
CS 458 / 658
Computer Security and Privacy

Module 3
Operating System Security

Spring 2023

OS protection Access control User authentication Security policies and models Trusted OS design

Operating systems

• An operating system allows different “entities” to access different
resources in a shared way

• The operating system needs to control this sharing and provide an
interface to allow this access

• Identification and authentication are required for this access
control

• We will start with memory protection techniques and then look at
access control in more general terms

2 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

3 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

4 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

History

Evolution of OS protections

• Operating systems evolved as a way to allow multiple users use the
same hardware
• Sequentially (based on executives)
• Interleaving (based on monitors)

• OS makes resources available to users if required by them and
permitted by some policy
• OS also protects users from each other

• Attacks, mistakes, resource overconsumption

• Even for a single-user OS, protecting a user from him/herself is a
good thing
• Mistakes, malware

5 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

History

Protected objects

• Memory

• Data

• CPU

• Programs

• I/O devices (disks, printers, keyboards, sensors, ...)

• Networks

• OS

6 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Separation vs. sharing

Separation

• Keep one user’s objects separate from other users
• Physical separation

• Use different physical resources for different users
• Easy to implement, but expensive and inefficient

• Temporal separation
• Execute different users’ programs at different times

• Logical separation
• User is given the impression that no other users exist
• As done by an operating system

• Cryptographic separation
• Encrypt data and make it unintelligible to outsiders
• Complex

7 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Separation vs. sharing

Sharing

• Sometimes, users do want to share resources
• Library routines (e.g., libc)
• Files or database records

• OS should allow flexible sharing, not “all or nothing”
• Which files or records? Which part of a file/record?
• Which other users?
• Can other users share objects further?
• What uses are permitted?

• Read but not write, view but not print (Feasibility?)
• Aggregate information only

• For how long?

8 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Memory and address protection

• Prevent one program from corrupting other programs or data,
operating system and maybe itself
• Often, the OS can exploit hardware support for this protection, so

it’s cheap
• See CS 350 memory management slides

• Memory protection is part of translation from virtual to physical
addresses
• Memory management unit (MMU) generates exception if something

is wrong with virtual address or associated request
• OS maintains mapping tables used by MMU and deals with raised

exceptions

9 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Protection techniques

• Fence register
• Exception if memory access below address in fence register
• Protects operating system from user programs
• Single-user OS only

• Base/bounds register pair
• Exception if memory access below/above address in base/bounds

register
• Different values for each user program
• Maintained by operating system during context switch
• Limited flexibility

10 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Protection techniques

11 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Protection techniques

11 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Protection techniques

• Tagged architecture
• Each memory word has one or more extra bits that identify access

rights to word
• Very flexible
• Large overhead
• Difficult to port OS from/to other hardware architectures

• Segmentation

• Paging

12 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Segmentation

• Each program has multiple address spaces (segments)
• Different segments for code, data, and stack

• Or maybe even more fine-grained, e.g., different segments for data
with different access restrictions

• Virtual addresses consist of two parts:
• <segment name, offset within segment>

• OS keeps mapping from segment name to its base physical address
in Segment Table
• A segment table for each process

• OS can (transparently) relocate or resize segments and share them
between processes

• Segment table also keeps protection attributes

13 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Segment table

Protection attributes and segment length are missing in table

• Remember base/bounds?

14 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Review of segmentation

• Advantages:
• Each address reference is checked for protection by hardware
• Many different classes of data items can be assigned different levels

of protection
• Users can share access to a segment, with potentially different

access rights
• Users cannot access an unpermitted segment

• Disadvantages:
• External fragmentation
• Dynamic length of segments requires costly out-of-bounds check for

generated physical addresses
• Segment names are difficult to implement efficiently

15 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Paging

• Program (i.e., virtual address space) is divided into equal-sized
chunks (pages)

• Physical memory is divided into equal-sized chunks (frames)

• Frame size equals page size
• Virtual addresses consist of two parts:

• <page #, offset within page>
• # bits for offset = log2(page size)

• OS keeps mapping from page # to its base physical address in
Page Table

• Page table also keeps memory protection attributes

16 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Paging

Source: CS 350 slides

17 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

Review of paging

• Advantages:
• Each address reference is checked for protection by hardware
• Users can share access to a page, with potentially different access

rights
• Users cannot access an unpermitted page
• Unpopular pages can be moved to disk to free memory

• Disadvantages:
• Internal fragmentation
• Assigning different levels of protection to different classes of data

items not feasible

18 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Segmentation and paging

x86 architecture

• x86 architecture has both segmentation and paging
• Linux and Windows use both

• Only simple form of segmentation, helps portability
• Segmentation cannot be turned off on x86

• Memory protection bits indicate no access, read/write access or
read-only access
• Most processors also include NX (No eXecute) bit, forbidding

execution of instructions stored in page
• E.g., make stack/heap non-executable

• Does this avoid all buffer overflow attacks?

19 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

20 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Access control

Why do we need access control?

• Memory is only one of many objects for which OS has to run
access control

• In general, access control has three goals:
• Check every access: Else OS might fail to notice that access has

been revoked

• Enforce least privilege: Grant program access only to smallest
number of objects required to perform a task

• Verify acceptable use: Limit types of activity that can be performed
on an object

• E.g., for integrity reasons (ADTs)

21 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Access control

Access control structures

• Access control matrix

• Access control lists

• Privilege lists, Capabilities

• Role-based access control

22 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Access control matrix

Access control matrix

• Set of protected objects: O
• E.g., files or database records

• Set of subjects: S
• E.g., humans (users), processes acting on behalf of humans or

group of humans/processes

• Set of rights: R
• E.g., read, write, execute, own

• Access control matrix consists of entries a[s,o], where s ∈ S, o ∈ O
and a[s,o] ⊆ R

23 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Access control matrix

Example access control matrix

File 1 File 2 File 3

Alice orw rx o

Bob r orx

Carol rx

24 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Access control matrix

Implementing access control matrix

• Access control matrix is rarely implemented as a matrix
• Why?

• Instead, an access control matrix is typically implemented as
• a set of access control lists

• column-wise representation

• a set of capabilities
• row-wise representation

• or a combination

25 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Access control lists vs. capabilities

Access control lists (ACLs)

• Each object has a list of subjects and their access rights
• File 1: Alice:orw, Bob:r, File 2: Alice:rx, Bob:orx, Carol:rx
• ACLs are implemented in Windows file system (NTFS), user entry can

denote entire user group (e.g., “Students”)
• Classic UNIX file system has simple ACLs. Each file lists its owner, a

group and a third entry representing all other users. For each class, there
is a separate set of rights.
Groups are system-wide defined in /etc/group, use chmod/chown/chgrp
for setting access rights to your files

• Which of the following can we do quickly for ACLs?
• Determine set of allowed users per object
• Determine set of objects that a user can access
• Revoke a user’s access right to an object or all objects

26 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Access control lists vs. capabilities

Capabilities

• A capability is an unforgeable token that gives its owner some access
rights to an object
• Alice: File 1:orw, File 2:rx, File 3:o

• Unforgeability enforced by having OS store and maintain tokens or by
cryptographic mechanisms
• E.g., digital signatures (see later) allow tokens to be handed out to

processes/users. OS will detect tampering when process/user tries to get
access with modified token.

• Tokens might be transferable (e.g., if anonymous)
• Some research/experimental OSs (e.g., Hydra, Fuchsia) have

fine-grained support for tokens
• Caller gives callee procedure only minimal set of tokens

• Answer questions from previous slide for capabilities

27 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Access control lists vs. capabilities

Combined usage of ACLs and cap.

• In some scenarios, it makes sense to use both ACLs and
capabilities
• Why?

• In a UNIX file system, each file has an ACL, which is consulted
when executing an open() call
• If approved, caller is given a capability listing type of access

allowed in ACL (read or write)
• Capability is stored in memory space of OS

• Upon read()/write() call, OS looks at capability to determine
whether type of access is allowed

• Problem with this approach?

28 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Role-based access control

Role-based access control (RBAC)

• In a company, objects that a user can access often do not depend
on the identity of the user, but on the user’s job function (role)
within the company
• Salesperson can access customers’ credit card numbers, marketing

person only customer names

• In RBAC, administrator assigns users to roles and grants access
rights to roles
• Sounds similar to groups, but groups are less flexible

• When a user takes over new role, need to update only her role
assignment, not all her access rights

• Available in many commercial databases

29 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Role-based access control

RBAC extensions

• RBAC also supports more complex access control scenarios
• Hierarchical roles

• “A manager is also an employee”
• Reduces number of role/access rights assignments

• Users can have multiple roles and assume/give up roles as required
by their current task
• “Alice is a manager for project A and a tester for project B”
• User’s current session contains currently initiated role

• Separation of Duty
• “A payment order needs to be signed by both a manager and an

accounting person, where the two cannot be the same person”

30 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

31 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Authentication

The role of user authentication

• Computer systems often have to identify and authenticate users
before authorizing them

• Identification: Who are you?

• Authentication: Prove it!
• Identification and authentication is easy among people that know

each other
• For your friends, you do it based on their face or voice

• More difficult for computers to authenticate people sitting in front
of them

• Even more difficult for computers to authenticate people accessing
them remotely

32 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Authentication

How to perform user authentication?

https://xkcd.com/1121/

33 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Authentication factors

Classes of authentication factors

• Three classes of authentication factors
• Something the user knows

• Password, PIN, answer to “secret question”

• Something the user has
• ATM card, badge, browser cookie, physical key, uniform,

smartphone

• Something the user is
• Biometrics (fingerprint, voice pattern, face,. . . )
• Have been used by humans forever, but only recently by computers

• Something about the user’s context
• Location, time, devices in proximity

34 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Authentication factors

Classes of authentication factors

• Four classes of authentication factors
• Something the user knows

• Password, PIN, answer to “secret question”

• Something the user has
• ATM card, badge, browser cookie, physical key, uniform,

smartphone

• Something the user is
• Biometrics (fingerprint, voice pattern, face,. . . )
• Have been used by humans forever, but only recently by computers

• Something about the user’s context
• Location, time, devices in proximity

34 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Authentication factors

Combination of auth. factors

• Different classes of authentication factors can be combined for
more solid authentication
• Two- or multi-factor authentication

• Using multiple factors from the same class might not provide
better authentication
• “Something you have” can become “something you know”

• Token can be easily duplicated, e.g., magnetic strip on ATM card
• SMS message

35 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Passwords

• Probably oldest authentication mechanism used in computer
systems

• User enters user ID and password, maybe multiple attempts in
case of error
• Many usability problems, such as

• Entering passwords is inconvenient, in particular on small screens
• Password composition/change rules
• Forgotten passwords might not be recoverable
• If password is shared among many people, password updates

become difficult

36 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Security problems with passwords

• If password is disclosed to unauthorized individual, the individual
can immediately access protected resource
• Unless we use multi-factor authentication

• Shoulder surfing

• Keystroke logging

• Interface illusions / Phishing

• Password re-use across sites

• Password guessing

37 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password guessing attacks

• Brute-force: Try all possible passwords using exhaustive search

• Can test 350 billion Windows NTLM passwords per second on a
cluster of 25 AMD Radeon graphics cards

• Can try 958 combinations in 5.5 hours

• Enough to brute force every possible eight-character password
containing upper- and lower-case letters, digits, and symbols

38 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Brute-forcing passwords is exponential

http://erratasec.blogspot.ca/2012/08/common-misconceptions-of-password.html

39 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password guessing attacks

• Exhaustive search assumes that people choose passwords
randomly, which is often not the case

• Attacker can do much better by exploiting this
• For example, assume that a password consists of a root and a pre-

or postfix appendage
• “password1”, “abc123”, “123abc”

• Root is from dictionaries (passwords from previous password leaks,
names, English words, . . . )

• Appendage is combination of digits, date, single symbol, . . .

• >90% of 6.5 million LinkedIn password hashes leaked in June 2012
were cracked within six days

40 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password guessing attacks

• So should we just give up on passwords?
• Attack requires that attacker has encrypted password file or

encrypted document
• Offline attack

• Instead, attacker might want to guess your banking password by
trying to log in to your bank’s website
• Online attack

• Online guessing attacks are detectable
• Bank shuts down online access to your bank account after n failed

login attempts (typically n ≤ 5)
• But! How can an attacker circumvent this lockout?

41 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password hygiene

• Use a password manager to create and store passwords
• At least for low- and medium-security passwords
• All (most) eggs are now in one basket, so keep your computer’s

software up to date
• Prevents password re-use across sites

• Use a pass phrase
• Phrase of randomly chosen words, avoid common phrases (e.g.,

advertisement slogans)

42 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password strength

https://xkcd.com/936/

43 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password hygiene

• Have site-specific passwords
• Don’t reveal passwords to others

• In email or over phone
• If your bank really wants your password over the phone, switch

banks

• Studies have shown that people disclose passwords for a cup of
coffee, chocolate, or nothing at all

• Caveat of these studies?

• Don’t enter password that gives access to sensitive information on
a public computer (e.g., Internet café) or over public networks.
• Don’t do online banking (or anything sensitive) on them

44 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Advice for developers (NIST 2017)

• No password composition rules
• Otherwise everybody uses the same simple tricks to follow rule

• At least 8 characters minimum length

• At least 64 characters maximum length

• Allow any characters, including space, Unicode, and emoji

• Black list frequently used or compromised passwords (from
password leaks)

• Avoid password hints or “secret questions”

45 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Advice for developers (NIST 2017)

• Don’t ask users to periodically change passwords
• Leads to password cycling and similar

• “myFavoritePwd” -> “dummy” -> “myFavoritePwd”
• goodPwd.”1” -> goodPwd.”2” -> goodPwd.”3”

• Allow passwords to be copy-pasted into password fields

• Use two-factor authentication (but avoid SMS-based second
factor)

46 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Attacks on password files

• Website/computer needs to store information about a password in
order to validate entered password

• Storing passwords in plaintext is dangerous, even when file is read
protected from regular users
• Password file might end up on backup tapes
• Intruder into OS might get access to password file
• System administrator has access to file and might use passwords to

impersonate users at other sites
• Many people re-use passwords across multiple sites

47 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Cryptographic Tools

The following cryptographic tools are useful for storing information
about passwords (see Module 5 for details):

• Cryptographic hash: Compute a fixed-length, deterministic output
value from a variable-length input value. Given an output value, it
is hard to find an input value with this output value, i.e., a
cryptographic hash is not reversible.

• MAC: Same as a cryptographic hash, but it takes a secret key as
another input value. Still deterministic and not reversible.
Changing the secret key will change the output value.

48 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Cryptographic Tools

49 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Cryptographic Tools

49 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Cryptographic Tools

• (Symmetric) encryption: Compute a non-deterministic output
value that is an encryption of the input value under a secret key.
Encryption is reversible if we know the secret key (“decryption”).

50 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Cryptographic Tools

51 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Storing password fingerprints

• Store only a digital fingerprint of the password (using a
cryptographic hash) in the password file

• When logging in, system computes fingerprint of entered password
and compares it with user’s stored fingerprint

• Still allows offline guessing attacks when password file leaks

52 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Defending against guessing attacks

• UNIX makes guessing attacks harder by including user-specific salt
in the password fingerprint
• Salt is initially derived from time of day and process ID of

/bin/passwd
• Salt is then stored in the password file in plaintext

• Two users who happen to have the same password will likely have
different fingerprints

• Makes guessing attacks harder, can’t just build a single table of
fingerprints and passwords and use it for any password file

53 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Defending against guessing attacks

54 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Defending against guessing attacks

• Don’t use a standard cryptographic hash (like SHA-1 or SHA-512)
to compute the stored fingerprint

• They are relatively cheap to compute (microseconds)
• Instead use an iterated hash function that is expensive to compute

(e.g., bcrypt) and maybe also uses lots of memory (e.g., scrypt)
• Hundreds of milliseconds

• This slows down a guessing attack significantly, but is barely
noticed when a users enters his/her password

55 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Defending against guessing attacks

• An additional defense is to use a MAC, instead of a cryptographic
hash

• A MAC mixes in a secret key to compute the password fingerprint

• If the fingerprints leak, guessing attacks aren’t useful anymore

• Can protect the secret key by embedding it in tamper resistant
hardware

• If the key does leak, the scheme remains as secure as a scheme
based on a cryptographic hash

56 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password Recovery

• A password cannot normally be recovered from a hash value
(fingerprint)

• If password recovery is desired, it is necessary to store an
encrypted version of the password in the password file

• We need to keep encryption key away from attacker

57 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Password Recovery

• As opposed to fingerprints, this approach allows the system to
(easily) re-compute a password if necessary
• E.g., have system email password in the clear to predefined email

address when user forgets password

• There are many problems with this approach!

• Password reset is more common now.

58 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

The Adobe Password Hack (November 2013)

• In November 2013, 130 million encrypted passwords for Adobe
accounts were revealed.
• The encryption mechanism was the following:

1 First a NUL byte was appended to the password.
2 Next, additional NUL bytes were appended as required to make the

length a multiple of 8 bytes.
3 Then the padded passwords were encrypted 8 characters at a time

using a fixed key. (This is called ECB mode and it is the weakest
possible encryption mode.)

• The password hints were not encrypted.

• It turns out that many passwords can be decrypted, without
breaking the encryption and not knowing the key.

59 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

The Adobe Password Hack (cont.)

60 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

http://xkcd.com/1286

61 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Interception attacks

• Attacker intercepts password while it is in transmission from client
to server
• One-time passwords make intercepted password useless for later

logins
• Fobs (e.g., RSA SecurID), Authenticator apps
• Challenge-response protocols

62 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Challenge-response protocols

• Server sends a random challenge to a client

• Client uses challenge and password to compute a one-time
password

• Client sends one-time password to server

• Server checks whether client’s response is valid

• Given intercepted challenge and response, attacker might be able
to brute-force password

63 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Interception attacks

• On the web, passwords may still be transmitted in plaintext
• Sometimes, digital fingerprint of them
• Encryption (TLS, see later) protects against interception attacks on

the network

• There are cryptographic protocols (e.g., SRP) that make
intercepted information useless to an attacker
• Alternative solutions are difficult to deploy

• Patent issues, changes to HTTP protocol, hardware

• And don’t help against interception on the client side
• Malware

64 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Android unlock patterns

65 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Graphical passwords

• Graphical passwords are an alternative to text-based passwords
• Multiple techniques, e.g.,

• User chooses a picture; to log in, user has to re-identify this picture
in a set of pictures

• User chooses set of places in a picture; to log in, user has to click
on each place

• Issues similar to text-based passwords arise
• E.g., choice of places is not necessarily random

• Shoulder surfing becomes a problem

• Ongoing research

66 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Passwords

Server authentication

• With the help of a password, system authenticates user (client)

• But user should also authenticate system (server) else password
might end up with attacker!
• Classic attack:

• Program displays fake login screen
• When user “logs in”, programs prints error message, sends captured

user ID/password to attacker, and ends current session (which
results in real login screen)

• That’s why Windows trains you to press <CTRL-ALT-DELETE>
for login, key combination cannot be overridden by attacker

• Today’s attack:
• Phishing

67 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Biometrics

• Biometrics have been hailed as a way to get rid of the problems
with password and token-based authentication

• Unfortunately, they have their own problems
• Idea: Authenticate user based on physical characteristics

• Fingerprints, iris scan, voice, handwriting, typing pattern,. . .

• If observed trait is sufficiently close to previously stored trait,
accept user
• Observed fingerprint will never be completely identical to a

previously stored fingerprint of the same user

68 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

It is all about balance

https://www.recogtech.com/en/knowledge-base/

security-level-versus-user-convenience

69 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Local vs. remote authentication

• Biometrics work well for local authentication, but are less suited
for remote authentication or for identification
• In local authentication, a guard can ensure that:

• I put my own finger on a fingerprint scanner, not one made out of
gelatin

• I stand in front of a camera and don’t just hold up a picture of
somebody else

• In remote authentication, this is much more difficult

70 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Authentication vs. identification

• Authentication: Does a captured trait correspond to a particular
stored trait?
• Identification: Does a captured trait correspond to any of the

stored traits?
• Identification is an (expensive) search problem, which is made worse

by the fact that in biometrics, matches are based on closeness, not
on equality (as for passwords)

• False positives can make biometrics-based identification useless
• False positive: Alice is accepted as Bob
• False negative: Alice is incorrectly rejected as Alice

71 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Biometrics-based identification

• Example (from Bruce Schneier’s “Beyond Fear”):
• Face-recognition software with (unrealistic) accuracy of 99.9% is

used in a football stadium to detect terrorists
• 1-in-1,000 chance that a terrorist is not detected
• 1-in-1,000 chance that innocent person is flagged as terrorist

• If one in 10 million stadium attendees is a known terrorist, there
will be 10,000 false alarms for every real terrorist

• Remember “The Boy Who Cried Wolf”?
• Another example of the base rate fallacy (see Module 2)

72 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Other problems with biometrics

• Privacy
• Why should my employer (or a website) have information about my

fingerprints, iris,..?
• Aside: Why should a website know my date of birth, my mother’s

maiden name,. . . for “secret questions”?

• What if this information leaks? Getting a new password is easy, but
much more difficult for biometrics

• Accuracy: False negatives are annoying
• What if there is no other way to authenticate?
• What if I grow a beard, hurt my finger,. . . ?

73 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Other problems with biometrics

• Secrecy: Some of your biometrics are not particularly secret
• Face, fingerprints,...

• Legal protection: The law may allow the police to put your finger
on your phone’s fingerprint reader (or simply hold your phone’s
camera in front of you). But the law may protect you from you
having to reveal your password (depending on the country).

74 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Other problems with biometrics

https://www.theregister.com/2005/04/04/fingerprint_merc_chop/

75 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Biometrics

Learning from the past?

https://findbiometrics.com/

mercedes-implements-biometric-passenger-identification-new-s-class-car-73202105/

76 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

77 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted operating systems and software

Trusted operating systems

• Trusting an entity means that if this entity misbehaves, the
security of the system fails

• We trust an OS if we have confidence that it provides security
services, i.e.,

• Memory and file protection
• Access control and user authentication

78 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Trusted operating systems and software

Trusted operating systems

Typically a trusted operating system builds on four factors:

• Policy: A set of rules outlining what is secured and why

• Model: A model that implements the policy and that can be used
for reasoning about the policy

• Design: A specification of how the OS implements the model

• Trust: Assurance that the OS is implemented according to design

79 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted operating systems and software

Trusted software

• Software that has been rigorously developed and analyzed, giving
us reason to trust that the code does what it is expected to do and
nothing more
• Functional correctness

• Software works correctly

• Enforcement of integrity
• Wrong inputs don’t impact correctness of data

• Limited privilege
• Access rights are minimized and not passed to others

• Appropriate confidence level
• Software has been rated as required by environment

• Trust can change over time, e.g., based on experience

80 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Security policies

• Many OS security policies have their roots in military security
policies
• Each object/subject has a sensitivity/clearance level

• “Top Secret” >C “Secret” >C “Confidential” >C “Unclassified”
where “>C” means “more sensitive”

• Each object/subject might also be assigned to one or more
compartments
• E.g., “Soviet Union”, “East Germany”
• Need-to-know rule

• Subject s can access object o iff level(s) ≥ level(o) and
compartments(s) ⊇ compartments(o)
• s dominates o, short “s ≥dom o”

81 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Example

• Secret agent James Bond has clearance “Top Secret” and is
assigned to compartment “East Germany”

• Can he read a document with sensitivity level “Secret” and
compartments “East Germany” and “Soviet Union”?

• Which documents can he read?

82 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Commercial security policies

• Rooted in military security policies
• Different classification levels for information

• E.g., external vs. internal

• Different departments/projects can call for need-to-know
restrictions
• Assignment of people to clearance levels typically not as formally

defined as in military
• Maybe on a temporary/ad hoc basis

83 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Other security policies

• So far we’ve looked only at confidentiality policies

• Integrity of information can be as or even more important than its
confidentiality
• E.g., Clark-Wilson Security Policy
• Based on well-formed transactions that transition system from a

consistent state to another one
• Also supports Separation of Duty (see RBAC slides)

• Another issue is dealing with conflicts of interests
• Chinese Wall Security Policy
• Once you’ve decided for a side of the wall, there is no easy way to

get to the other side

84 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Chinese Wall security policy

• Once you have been able to access information about a particular
kind of company, you will no longer be able to access information
about other companies of the same kind
• Useful for consulting, legal or accounting firms
• Need history of accessed objects
• Access rights change over time

• ss-property: Subject s can access object o iff each object previously
accessed by s either belongs to the same company as o or belongs
to a different kind of company than o does

• *-property:For a write access to o by s, we also need to ensure
that all objects readable by s either belong to the same company
as o or have been sanitized

85 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Military and commercial security policies

Example

• Fast Food Companies = {McDonalds, Wendy’s}
• Book Stores = {Chapters, Amazon}
• Alice has accessed information about McDonalds

• Bob has accessed information about Wendy’s
• ss-property prevents Alice from accessing information about

Wendy’s, but not about Chapters or Amazon
• Similar for Bob

• Suppose Alice could write information about McDonalds to
Chapters and Bob could read this information from Chapters
• Indirect information flow violates Chinese Wall Policy
• *-property forbids this kind of write

86 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Security models

• Many security models have been defined and interesting properties
about them have been proved

• Unfortunately, for many models, their relevance to practically used
security policies is not clear
• We’ll focus on two prominent models

• Bell-La Padula Confidentiality Model
• Biba Integrity Model

• Targeted at Multilevel Security (MLS) policies, where
subjects/objects have clearance/classification levels

87 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Lattices

• Dominance relationship ≥dom defined in military security model is
transitive and antisymmetric

• Therefore, it defines a partial order (neither a ≥dom b nor b ≥dom

a might hold for two levels a and b)

• In a lattice, for every a and b, there is a unique lowest upper
bound u for which u ≥dom a and u ≥dom b and a unique greatest
lower bound l for which a ≥dom l and b ≥dom l
• There are also two elements U and L that dominate/are dominated

by all levels
• U = (“Top Secret”, {“Soviet Union”, “East Germany”})

L = (“Unclassified”, ∅)

88 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Example lattice

(U, ∅)

(S, ∅)

(TS, ∅)

SU = Soviet Union
Sensitivity levels:

TS = Top Secret

S = Secret

Compartments:

EG = East Germany

U = Unclassified

(TS, {SU})

(TS, {SU, EG})

(S, {SU, EG}) (TS, {EG})

(S, {EG})

(U, {EG})

(U, {SU, EG})(S, {SU})

(U, {SU})

89 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Bell-La Padula confidentiality model

• Regulates information flow in MLS policies, e.g., lattice-based ones

• Users should get information only according to their clearance

• Should subject s with clearance C(s) have access to object o with
sensitivity C(o)?

• Underlying principle: Information can only flow up

• ss-property (“no read up”): s should have read access to o only if
C(s) ≥dom C(o)

• *-property (“no write down”): s should have write access to o only
if C(o) ≥dom C(s)

90 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Example

• No read up is straightforward
• No write down avoids the following leak:

• James Bond reads secret document and summarizes it in a
confidential document

• Miss Moneypenny with clearance “confidential” now gets access to
secret information

• In practice, subjects are programs (acting on behalf of users)
• Else James Bond couldn’t even talk to Miss Moneypenny
• If program accesses secret information, OS ensures that it can’t

write to confidential file later
• Even if program does not leak information
• Might need explicit declassification operation for usability purposes

91 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Biba integrity model

• Prevent inappropriate modification of data

• Dual of Bell-La Padula model

• Subjects and objects are ordered by an integrity classification
scheme, I(s) and I(o)

• Should subject s have access to object o?
• Write access: s can modify o only if I(s) ≥dom I(o)

• Unreliable person cannot modify file containing high integrity
information

• Read access: s can read o only if I(o) ≥dom I(s)
• Unreliable information cannot “contaminate” subject

92 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Low Watermark Property

• Biba’s access rules are very restrictive, a subject cannot ever read
lower integrity object
• Can use dynamic integrity levels instead

• Subject Low Watermark Property:
If subject s reads object o, then I(s) = glb(I(s), I(o)), where glb() =
greatest lower bound

• Object Low Watermark Property:
If subject s modifies object o, then I(o) = glb(I(s), I(o))

• Integrity of subject/object can only go down, information flows
down

93 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Bell-LaPadula and Biba security models

Review of Bell-La Padula & Biba

• Very simple, which makes it possible to prove properties about
them
• E.g., can prove that if a system starts in a secure state, the system

will remain in a secure state

• Probably too simple for great practical benefit
• Need declassification
• Need both confidentiality and integrity, not just one
• What about object creation?

• Information leaks might still be possible through covert channels in
an implementation of the model

94 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Information flow control

Information flow control

• An information flow policy describes authorized paths along which
information can flow

• For example, Bell-La Padula describes a lattice-based information
flow policy

• In compiler-based information flow control, a compiler checks
whether the information flow in a program could violate an
information flow policy

• How does information flow from a variable x to a variable y?

• Explicit flow: E.g., y:= x; or y:= x / z;

• Implicit flow: If x = 1 then y := 0;

else y := 1

95 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Information flow control

Information flow control (cont.)

• Input parameters of a program have a (lattice-based) security
classification associated with them

• Compiler then goes through the program and updates the security
classification of each variable depending on the individual
statements that update the variable (using dynamic BLP/Biba)

• Ultimately, a security classification for each variable that is output
by the program is computed

• User (more likely, another program) is allowed to see this output
only if allowed by the user’s (program’s) security classification

96 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted OS design

97 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Design elements

Trusted system design elements

• Design must address which objects are accessed how and which
subjects have access to what
• As defined in security policy and model

• Security must be part of design early on
• Hard to retrofit security, see Windows 95/98

• Eight design principles for security
• Least privilege

• Operate using fewest privileges possible

• Economy of mechanism
• Protection mechanism should be simple and straightforward

• Open design
• Avoid security by obscurity
• Secret keys or passwords, but not secret algorithms

98 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Design elements

Security design principles (cont.)

• Complete mediation
• Every access attempt must be checked

• Permission based / Fail-safe defaults
• Default should be denial of access

• Separation of privileges
• Two or more conditions must be met to get access

• Least common mechanism
• Every shared mechanism could potentially be used as a covert

channel

• Ease of use
• If protection mechanism is difficult to use, nobody will use it or it

will be used in the wrong way

99 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Security features of trusted OS

• Identification and authentication
• See earlier

• Access control

• Object reuse protection

• Trusted path

• Accountability and audit

• Intrusion detection

100 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Access control

• Mandatory access control (MAC)
• Central authority establishes who can access what
• Good for military environments
• For implementing Chinese Wall, Bell-La Padula, Biba

• Discretionary access control (DAC)
• Owners of an object have (some) control over who can access it
• You can grant others access to your home directory
• e.g., UNIX and Windows

• RBAC is neither MAC nor DAC

• Possible to use combination of these mechanisms

101 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Object reuse protection

• Alice allocates memory from OS and stores her password in this
memory
• After using password, she returns memory to OS

• By calling free() or simply by exiting procedure if memory is
allocated on stack

• Later, Bob happens to be allocated the same piece of memory and
he finds Alice’s password in it

• OS should erase returned memory before handing it out to other
users
• Defensive programming: Erase sensitive data yourself before

returning it to OS
• How can compiler interfere with your good intentions?

• Similar problem exists for files, registers and storage media

102 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Hidden data

• Hidden data is related to object reuse protection

• You think that you deleted some data, but it is still hidden
somewhere
• Deleting a file will not physically erase file on disk
• Deleting an email in GMail will not remove email from Google’s

backups
• Deleting text in MS Word might not remove text from document
• Putting a black box over text in a PDF leaves text in PDF
• Shadow Copy feature of Windows 7 keeps file snapshots to enable

restores

103 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Trusted path

• Give assurance to user that her keystrokes and mouse clicks are
sent to legitimate receiver application

• Remember the fake login screen?
• Turns out to be quite difficult for existing desktop environments,

both Linux and Windows
• Don’t run sudo if you have an untrusted application running on

your desktop

104 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Accountability and audit

• Keep an audit log of all security-related events
• Provides accountability if something goes bad

• Who deleted the sensitive records in the database?
• How did the intruder get into the system?

• An audit log does not give accountability if attacker can modify
the log
• At what granularity should events be logged?

• For fine-grained logs, we might run into space/efficiency problems
or finding actual attack can be difficult

• For coarse-grained logs, we might miss attack entirely or don’t have
enough details about it

105 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Security features

Intrusion detection

• There shouldn’t be any intrusions in a trusted OS

• However, writing bug-free software is hard, people make
configuration errors,. . .

• Audit logs might give us some information about an intrusion

• Ideally, OS detects an intrusion as it occurs

• Typically, by correlating actual behaviour with normal behaviour

• Alarm if behaviour looks abnormal

• See later in Network Security module

106 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Trusted computing base (TCB)

• TCB consists of the part of a trusted OS that is necessary to
enforce OS security policy
• Changing non-TCB part of OS won’t affect OS security, changing

its TCB-part will
• TCB better be complete and correct

• TCB can be implemented either in different parts of the OS or in a
separate security kernel

• Separate security kernel makes it easier to validate and maintain
security functionality

• Security kernel runs below the OS kernel, which makes it more
difficult for an attacker to subvert it

107 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Security kernel

108 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Rings

• Some processors support this kind of layering based on “rings”

• If processor is operating in ring n, code can access only memory
and instructions in rings ≥ n

• Accesses to rings < n trigger interrupt/exception and inner ring
will grant or deny access
• x86 architecture supports four rings, but Linux and Windows use

only two of them
• user and supervisor mode, i.e., don’t have security kernel

• Some research OSs (Multics, SCOMP) use more

• What about hypervisors and other subsystems?

109 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Reference monitor

• Crucial part of the TCB

• Collection of access controls for devices, files, memory, IPC,. . .

• Not necessarily a single piece of code

• Must be tamperproof, unbypassable, and analyzable

• Interacts with other security mechanism, e.g., user authentication

110 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Virtualization

• Virtualization is a way to provide logical separation (isolation)

• Different degrees of virtualization
• Virtual memory

• Page mapping gives each process the impression of having a
separate memory space

• Virtual machines
• Also virtualize I/O devices, files, printers,. . .
• Currently very popular (VMware, Xen, Parallels,...)
• If Web browser runs in a virtual machine, browser-based attacks are

limited to the virtual environment
• On the other hand, a rootkit could make your OS run in a virtual

environment and be very difficult to detect (“Blue Pill”)

111 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Trusted computing base

Application Insulation

• Memory encryption techniques allow application shielding from
other apps, OS, some hardware attacks

• Application is partitioned into trusted and untrusted code.

• Trusted code segment is encrypted in memory using a key living in
secure hardware (close to CPU)

• Untrusted code talks with trusted code via compact API

• Trusted computing base is reduced to secure hardware, CPU and
(hopefully small) trusted code

• Two examples: Intel SGX and AMD memory encryption

112 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

Least privilege in popular OSs

• Pretty poor

• Windows pre-NT: any user process can do anything
• Windows pre-Vista: fine-grained access control. However, in

practice, many users just ran as administrators, which can do
anything
• Some applications even required it

• Windows Vista
• Easier for users to temporarily acquire additional access rights

(“User Account Control”)
• Integrity levels, e.g., Internet Explorer is running at lowest integrity

level, which prevents it from writing up and overwriting all a user’s
files

113 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

Least privilege in popular OSs (cont.)

• Traditional UNIX: a root process has access to anything, a user
process has full access to user’s data
• SELinux and AppArmor provide Mandatory Access Control (MAC)

for Linux, which allows the implementation of least privilege
• No more root user
• Support both confidentiality and integrity
• Difficult to set up

• Other, less invasive approaches for UNIX
• Chroot, compartmentalization, SUID (see next slides)

• What about smartphone operating systems?

114 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

Chroot

• Sandbox/jail a command by changing its root directory
• chroot /new/root command

• Command cannot access files outside of its jail

• Some commands/programs are difficult to run in a jail

• But there are ways to break out of the jail

115 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

Containers

• Files (as in chroot) are not the only thing you might want to
isolate from one process to another
• Some OSes (e.g., Linux) support namespaces for various resources

• process IDs, user IDs, network configuration, filesystem mounts, ...

• A container can run processes in a set of namespaces isolated from
other containers on the same physical (“host”) machine

• Example container systems: lxc, docker

• Having a privilege inside a container does not imply having the
privilege in other containers, or on the host machine

116 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

Compartmentalization

• Split application into parts and apply least privilege to each part
• OpenSSH splits SSH daemon into a privileged monitor and an

unprivileged, jailed child
• Confusingly, this option is called UsePrivilegeSeparation. But this is

different from Separation of Privileges (see earlier)

• Child receives (maybe malicious) network data from a client and
might get corrupted
• Child needs to contact monitor to get access to protected

information (e.g., password file)
• Small, well-defined interface
• Makes it much more difficult to also corrupt monitor

• Monitor shuts down child if behaviour is suspicious

117 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Least privilege in popular operating systems

setuid/suid bit

• In addition to bits denoting read, write and execute access rights,
UNIX ACLs also contain an suid bit
• If suid bit is set for an executable, the executable will execute

under the identity of its owner, not under the identity of the caller
• /usr/bin/passwd belongs to root and has suid bit set
• If a user calls /usr/bin/passwd, the program will assume the root

identity and can thus update the password file

• Make sure to avoid “confused deputy” attack
• Eve executes /usr/bin/passwd and manages to convince the

program that it is Alice who is executing the program. Eve can thus
change Alice’s password

118 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Assurance

Assurance

• How can we convince others to trust our OS?
• Testing

• Can demonstrate existence of problems, but not their absence
• Might be infeasible to test all possible inputs
• Penetration testing: Ask outside experts to break into your OS

• Formal verification
• Use mathematical logic to prove correctness of OS
• Has made lots of progress recently
• Unfortunately, OSs are probably growing faster in size than research

advances

119 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Assurance

Assurance (cont.)

• Validation
• Traditional software engineering methods
• Requirements checking, design and code reviews, system testing

120 / 123



OS protection Access control User authentication Security policies and models Trusted OS design

Assurance

Evaluation

• Have trusted entity evaluate OS and certify that OS satisfies some
criteria

• Two well-known sets of criteria are the “Orange Book” of the U.S.
Department of Defence and the Common Criteria
• Orange Book lists several ratings, ranging from “D” (failed

evaluation, no security) to “A1” (requires formal model of
protection system and proof of its correctness, formal analysis of
covert channels)
• See text for others
• Windows NT has C2 rating, but only when it is not networked and

with default security settings changed
• Most UNIXes are roughly C1

121 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Assurance

Common criteria

• Replace Orange Book, more international effort

• Have Protection Profiles, which list security threats and objectives

• Products are rated against these profiles

• Ratings range from EAL 1 (worst) to EAL 7 (best)
• Windows XP has been rated EAL 4+ for the Controlled Access

Protection Profile (CAPP), which is derived from Orange Book’s
C2
• Interestingly, the continuous release of security patches for Windows

XP did not affect its rating

• Windows 7, Red Hat Enterprise Linux 6 were also rated EAL 4+

122 / 123

OS protection Access control User authentication Security policies and models Trusted OS design

Assurance

Recap

• Protection in general-purpose operating systems

• Access control

• User authentication

• Security policies and models

• Trusted operating system design

123 / 123


