
CS 458 / 658
Computer Security and Privacy

Module 2
Program Security

Spring 2023

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Secure programs

• Why is it so hard to write secure programs?

• A simple answer:

• Axiom (Murphy):
Programs have bugs

• Corollary:
Security-relevant programs have security bugs

2 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

3 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

4 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

What are flaws, faults, and failures?

• A flaw is a problem with a program

• A security flaw is a problem that affects security in some way
• Confidentiality, integrity, availability

• Flaws come in two types: faults and failures

• A fault is a mistake “behind the scenes”
• An error in the code, data, specification, process, etc.
• A fault is a potential problem

5 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Fault vs. failure

• A failure is when something actually goes wrong
• You log in to the library’s web site, and it shows you someone else’s

account
• “Goes wrong” means a deviation from the desired behaviour, not

necessarily from the specified behaviour!
• The specification itself may be wrong

• A fault is the programmer/specifier/inside view

• Think about the role of abstraction in the creation of faults

• A failure is the user/outside view

6 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Finding and fixing faults

• How do you find a fault?
• If a user experiences a failure, you can try to work backwards to

uncover the underlying fault
• What about faults that haven’t (yet) led to failures?
• Intentionally try to cause failures, then proceed as above

• Remember to think like an attacker!

• Once you find some faults, fix them
• Usually by making small edits (patches) to the program
• This is called “penetrate and patch”
• Microsoft’s “Patch Tuesday” is a well-known example

7 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Problems with patching

• Patching sometimes makes things worse!
• Why?

• Pressure to patch a fault is often high, causing a narrow focus on
the observed failure, instead of a broad look at what may be a more
serious underlying problem

• The fault may have caused other, unnoticed failures, and a partial
fix may cause inconsistencies or other problems

• The patch for this fault may introduce new faults, here or elsewhere!

• Alternatives to patching?

8 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Unexpected behaviour

• When a program’s behaviour is specified, the spec usually lists the
things the program must do

• The ls command must list the names of the files in the directory
whose name is given on the command line, if the user has
permissions to read that directory

• Most implementors wouldn’t care if it did additional things as well
• Sorting the list of filenames alphabetically before outputting them is

fine

9 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Unexpected behaviour

• But from a security / privacy point of view, extra behaviours could
be bad!

• After displaying the filenames, post the list to a public web site
• After displaying the filenames, delete the files

• When implementing a security or privacy relevant program, you
should consider “and nothing else” to be implicitly added to the
spec

• “should do” vs. “shouldn’t do”
• How would you test for “shouldn’t do”?

10 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

Types of security flaws

• One way to divide up security flaws is by genesis (where they came
from)

• Some flaws are intentional/inherent
• Malicious flaws are intentionally inserted to attack systems, either

in general, or certain systems in particular
• If it’s meant to attack some particular system, we call it a targeted

malicious flaw

• Nonmalicious (but intentional or inherent) flaws are often features
that are meant to be in the system, and are correctly implemented,
but nonetheless can cause a failure when used by an attacker

• Most security flaws are caused by unintentional program errors

11 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Flaws, faults, and failures

12 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

13 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

The Heartbleed Bug in OpenSSL
(April 2014)

• The TLS Heartbeat mechanism is designed to keep SSL/TLS
connections alive even when no data is being transmitted.

• Heartbeat messages sent by one peer contain random data and a
payload length.

• The other peer is suppose to respond with a mirror of exactly the
same data.

14 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

http://imgs.xkcd.com/comics/heartbleed explanation.png

15 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

http://imgs.xkcd.com/comics/heartbleed explanation.png

16 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

The Heartbleed Bug in OpenSSL
(April 2014)

• There was a missing bounds check in the code.

• An attacker can request that a TLS server hand over a relatively
large slice (up to 64KB) of its private memory space.

• This is the same memory space where OpenSSL also stores the
server’s private key material as well as TLS session keys.

17 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

Apple’s SSL/TLS Bug (February 2014)

• The bug occurs in code that is used to check the validity of the
server’s signature on a key used in an SSL/TLS connection.

• This bug existed in certain versions of OSX 10.9 and iOS 6.1 and
7.0.

• An active attacker (a “man-in-the-middle”) could potentially
exploit this flaw to get a user to accept a counterfeit key that was
chosen by the attacker.

18 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

The Buggy Code

19 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

What’s the Problem?

• There are two consecutive goto fail statements.

• The second goto fail statement is always executed if the first
two checks succeed.

• In this case, the third check is bypassed and 0 is returned as the
value of err.

20 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Intentional vs. unintentional, malicious vs. non-malicious

Types of unintentional flaws

• Buffer overflows

• Integer overflows

• Format string vulnerabilities

• Incomplete mediation

• TOCTTOU errors

21 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

What does the memory layout of a process look like?

• Program code (Text)

• Global data (BSS and data segments)

• Dynamically allocated data (Heap)

• Function call data (Stack)

What happens in stack during a function call?

22 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Function Calls

(Source: van Oorschot textbook, Chapter 6,
https://people.scs.carleton.ca/~paulv/toolsjewels.html)

23 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Buffer overflows

• The single most commonly exploited type of security flaw

• Simple example:

#define LINELEN 1024

char buffer[LINELEN];

gets(buffer);

or
strcpy(buffer, argv[1]);

24 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

What’s the problem?

• The gets and strcpy functions don’t check that the string
they’re copying into the buffer will fit in the buffer!

• So?
• Some languages would give you some kind of exception here, and

crash the program
• Is this an OK solution?

• Not C (the most commonly used language for systems
programming). C doesn’t even notice something bad happened,
and continues on its merry way

25 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Smashing The Stack For Fun And Profit

• This is a classic (read: somewhat dated) exposition of how buffer
overflow attacks work.

• Upshot: if the attacker can write data past the end of an array on
the stack, she can usually overwrite things like the saved return
address. When the function returns, it will jump to any address of
her choosing.

• Targets: programs on a local machine that run with setuid
(superuser) privileges, or network daemons on a remote machine

26 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Smashing the Stack

(Source: Aleph One’s paper, mandatory reading for this lecture)

27 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Kinds of buffer overflows

• In addition to the classic attack which overflows a buffer on the
stack to jump to shellcode, there are many variants:

• Attacks which work when a single byte can be written past the end
of the buffer (often caused by a common off-by-one error)

• Overflows of buffers on the heap instead of the stack

• Jump to other parts of the program, or parts of standard libraries,
instead of shellcode

28 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Buffer overflows

Defences against buffer overflows

• Programmer: Use a language with bounds checking
• Compiler: Place padding between data and return address

(“Canaries”)
• Detect if the stack has been overwritten before the return from

each function

• Memory: Non-executable stack
• “W⊕X”, DEP (memory page is either writable or executable, but

never both)

• OS: Stack (and sometimes code,heap,libraries) at random virtual
addresses for each process

• Address Space Layout Randomization (ASLR)
• All mainstream OSes do this now

• Hardware-assistance: pointer authentication, shadow stack,
memory tagging

29 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Integer overflows

What is an Integer overflow?

• Machine integers can represent only a limited set of numbers,
might not correspond to programmer’s mental model

• Program assumes that integer is always positive, overflow will
make (signed) integer wrap and become negative, which will
violate assumption

• Program casts large unsigned integer to signed integer
• Result of a mathematical operation causes overflow

• Attacker can pass values to program that will trigger overflow

30 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Format string vulnerabilities

What is a format string vulnerability?

• Class of vulnerabilities discovered in 2000

• Unfiltered user input is used as format string in printf(), fprintf(),
sprintf(),. . .

• printf(buffer) instead of printf("%s", buffer)

• The first one will parse buffer for %’s and use whatever is currently
on the stack to process found format parameters

• printf("%s%s%s%s") likely crashes your program

• printf("%x%x%x%x") dumps parts of the stack

• %n will write to an address found on the stack

• See course readings for more

31 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

What is mediation?

• Inputs to programs are often specified by untrusted users
• Web-based applications are a common example
• “Untrusted” to do what?

• Users sometimes mistype data in web forms
• Phone number: 51998884567
• Email: dbarrada#uwaterloo.ca

• The web application needs to ensure that what the user has
entered constitutes a meaningful request

• This is called mediation

32 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

What is incomplete mediation?

• Incomplete mediation occurs when the application accepts
incorrect data from the user

• Sometimes this is hard to avoid
• Phone number: 519-886-4567
• This is a reasonable entry, that happens to be wrong

• We focus on catching entries that are clearly wrong
• Not well formed

• DOB: 1980-04-31

• Unreasonable values
• DOB: 1876-10-12

• Inconsistent with other entries

33 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Why do we care?

• What’s the security issue here?

• What happens if someone fills in:
• DOB: 98764874236492483649247836489236492

• Buffer overflow?

• DOB: ’; DROP TABLE users; --
• SQL injection?

• We need to make sure that any user-supplied input falls within
well-specified values, known to be safe

34 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

• SELECT NAME FROM USERS WHERE DOB = “%s”

• user input: 0’; DROP TABLE users; --

• SQL “prepare” to prevent this – more on this later.

35 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

SQL injection

http://xkcd.com/327/

36 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

The “Null” family

“When Jennifer Null tries to buy a plane ticket, she gets an error
message on most websites. The site will say she has left the surname
field blank and ask her to try again.”

https://www.bbc.com/future/article/20160325-the-names-that-break-computer-systems

37 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Cross-Site Scripting (XSS) Attacks

• Data enters a Web application through an untrusted source, most
frequently a web request

• The data is included in dynamic content that is sent to a user

• User browser interprets the data as code

38 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Stored XSS Attacks

• Stored attacks are those where the injected script is permanently
stored on the target servers

• Database, log files, etc.

• Data is retrieved and passed to the user upon query

39 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

XSS Example

40 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Client-side mediation

• You’ve probably visited web sites with forms that do client-side
mediation

• When you click “submit”, Javascript code will first run validation
checks on the data you entered

• If you enter invalid data, a popup will prevent you from submitting
it

• Related issue: client-side state
• Many web sites rely on the client to keep state for them
• They will put hidden fields in the form which are passed back to the

server when the user submits the form

41 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Client-side mediation

• Problem: what if the user
• Turns off Javascript?
• Edits the form before submitting it? (Tampermonkey)
• Writes a script that interacts with the web server instead of using a

web browser at all?
• Connects to the server “manually”?

(telnet server.com 80)

• Note that the user can send arbitrary (unmediated) values to the
server this way

• The user can also modify any client-side state

42 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Example

• At a bookstore website, the user orders a copy of the course text.
The server replies with a form asking the address to ship to. This
form has hidden fields storing the user’s order

• <input type="hidden" name="isbn"

value="0-13-239077-9">
<input type="hidden" name="quantity"

value="1">
<input type="hidden" name="unitprice"

value="111.00">

• What happens if the user changes the “unitprice” value to “50.00”
before submitting the form?

43 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Incomplete mediation

Defences against incomplete mediation

• Client-side mediation is an OK method to use in order to have a
friendlier user interface, but is useless for security purposes.

• You have to do server-side mediation, whether or not you also do
client-side.

• For values entered by the user:
• Always do very careful checks on the values of all fields
• These values can potentially contain completely arbitrary 8-bit data

(including accented chars, control chars, etc.) and be of any length

• For state stored by the client:
• Make sure client has not modified the data in any way

44 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

TOCTTOU errors

What is a TOCTTOU error?

• TOCTTOU (“TOCK-too”) errors
• Time-Of-Check To Time-Of-Use
• Also known as “race condition” errors

• These errors may occur when the following happens:

1 User requests the system to perform an action
2 The system verifies the user is allowed to perform the action
3 The system performs the action

• What happens if the state of the system changes between steps 2
and 3?

45 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

TOCTTOU errors

Example

• A particular Unix terminal program is setuid (runs with superuser
privileges) so that it can allocate terminals to users (a privileged
operation)

• It supports a command to write the contents of the terminal to a
log file

• It first checks if the user has permissions to write to the requested
file; if so, it opens the file for writing

• The attacker makes a symbolic link:
logfile -> file she owns

• Between the “check” and the “open”, she changes it:
logfile -> /etc/passwd

46 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

TOCTTOU errors

The problem

• The state of the system changed between the check for permission
and the execution of the operation

• The file whose permissions were checked for writeability by the
user (file she owns) wasn’t the same file that was later written
to (/etc/passwd)

• Even though they had the same name (logfile) at different points
in time

• Q: Can the attacker really “win this race”?

• A: Yes.

47 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

TOCTTOU errors

Defences against TOCTTOU errors

• When performing a privileged action on behalf of another party,
make sure all information relevant to the access control decision is
constant between the time of the check and the time of the action
(“the race”)

• Keep a private copy of the request itself so that the request can’t
be altered during the race

• Where possible, act on the object itself, and not on some level of
indirection

• e.g. Make access control decisions based on filehandles, not
filenames

• If that’s not possible, use locks to ensure the object is not changed
during the race

48 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

49 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Malware

What is malware?

• Various forms of software written with malicious intent

• Common characteristic of all types of malware: needs to be
executed in order to cause harm

• How might malware get executed?
• User action

• Downloading and running malicious software
• Viewing a web page containing malicious code
• Opening an executable email attachment
• Inserting a CD/DVD or USB flash drive

• Exploiting an existing flaw in a system
• Buffer overflows in network daemons
• Buffer overflows in email clients or web browsers

50 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Malware

Types of malware

• Virus
• Malicious code that adds itself to benign programs/files
• Code for spreading + code for actual attack
• Usually activated by users

• Worms
• Malicious code spreading with no or little user involvement

51 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Malware

Types of malware (2)

• Trojans
• Malicious code hidden in seemingly innocent program that you

download

• Logic Bombs
• Malicious code hidden in programs already on your machine

52 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

What is a virus?

• A virus is a particular kind of malware that infects other files
• Traditionally, a virus could infect only executable programs
• Nowadays, many data document formats can contain executable

code (such as macros)
• Many different types of files can be infected with viruses

• Typically, when the file is executed (or sometimes just opened), the
virus activates, and tries to infect other files with copies of itself

• In this way, the virus can spread between files, or between
computers

53 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Infection

• What does it mean to “infect” a file?
• The virus wants to modify an existing (non-malicious) program or

document (the host) in such a way that executing or opening it
will transfer control to the virus

• The virus can do its “dirty work” and then transfer control back to
the host

• For executable programs:
• Typically, the virus will modify other programs and copy itself to the

beginning of the targets’ program code

• For documents with macros:
• The virus will edit other documents to add itself as a macro which

starts automatically when the file is opened

54 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Infection

• In addition to infecting other files, a virus will often try to infect
the computer itself

• This way, every time the computer is booted, the virus is
automatically activated

• It might put itself in the boot sector of the hard disk

• It might add itself to the list of programs the OS runs at boot time

• It might infect one or more of the programs the OS runs at boot
time

• It might try many of these strategies
• But it’s still trying to evade detection!

55 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Spreading

• How do viruses spread between computers?

• Usually, when the user sends infected files (hopefully not knowing
they’re infected!) or compromised website links to his friends

• A virus usually requires some kind of user action in order to spread
to another machine

• If it can spread on its own (via email, for example), it’s more likely
to be a worm than a virus

56 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Payload

• In addition to trying to spread, what else might a virus try to do?

• Some viruses try to evade detection by disabling any active virus
scanning software

• Most viruses have some sort of payload
• At some point, the payload of an infected machine will activate,

and do something (usually bad)
• Erase your hard drive, or make your data inaccessible
• Subtly corrupt some of your spreadsheets
• Install a keystroke logger to capture your online banking password
• Start attacking a particular target website

57 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Spotting viruses

• When should we look for viruses?
• As files are added to our computer

• Via portable media
• Via a network

• From time to time, scan the entire state of the computer
• To catch anything we might have missed on its way in
• But of course, any damage the virus might have done may not be

reversible

• How do we look for viruses?
• Signature-based protection
• Behaviour-based protection

58 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Signature-based protection

• Keep a list of all known viruses

• For each virus in the list, store some characteristic feature (the
signature)

• Most signature-based systems use features of the virus code itself
• The infection code
• The payload code

• Can also try to identify other patterns characteristic of a particular
virus

• Where on the system it tries to hide itself
• How it propagates from one place to another

59 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Polymorphism

• To try to evade signature-based virus scanners, some viruses are
polymorphic

• This means that instead of making perfect copies of itself every
time it infects a new file or host, it makes a modified copy instead

• This is often done by having most of the virus code encrypted
• The virus starts with a decryption routine which decrypts the rest

of the virus, which is then executed
• When the virus spreads, it encrypts the new copy with a newly

chosen random key

• How would you scan for polymorphic viruses?

60 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Behaviour-based protection

• Signature-based protection systems have a major limitation
• You can only scan for viruses that are in the list!
• But there are brand-new viruses identified every day
• What can we do?

• Behaviour-based systems look for suspicious patterns of behaviour,
rather than for specific code fragments

• Some systems run suspicious code in a sandbox first

61 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

False negatives and positives

• Any kind of test or scanner can have two types of errors:
• False negatives: fail to identify a threat that is present
• False positives: claim a threat is present when it is not

• Which is worse?

• How do you think signature-based and behaviour-based systems
compare?

62 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Viruses

Base rate fallacy

• Suppose a breathalyzer reports false drunkness in 5% of cases, but
never fails to detect true drunkness.

• Suppose that 1 in every 1000 drivers is drunk (the base rate).

• If a breathalyzer test of a random driver indicates that he or she is
drunk, what is the probability that he or she really is drunk?

• Applied to a virus scanner, these numbers imply that there will be
many more false positives than true positives, potentially causing
the true positives to be overlooked or the scanner disabled.

63 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

What is a worm?

• A worm is a self-contained piece of code that can replicate with
little or no user involvement

• Worms often use security flaws in widely deployed software as a
path to infection

• Typically:
• A worm exploits a security flaw in some software on your computer,

infecting it
• The worm immediately starts searching for other computers (on

your local network, or on the Internet generally) to infect
• There may or may not be a payload that activates at a certain time,

or by another trigger

64 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

The Morris worm

• The first Internet worm, launched by a graduate student at Cornell
in 1988

• Once infected, a machine would try to infect other machines in
three ways:

• Exploit a buffer overflow in the “finger” daemon
• Use a back door left in the “sendmail” mail daemon
• Try a “dictionary attack” against local users’ passwords. If

successful, log in as them, and spread to other machines they can
access without requiring a password

• All three of these attacks were well known!

• First example of buffer overflow exploit in the wild

• Thousands of systems were offline for several days

65 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

The Code Red worm

• Launched in 2001

• Exploited a buffer overflow in Microsoft’s IIS web server (for which
a patch had been available for a month)

• An infected machine would:
• Deface its home page
• Launch attacks on other web servers (IIS or not)
• Launch a denial-of-service attack on a handful of web sites,

including www.whitehouse.gov
• Installed a back door to deter disinfection

• Infected 250,000 systems in nine hours

66 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

The Slammer worm

• Launched in 2003, performed denial-of-service attack
• First example of a “Warhol worm”

• A worm which can infect nearly all vulnerable machines in just 15
minutes

• Exploited a buffer overflow in Microsoft’s SQL Server (also having
a patch available)

• A vulnerable machine could be infected with a single UDP packet!
• This enabled the worm to spread extremely quickly
• Exponential growth, doubling every 8.5 seconds
• 90% of vulnerable hosts infected in 10 minutes

67 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

Conficker Worm

• First detected in November 2008

• Multiple variants

• Propagated a command-and-control style botnet

• Security experts had to generate and sinkhole C&C domains

• Number of infected hosts in 2009: 9–15 million, 2011: 1.7 million,
2015: 400,000

68 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

Stuxnet

• Discovered in 2010

• Allegedly created by the US and Israeli intelligence agencies

• Allegedly targeted Iranian uranium enrichment program

• Targets Siemens SCADA systems installed on Windows. One
application is the operation of centrifuges

• It tries to be very specific and uses many criteria to select which
systems to attack after infection

69 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

Stuxnet

• Very promiscuous: Used 4(!) different zero-day attacks to spread.
Has to be installed manually (USB drive) for air-gapped systems.

• Very stealthy: Intercepts commands to SCADA system and hides
its presence

• Very targeted: Detects if variable-frequency drives are installed,
operating between 807–1210 Hz, and then subtly changes the
frequencies so that distortion and vibrations occur resulting in
broken centrifuges.

70 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

• “Iranian President Mahmoud Ahmadinejad observes computer monitors at the Natanz

uranium enrichment plant in central Iran, where Stuxnet was believed to have infected

PCs and damaged centrifuges.”

https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

71 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Worms

IoT Malware

• Internet-of-Things (IoT): connected home, industry automation
etc.

• Cheap commodity devices with Internet connectivity.

• Dismal security: lack of expertise, lack of resources (CPU,
memory, etc.)

• e.g., Mirai (2016): Took out DNS provider Dyn, making many
popular services unreachable.

72 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

Have you ever seen this?

http://www.sampsonuk.net/B3TA/TrojanHorse.jpg

73 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

What is a trojan horse?

• Trojan horses are programs which claim to do something innocuous
(and usually do), but which also hide malicious behaviour

You’re surfing the Web and you see a button on the Web site saying,
“Click here to see the dancing pigs.” And you click on the Web site

and then this window comes up saying, “Warning: this is an untrusted
Java applet. It might damage your system. Do you want to continue?

Yes/No.” Well, the average computer user is going to pick dancing pigs
over security any day. And we can’t expect them not to. — Bruce

Schneier

74 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

Dancing pig

75 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

How do trojan horses work?

• Gain control by getting the user to run code of the attacker’s
choice, usually by also providing some code the user wants to run

• “PUP” (potentially unwanted programs) are an example

• For scareware, the user might even pay the attacker to run the code

• The payload can be anything; sometimes the payload of a Trojan
horse is itself a virus, for example

• Trojan horses usually do not themselves spread between computers;
they rely on multiple users executing the “trojaned” software

76 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

Scareware

http://static.arstechnica.com/malware_warning_2010.png

77 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

Ransomware

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack#/media/File:Wana_Decrypt0r_screenshot.png

78 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

How does ransomware work?

• Demands ransom to return some hostage resource to the victim

• CryptoLocker in 2013:
• Spread with spoofed e-mail attachments from a botnet
• Encrypted victim’s hard drive
• Demanded ransom for private key
• Botnet taken down in 2014; estimated ransom collected between $3

million to $30 million

• Could also be scareware

79 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Trojan horses

WannaCry

• Launched in May 2017, ransomware

• Infected 230,000 computers, including many of the British
National Health Service

• Exploits a Windows SMB vulnerability originally discovered by the
NSA

• NSA kept it secret (and exploited it)

• The “Shadow Brokers” leaked it (and others) in April 2017

• Microsoft had released a patch after being alerted by NSA but
many systems remained unpatched

• Emergency patch for Windows XP and 8 in May 2017

80 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Logic bombs

What is a logic bomb?

• A logic bomb is malicious code hiding in the software already on
your computer, waiting for a certain trigger to “go off” (execute
its payload)

• Logic bombs are usually written by “insiders”, and are meant to be
triggered sometime in the future

• After the insider leaves the company

• The payload of a logic bomb is usually pretty dire
• Erase your data
• Corrupt your data
• Encrypt your data, and ask you to send money to some offshore

bank account in order to get the decryption key!

81 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Logic bombs

How are logic bombs triggered?

• What is the trigger?

• Usually something the insider can affect once he is no longer an
insider

• Trigger when this particular account gets three deposits of equal
value in one day

• Trigger when a special sequence of numbers is entered on the
keypad of an ATM

• Just trigger at a certain time in the future (called a “time bomb”)

82 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Logic bombs

Spotting Trojan horses and logic bombs

• Spotting Trojan horses and logic bombs is extremely tricky. Why?

• The user is intentionally running the code!
• Trojan horses: the user clicked “yes, I want to see the dancing pigs”
• Logic bombs: the code is just (a hidden) part of the software

already installed on the computer

• Don’t run code from untrusted sources?

• Better: prevent the payload from doing bad things
• More on this later

83 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Logic bombs

Spotting Trojan horses and logic bombs

• Spotting Trojan horses and logic bombs is extremely tricky. Why?

• The user is intentionally running the code!
• Trojan horses: the user clicked “yes, I want to see the dancing pigs”
• Logic bombs: the code is just (a hidden) part of the software

already installed on the computer

• Don’t run code from untrusted sources?

• Better: prevent the payload from doing bad things
• More on this later

83 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

84 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Other malicious code

• Web bugs (beacon)

• Back doors

• Salami attacks

• Privilege escalation

• Rootkits

• Keystroke logging

• Interface illusions

85 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Web bugs

What are web bugs?

• A web bug is an object (usually a 1x1 pixel transparent image)
embedded in a web page, which is fetched from a different server
from the one that served the web page itself.

• Information about you can be sent to third parties (often
advertisers) without your knowledge or consent

• IP address
• Contents of cookies (to link cookies across web sites)
• Any personal info the site has about you

86 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Web bugs

Web bug example

• On the quicken.intuit.com home page:
• <IMG WIDTH="1" HEIGHT="1"

src="http://app.insightgrit.com/1/nat?

id=79152388778&ref=http://www.eff.org/

Privacy/Marketing/web bug.html&z=668951

&purl=http://quicken.intuit.com/">

• What information can you see being sent to insightgrit.com?

87 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Web bugs

“Malicious code”?

• Why do we consider web bugs “malicious code”?

• This is an issue of privacy more than of security

• The web bug instructs your browser to behave in a way contrary to
the principle of informational self-determination

• Much in the same way that a buffer overflow attack would instruct
your browser to behave in a way contrary to the security policy

88 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Web bugs

Leakage of your identity

• With the help of cookies, an advertiser can learn what websites a
person is interested in

• But the advertiser cannot learn person’s identity

• ... unless the advertiser can place ads on a social networking site

• Content of HTTP request for Facebook ad:
GET [pathname of ad]

Host: ad.doubleclick.net

Referer: http://www.facebook.com/

profile.php?id=123456789&ref=name

Cookie: id=2015bdfb9ec...

89 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Back doors

What is a back door?

• A back door (also called a trapdoor) is a set of instructions
designed to bypass the normal authentication mechanism and allow
access to the system to anyone who knows the back door exists

• Sometimes these are useful for debugging the system, but don’t
forget to take them out before you ship!

• Fanciful examples:
• “Reflections on Trusting Trust” (mandatory reading)
• “WarGames”

90 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Back doors

Examples of back doors

• Real examples:

• Debugging back door left in sendmail

• Back door planted by Code Red worm

• Port knocking
• The system listens for connection attempts to a certain pattern of

(closed) ports. All those connection attempts will fail, but if the
right pattern is there, the system will open, for example, a port
with a root shell attached to it.

• Attempted hack to Linux kernel source code
• if ((options == (WCLONE| WALL)) &&

(current->uid = 0))

retval = -EINVAL;

91 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Back doors

Sources of back doors

• Forget to remove them

• Intentionally leave them in for testing purposes

• Intentionally leave them in for maintenance purposes
• Field service technicians

• Intentionally leave them in for legal reasons
• “Lawful Access”

• Intentionally leave them in for malicious purposes
• Note that malicious users can use back doors left in for

non-malicious purposes, too!

92 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Salami attacks

What is a salami attack?

• A salami attack is an attack that is made up of many smaller,
often considered inconsequential, attacks

• Classic example: send the fractions of cents of round-off error from
many accounts to a single account owned by the attacker

• More commonly:
• Credit card thieves make very small charges to very many cards
• Clerks slightly overcharge customers for merchandise
• Gas pumps misreport the amount of gas dispensed

• “Hackers”

93 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Privilege escalation

What is a privilege escalation attack?

• Most systems have the concept of differing levels of privilege for
different users

• Web sites: everyone can read, only a few can edit
• Unix: you can write to files in your home directory, but not in

/usr/bin
• Mailing list software: only the list owner can perform certain tasks

• A privilege escalation is an attack which raises the privilege level of
the attacker (beyond that to which he would ordinarily be entitled)

94 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Privilege escalation

Sources of privilege escalation

• A privilege escalation flaw often occurs when a part of the system
that legitimately runs with higher privilege can be tricked into
executing commands (with that higher privilege) on behalf of the
attacker

• Buffer overflows in setuid programs or network daemons
• Component substitution

• Also: the attacker might trick the system into thinking he is in
fact a legitimate (higher-privileged) user

• Problems with authentication systems
• “-froot” attack

• Obtain session id/cookie from another user to access their bank
account

95 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Privilege escalation

96 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Privilege escalation

97 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Privilege escalation

98 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Rootkits

What is a rootkit?

• A rootkit is a tool often used by “script kiddies”

• It has two main parts:
• A method for gaining unauthorized root / administator privileges on

a machine (either starting with a local unprivileged account, or
possibly remotely)

• This method usually expoits some known flaw in the system that
the owner has failed to correct

• It often leaves behind a back door so that the attacker can get back
in later, even if the flaw is corrected

• A way to hide its own existence
• “Stealth” capabilities
• Sometimes just this stealth part is called the rootkit

99 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Rootkits

Stealth capabilities

• How do rootkits hide their existence?

• Clean up any log messages that might have been created by the
exploit

• Modify commands like ls and ps so that they don’t report files and
processes belonging to the rootkit

• Alternately, modify the kernel so that no user program will ever
learn about those files and processes!

100 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Rootkits

Example: Sony XCP

• Mark Russinovich was developing a rootkit scanner for Windows

• When he was testing it, he discovered his machine already had a
rootkit on it!

• The source of the rootkit turned out to be Sony audio CDs
equipped with XCP “copy protection”

• When you insert such an audio CD into your computer, it contains
an autorun.exe file which automatically executes

• autorun.exe installs the rootkit

101 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Rootkits

Example: Sony XCP

• The “primary” purpose of the rootkit was to modify the CD driver
in Windows so that any process that tried to read the contents of
an XCP-protected CD into memory would get garbled output

• The “secondary” purpose was to make itself hard to find and
uninstall

• Hid all files and processes whose names started with sys
• After people complained, Sony eventually released an uninstaller

• But running the uninstaller left a back door on your system!

102 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Keystroke logging

What is a “keylogger”?

• Almost all of the information flow from you (the user) to your
computer (or beyond, to the Internet) is via the keyboard

• A little bit from the mouse, a bit from devices like USB keys

• An attacker might install a keyboard logger on your computer to
keep a record of:

• All email / IM you send
• All passwords you type

• This data can then be accessed locally, or it might be sent to a
remote machine over the Internet

103 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Keystroke logging

Who installs keyboard loggers?

• Some keyboard loggers are installed by malware
• Capture passwords, especially banking passwords
• Send the information to the remote attacker

• Others are installed by one family member to spy on another
• Spying on children
• Spying on spouses
• Spying on boy/girlfriends

104 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Keystroke logging

Kinds of keyboard loggers

• Application-specific loggers:
• Record only those keystrokes associated with a particular

application, such as an IM client

• System keyboard loggers:
• Record all keystrokes that are pressed (maybe only for one

particular target user)

• Hardware keyboard loggers:
• A small piece of hardware that sits between the keyboard and the

computer
• Works with any OS
• Completely undetectable in software

105 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

How do interface illusions manifest themselves?

• You use user interfaces to control your computer all the time

• For example, you drag on a scroll bar to see offscreen portions of a
document

• But what if that scrollbar isn’t really a scrollbar?

• What if dragging on that “scrollbar” really dragged a program
(from a malicious website) into your “Startup” folder (in addition
to scrolling the document)?

• This really happened

106 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

Interface Illusion by Conficker worm

107 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

What are interface illusions?

• We expect our computer to behave in certain ways when we
interact with “standard” user interface elements.

• But often, malicious code can make “nonstandard” user interface
elements in order to trick us!

• We think we’re doing one thing, but we’re really doing another

• How might you defend against this?

108 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

Phishing

• Phishing is an example of an interface illusion

• It looks like you’re visiting Paypal’s website, but you’re really not.
• If you type in your password, you’ve just given it to an attacker

• Advanced phishers can make websites that look every bit like the
real thing

• Even if you carefully check the address bar, or even the SSL
certificate!

109 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

Phishing Detection

• Unusual email/URL
• Especially if similar to known URL/email
• Email that elicits a strong emotional response and requests fast

action on your part

• Attachments with uncommon names

• Typos, unusual wording

• No https (not a guarantee)

110 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Interface illusions

111 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Man-in-the-middle attacks

What is a man-in-the-middle attack?

• Keyboard logging, interface illusions, and phishing are examples of
man-in-the-middle attacks

• The website/program/system you’re communicating with isn’t the
one you think you’re communicating with

• A man-in-the-middle intercepts the communication from the user,
and then passes it on to the intended other party

• That way, the user thinks nothing is wrong, because his password
works, he sees his account balances, etc.

112 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Man-in-the-middle attacks

What can a man-in-the-middle do?

• But not only is the man-in-the-middle able to see (and record)
everything you’re doing, and can capture passwords, but once
you’ve authenticated to your bank (for example), the
man-in-the-middle can hijack your session to insert malicious
commands

• Make a $700 payment to attacker@evil.com

• You won’t even see it happen on your screen, and if the
man-in-the-middle is clever enough, he can edit the results (bank
balances, etc.) being displayed to you so that there’s no visible
record (to you) that the transaction occured

• Stealthy, like a rootkit

113 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

114 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Covert channels

How to secretly exchange information?

• An attacker creates a capability to transfer sensitive/unauthorized
information through a channel that is not supposed to transmit
that information.

• What information can/cannot be transmitted through a channel
may be determined by a policy/guidelines/physical limitations, etc.

115 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Covert channels

How can we create a covert channel?

• Assume that Eve can arrange for malicious code to be running on
Alice’s machine

• But Alice closely watches all Internet traffic from her computer
• Better, she doesn’t connect her computer to the Internet at all!

• Suppose Alice publishes a weekly report summarizing some
(nonsensitive) statistics

• Eve can “hide” the sensitive data in that report!
• Modifications to spacing, wording, or the statistics itself
• This is called a covert channel

116 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

What is a side channel?

• What if Eve can’t get Trojaned software on Alice’s computer in
the first place?

• It turns out there are some very powerful attacks called side
channel attacks

• Eve watches how Alice’s computer behaves when processing the
sensitive data

• Eve usually has to be somewhere in the physical vicinity of Alice’s
computer to pull this off

• But not always!

117 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Examples of side channels

• Bandwidth consumption

• Reflections

• Cache-timing channels

118 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Bandwidth Consumption: Scenario

• Eve observes communication going via Alice’s Router

• Alice accesses health forum via encrypted connection

• Eve knows that Alice connects to health forum

• But cannot decrypt downloaded content

119 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Bandwidth Consumption: Attack

• Eve determines size of all pages on health forum

• Eve measures size of Alice’s downloaded pages

• Likely: Eve can uniquely map download to page
• This attack is called webpage fingerprinting

• Or website fingerprinting, when targeting landing pages

120 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Bandwidth Consumption: Defense

• Pad all pages to common size (inflexible + inefficient)

• Dynamic personalized websites

• (Finally a benefit of targeted advertisement)

121 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Bandwidth Consumption: Another example

• Re-identification of Netflix video streaming
• Burst sizes of a streamed scene of “Reservoir Dogs”

• Very similar, even when watched over different networks

Schuster et al., USENIX SEC ’17

122 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Reflections: Scenario

• Alice types her password on a device in a public place

• Alice hides her screen

• But there is a reflecting surface close by

123 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Reflections

• Eve uses a camera and a telescope

• Off-the-shelf: less than CA$2,000

• Photograph reflection of screen through telescope

• Reconstruct original image

• Distance: 10–30 m

• Depends on equipment and type of reflecting surface

124 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Reflections: Defense

125 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Cache timing side channels

• Modern processor architectures use caches to speed up memory
access

• Main memory access is slow. Cache access is faster.
• Caches are micro-architectural objects, not architectural: programs

typically unaware of caches.
• Caches are shared: by timing cache access, a process can learn

information about data used by another.

• Other micro-architectural features like speculative and out-of-order
execution can be exploited to leak information via caches.

• Spectre and Meltdown attacks (2017):
https://meltdownattack.com/

126 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Side channels

Other potential attack vectors

• Timing computations

• Electromagnetic emission

• Sound emissions

• Power consumption

• Differential power analysis

• Differential fault analysis

127 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Module outline

1 Flaws, faults, and failures

2 Unintentional security flaws

3 Malicious code

4 Other malicious code

5 Nonmalicious flaws

6 Controls against security flaws in programs

128 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls

The picture so far

• We’ve looked at a large number of ways an attacker can
compromise program security

• Exploit unintentional flaws
• Introduce malicious code, including malware
• Exploit intentional, but nonmalicious, behaviour of the system

• The picture looks pretty bleak

• Our job is to control these threats
• It’s a tough job

129 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls

Software lifecycle

• Software goes through several stages in its lifecycle:
• Specification
• Design
• Implementation
• Change management
• Code review
• Testing
• Documentation
• Maintenance

• At which stage should security controls be considered?

130 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Design

• How can we design programs so that they’re less likely to have
security flaws?

• Modularity

• Encapsulation

• Information hiding

• Mutual suspicion

• Confinement

131 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Modularity

• Break the problem into a number of small pieces (“modules”),
each responsible for a single subtask

• The complexity of each piece will be smaller, so each piece will be
far easier to check for flaws, test, maintain, reuse, etc.

• Modules should have low coupling
• A coupling is any time one module interacts with another module
• High coupling is a common cause of unexpected behaviours in a

program

132 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Encapsulation

• Have the modules be mostly self-contained, sharing information
only as necessary

• This helps reduce coupling

• The developer of one module should not need to know how a
different module is implemented

• She should only need to know about the published interfaces to the
other module (the API)

133 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Information hiding

• The internals of one module should not be visible to other modules

• This is a stronger statement than encapsulation: the
implementation and internal state of one module should be hidden
from developers of other modules

• This prevents accidental reliance on behaviours not promised in
the API

• It also hinders some kinds of malicious actions by the developers
themselves!

134 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Mutual suspicion

• It’s a good idea for modules to check that their inputs are sensible
before acting on them

• Especially if those inputs are received from untrusted sources
• Where have we seen this idea before?

• But also as a defence against flaws in, or malicious behaviour on
the part of, other modules

• Corrupt data in one module should be prevented from corrupting
other modules

135 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Design

Confinement

• Similarly, if Module A needs to call a potentially untrustworthy
Module B, it can confine it (also known as sandboxing)

• Module B is run in a limited environment that only has access to
the resources it absolutely needs

• This is especially useful if Module B is code downloaded from the
Internet

• Suppose all untrusted code were run in this way
• What would be the effect?

136 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Implementation

• When you’re actually coding, what can you do to control security
flaws?

• Don’t use C (but this might not be an option)

• Static code analysis

• Hardware assistance

• Formal methods

• Genetic diversity

• Finally: learn more!

137 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Static code analysis

• There are a number of software products available that will help
you find security flaws in your code

• These work for various languages, including C, C++, Java, Perl,
PHP, Python

• They often look for things like buffer overflows, but some can also
point out TOCTTOU and other flaws

• These tools are not perfect!
• They’re mostly meant to find suspicious things for you to look at

more carefully
• They also miss things, so they can’t be your only line of defence

138 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Hardware assistance

• ARM Pointer Authentication
https://lwn.net/Articles/718888/

• Hardware-assisted shadow stack
https://lwn.net/Articles/758245/

• Capabilities in hardware https:

//www.cl.cam.ac.uk/research/security/ctsrd/cheri/

• . . .

139 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Formal methods

• Instead of looking for suspicious code patterns, formal methods try
to prove that the code does exactly what it’s supposed to do

• And you thought the proofs in your math classes were hard?
• Unfortunately, we can show that this is impossible to do in general

• But that doesn’t mean we can’t find large classes of useful
programs where we can do these proofs in particular

• Usually, the programmer will have to “mark up” her code with
assertions or other hints to the theorem proving program

• This is time-consuming, but if you get a proof out, you can really
believe it!

140 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Genetic diversity

• The reason worms and viruses are able to propagate so quickly is
that there are many, many machines running the same vulnerable
code

• The malware exploits this code

• If there are lots of different HTTP servers, for example, there’s
unlikely to be a common flaw

• This is the same problem as in agriculture
• If everyone grows the same crop, they can all be wiped out by a

single virus

141 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Implementation

Learn more about software security

• We barely scratched the surface in this course

• If you are thinking about becoming a software developer, get one
of these books:

• “Building Secure Software - How to Avoid Security Problems the
Right Way” by John Viega and Gary McGraw

• “Writing Secure Code (Second Edition)” by Michael Howard and
David LeBlanc

142 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Change management

Change management

• Large software projects can have dozens or hundreds of people
working on the code

• Even if the code’s secure today, it may not be tomorrow!

• If a security flaw does leak into the code, where did it come from?
• Not so much to assign blame as to figure out how the problem

happened, and how to prevent it from happening again

143 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Change management

Source code and configuration control

• Track all changes to either the source code or the configuration
information (what features to enable, what version to build, etc.)
in some kind of management system

• There are dozens of these; you’ve probably used at least a simple
one before

• CVS, Subversion, git, darcs, Perforce, Mercurial, Bitkeeper, ...

• Remember that attempted backdoor in the Linux source we talked
about last time?

• Bitkeeper noticed a change to the source repository that didn’t
match any valid checkin

144 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Code review

Code review

• Empirically, code review is the single most effective way to find
faults once the code has been written

• The general idea is to have people other than the code author look
at the code to try to find any flaws

• This is one of the benefits often touted for open-source software:
anyone who wants to can look at the code

• But this doesn’t mean people actually do!
• Even open-source security vulnerabilities can sit undiscovered for

years, in some cases

145 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Code review

Kinds of code review

• There are a number of different ways code review can be done

• The most common way is for the reviewers to just be given the
code

• They look it over, and try to spot problems that the author missed

• This is the open-source model

146 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Code review

Guided code reviews

• More useful is a guided walk-through
• The author explains the code to the reviewers

• Justifies why it was done this way instead of that way

• This is especially useful for changes to code
• Why each change was made
• What effects it might have on other parts of the system
• What testing needs to be done

• Important for safety-critical systems!

147 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Code review

“Easter egg” code reviews

• One problem with code reviews (especially unguided ones) is that
the reviewers may start to believe there’s nothing there to be
found

• After pages and pages of reading without finding flaws (or after
some number have been found and corrected), you really just want
to say it’s fine

• A clever variant: the author inserts intentional flaws into the code
• The reviewers now know there are flaws
• The theory is that they’ll look harder, and are more likely to find

the unintentional flaws
• It also makes it a bit of a game

148 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Testing

Testing

• The goal of testing is to make sure the implementation meets the
specification

• But remember that in security, the specification includes “and
nothing else”

• How do you test for that?!

• Two main strategies:
• Try to make the program do unspecified things just by doing

unusual (or attacker-like) things to it
• Try to make the program do unspecified things by taking into

account the design and the implementation

149 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Testing

Black-box testing

• A test where you just have access to a completed object is a
black-box test

• This object might be a single function, a module, a program, or a
complete system, depending on at what stage the testing is being
done

• What kinds of things can you do to such an object to try to get it
to misbehave?

• int sum(int inputs[], int length)

150 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Testing

Fuzz testing

• One easy thing you can do in a black-box test is called fuzz testing

• Supply completely random data to the object
• As input in an API
• As a data file
• As data received from the network
• As UI events

• This causes programs to crash surprisingly often!
• These crashes are violations of Availability, but are often indications

of an even more serious vulnerability

151 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Testing

White-box testing

• If you’re testing conformance to a specification by taking into
account knowledge of the design and implementation, that’s
white-box testing

• Also called clear-box testing

• Often tied in with code review, of course

• White-box testing is useful for regression testing
• Make a comprehensive set of tests, and ensure the program passes

them
• When the next version of the program is being tested, run all these

tests again

152 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Documentation

Documentation

• How can we control security vulnerabilities through the use of
documentation?

• Write down the choices you made
• And why you made them

• Just as importantly, write down things you tried that didn’t work!
• Let future developers learn from your mistakes

• Make checklists of things to be careful of
• Especially subtle and non-obvious security-related interactions of

different components

153 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Maintenance

Maintenance

• By the time the program is out in the field, one hopes that there
are no more security flaws

• But there probably are

• We’ve talked about ways to control flaws when modifying
programs

• Change management, code review, testing, documentation

• Is there something we can use to try to limit the number of flaws
that make it out to the shipped product in the first place?

154 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Maintenance

Standards, process, and audit

• Within an organization, have rules about how things are done at
each stage of the software lifecycle

• These rules should incorporate the controls we’ve talked about
earlier

• These are the organization’s standards
• For example:

• What design methodologies will you use?
• What kind of implementation diversity?
• Which change management system?
• What kind of code review?
• What kind of testing?

155 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Maintenance

Standards, process, and audit

• Make formal processes specifying how each of these standards
should be implemented

• For example, if you want to do a guided code review, who explains
the code to whom? In what kind of forum? How much detail?

• Have audits, where somebody (usually external to the
organization) comes in and verifies that you’re following your
processes properly

• This doesn’t guarantee flaw-free code, of course!

156 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Maintenance

Recap

• Flaws, faults, and failures

• Unintentional security flaws

• Malicious code: Malware

• Other malicious code

• Nonmalicious flaws

• Controls against security flaws in programs

157 / 158

Flaws, faults, and failures Unintentional flaws Malware Other malcode Nonmalicious flaws Controls

Security controls—Maintenance

Recap

• Various controls applicable to each of the stages in the software
development lifecycle

• To get the best chance of controlling all of the flaws:
• Standards describing the controls to be used
• Processes implementing the standards
• Audits ensuring adherence to the processes

158 / 158

