation

This turns out to be an extremely complicated problem!

H S E ... R

Header

A 10−→ B

Payload

Block N

H S E ... R

Header

C 20−→ A

Payload

Block N+1

... ...

S - Signature of the proposer of this block

E - Election packet that records how this proposer is elected

Q: What are the issues with this scheme?

33 / 37

Overview PoW PoS

The Nothing-at-Stake problem

Assuming Alice has some stake (e.g., 1%) and can be elected as a
block proposer:

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N+1

... Block N+T

... Block N+T Block N+T+1

Block N-1

In one of her turn as a block proposer, Alice triggers a fork in the
chain with an attempt to double-spend.

34 / 37

Overview PoW PoS

The Nothing-at-Stake problem

Assuming Alice has some stake (e.g., 1%) and can be elected as a
block proposer:

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N+1

... Block N+T

... Block N+T Block N+T+1

Block N-1

The next block proposer, even honest, has no incentive to select
which chain to converge on. The proposer has no idea which chain
will survive in the future, the logical thing to do is to mine on both.

34 / 37

Overview PoW PoS

The Nothing-at-Stake problem

Assuming Alice has some stake (e.g., 1%) and can be elected as a
block proposer:

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N+1

... Block N+T

... Block N+T

Block N+T+1

Block N-1

The next block proposer, even honest, has no incentive to select
which chain to converge on. The proposer has no idea which chain
will survive in the future, the logical thing to do is to mine on both.

34 / 37

Overview PoW PoS

The Nothing-at-Stake problem

Assuming Alice has some stake (e.g., 1%) and can be elected as a
block proposer:

A 10−→ B

Block N

A 10−→ D

Block N

Block N+1

Block N+1

... Block N+T

... Block N+T Block N+T+1

Block N-1

When its Alice’s turn again, she only append a block to the chain
that is more favorable to her. The other chain dies as a result.
This is sometimes called the 1% attack.

34 / 37

Overview PoW PoS

The Nothing-at-Stake problem

Solution? There is no common solution. Different PoS chains adopt
different mechanisms.

The Slash protocol (Ethereum PoS candidate) has two rules:

Penalize those who “equivocated” on a given block, i.e., voted on
two different versions of it.

Penalize those who voted on the wrong block, regardless of
whether or not they double-voted.

35 / 37

Overview PoW PoS

Long-range attacks (the bootstraping problem)

A validator node could forge an entire chain by itself

If Bob, a new user, joins the network, which chain should he
accept?

Block N

Block N

Block N+1 ... Block N+T

Block N+1 ... Block N+T

Block N-1...Genesis

36 / 37

Overview PoW PoS

Long-range attacks (the bootstraping problem)

A validator node could forge an entire chain by itself

If Bob, a new user, joins the network, which chain should he
accept?

Block N

Block N

Block N+1 ... Block N+T

Block N+1 ... Block N+T

Block N-1...Genesis

Q: Why this is not a problem in PoW?

36 / 37

Overview PoW PoS

Long-range attacks (the bootstraping problem)

A validator node could forge an entire chain by itself

If Bob, a new user, joins the network, which chain should he
accept?

Block N

Block N

Block N+1 ... Block N+T

Block N+1 ... Block N+T

Block N-1...Genesis

Q: Why this is not a problem in PoW?

A: Because it is computationally expensive to create a counterfeit
chain in PoW. But it is easy (almost no cost) in the PoS case.

36 / 37

Overview PoW PoS

Long-range attacks (the bootstraping problem)

Solution? In short, there is no simple solutions.

Casper (Ethereum’s PoS protocol) depends on trusted nodes to
broadcast the correct block hash.

Peercoin, broadcasts the hash of the “legitimate” chain on a daily
basis.

Extremely complicated solutions have been proposed e.g.,
Ouroboros Genesis.

37 / 37

https://eprint.iacr.org/2018/378.pdf

	notes-module-internet-security-part-crypto-basis.pdf
	Basics of cryptography
	Basics of cryptography
	Secret-key encryption
	Public-key encryption
	Integrity
	Authentication

	notes-module-internet-security-part-crypto-usage.pdf
	Cryptography use cases
	Overview
	WEP: a failure case
	IPSec
	TLS
	WireGuard

	notes-module-internet-security-part-appsec.pdf
	Application layer security
	Application layer security
	SSH
	PGP
	OTR
	Signal

	notes-module-internet-security-part-pets.pdf
	Privacy-enhancing technologies (PETs)
	What is privacy?
	Remailers
	Anonymity

	Tor
	Private information retrieval (PIR)

	notes-module-internet-security-part-eta.pdf
	Encrypted Traffic Analysis
	Overview
	Network Analytics
	Use case: Identification of mobile applications
	QoE Analysis

	Network Security
	Malware Detection
	Network Intrusion Detection
	Stepping-stone Detection

	Privacy Breaches
	Privacy Breaches
	Website Fingerprinting
	IoT device fingerprinting
	Instant Messaging Leaks
	Media Re-Identification and Eavesdropping

	Countermeasures

	notes-module-internet-security-part-blockchain.pdf
	An Introduction to Blockchain Technologies
	An overview of blockchain design space
	Chaining blocks
	Block payload
	Transaction lifecycle
	Consensus
	Summary

	Consensus: Proof-of-Work
	Consensus: Proof-of-Stake

