
Security and Privacy 
of Internet Applications 
(Module 5)



Basics of Cryptography



Cryptology

& CryptanalysisCryptography

Cryptology is a science that studies:



Cryptology

Cryptography
The point of cryptography is to send secure messages 
over an insecure medium (like the Internet)

Turning plaintext (an ordinary readable message) into   
ciphertext (secret messages that are “hard” to read)



Cryptology

Cryptanalysis
Cryptanalysis studies cryptographic systems to look for 
weaknesses or leaks of information

Breaking secret messages
Recovering the plaintext from the ciphertext



THE SCOPE

The goal of the cryptography unit in this course is to 
show you what cryptographic tools exist, and 
information about using these tools in a secure manner

We won’t be showing you details of how the tools 
work



The Main Cast

Honest 
Communicating 
Parties 

Adversary



Building Blocks

There are three main components of Cryptography:           
andConfidentiality Integrity Authenticity



Strong Cryptosystems

Confidentiality
Preventing Eve from reading Alice’s messages



Building Blocks

There are three main components of Cryptography:           
andConfidentiality Integrity Authenticity



Strong Cryptosystems

Integrity
Preventing Eve from modifying Alice’s messages without being 
detected



Building Blocks

There are three main components of Cryptography:           
andConfidentiality Integrity Authenticity



Strong Cryptosystems

Authenticity
Preventing Eve from impersonating Alice



Strong Cryptosystems

What are the ideal properties of a Strong 
Cryptosystem?

Never Have a SECRET Encryption Algorithm



Kirchhoff's Principle

A Crypto System should be secure, even if 
everything about the system, except the key 
is public knowledge. 



SHANNON’s Maxim

One ought to design systems under the assumption 
that the enemy will immediately gain full familiarity 
with them.



SHANNON’s Maxim

So don’t use secret encryption methods (security by obscurity)

It’s easy to change the key; it’s usually just a smallish number

Have public algorithms that use a secret key as input



Strong Cryptosystems 

AlgorithmEve may know the Some part of plain text

plain text cipher text pairs has access to

encryption/decryption oracle



The cryptographic algorithm is always public.
 it can AES, RSA etc.

Algorithm

Strong Cryptosystems 



Strong Cryptosystems 

AlgorithmEve may know the Some part of plain text

plain text cipher text pairs has access to

encryption/decryption oracle



Strong Cryptosystems

Should be resistant to known plain text attack

Some part of plain text

Pattern Matching



Strong Cryptosystems 

AlgorithmEve may know the Some part of plain text

plain text cipher text pairs has access to

encryption/decryption oracle



Strong Cryptosystems 

Should be resistant to known plain text attack

plain text cipher text pairs

Should be resistant to known cipher text attack



Strong Cryptosystems 

AlgorithmEve may know the Some part of plain text

plain text cipher text pairs has access to

encryption/decryption oracle



Strong Cryptosystems

Should be resistant to chosen plain text attack

encryption/decryption oracle

Should be resistant to chosen cipher text attack



Strong Cryptosystems 

AlgorithmEve may know the Some part of plain text

plain text cipher text pairs has access to encryption/decryption oracle

Eve may not know the Key!! 
However, 



ENCRYPTION



ENCRYPTION



ENCRYPTION



ENCRYPTION



Encryption is the
digital analog of the
preceding scenario

An encryption scheme has three algorithms:
1. Gen creates keys
2. Enc locks messages under a given key
3. Dec unlocks messages using associated the key



Let us turn the Clock Back



Old Ciphers

Caeser Cipher

A B C D E F G H I J

A B C D E F G H I J



Cryptography in World War II

Caeser Cipher
But … A  very sophisticated one 



THE ENIGMA MACHINE

Caeser Cipher
But … A  very sophisticated one 

See this amazing lecture on the Enigma Machine 

https://www.youtube.com/watch?v=ncL2Fl6prH8
https://www.youtube.com/watch?v=ncL2Fl6prH8


THE ENIGMA MACHINE

Caeser Cipher
But … A  very sophisticated one 



THE ENIGMA MACHINE

Caeser Cipher
But … A  very sophisticated one 

Plug Board

Rotors



THE ENIGMA MACHINE

26×26×26=17,576 (Number of possible starting positions)

1.07 x 1023 different ways to encrypt
(comparable with a 77-bit key)



THE ENIGMA MACHINE

But this is not good by modern standards. 
Why??

1.07 x 1023 different ways to encrypt
(comparable with a 77-bit key)



“Flaw” in THE ENIGMA

Also Read

A major flaw in the Enigma was that a letter did not map to itself 

This allowed for some Cryptanalysis by:

Marian Rejewski

https://brilliant.org/wiki/enigma-machine/


“Flaw” in THE ENIGMA

How can you exploit something like this?



BREAKING THE ENIGMA CODE

Check out this paper:  https://web.archive.org/web/20060720040135/http://members.fortunecity.com/jpeschel/gillog1.htm

W J E Q L D U Y B N H J X P K Z V C F G R A
W E T T E R



BREAKING THE ENIGMA CODE

Check out this paper

W J E Q L D U Y B N H J X P K Z V C F G R A
W E T T E R

https://web.archive.org/web/20060720040135/http:/members.fortunecity.com/jpeschel/gillog1.htm


BREAKING THE ENIGMA CODE

Check out this paper:  https://web.archive.org/web/20060720040135/http://members.fortunecity.com/jpeschel/gillog1.htm

W J E Q L D U Y B N H J X P K Z V C F G R A
W E T T E R

This is a possible location for the word “Wetter”



Alan Turing Bombe Machine

BREAKING THE ENIGMA CODE

Bombe Machine Broke the Enigma Code in 20 minutes



Modern Cryptography



Secret Key Cryptography



Gilbert Vernam (1890—1960)

▪ Engineer at AT&T Bell Labs

▪ “Invented” stream ciphers and the one-time pad (OTP) in 
1919

▪ U.S. Patent 1,310,719
–Actually, the patent was for a machine that encrypts a 

plaintext by mechanically XORing it with a secret key



1 1 10 0 01001 01 01 01

0 1 0 0 1 0 1 1
⊕

1 0 1 1 0 1 00



Vernam’s one-time pad

Gen(1n) generates keys (referred to as pads)

Input: an integer ⇒ length of key

Output: a random n-bit string, k∈{0，1}ⁿ



Vernam’s one-time pad

Enc(k; m) encrypts m with pad k

Input: a pad k and message m of the exact same length 
(i.e., m, k∈{0, 1}ⁿ)

Output: the bitwise XOR, c∈{0, 1}ⁿ, of m and k 
(i.e., c = m ⊕ k)



Vernam’s one-time pad

Dec(k, c) decrypts c with pad k

Input: a pad k and ciphertext c of the exact same length 

Output: the bitwise XOR, m’∈{0, 1}ⁿ, of c and k 
(i.e., m’=c ⊕ k)

(i.e., c k∈{0, 1}ⁿ)



Vernam’s one-time pad

Provides Information Theoretic Security

No matter how computationally strong the adversary is 
OTP cannot be broken.



One Time Pads

Why does try every key not work here?
Because, given a ciphertext C for every possible message M, there exists 
a K that could have generated that cipher text?

Does it provide integrity? 

Nope! An adversary can flip the bits of the cipher text. 



problem with One Time Pads

If your boss stores your salary (in binary) 
encrypted using One Time Pad what can you do 
with the cipher text?

You can XOR a “1000000 …. “. This flips the most 
significant bit, which is most likely a zero! 



problem with One Time Pads

The key must be truly random.

Another problem is that key should be size of the message.

The key must not be used more than once. 
Two Time Pads do not work.



Issues with two-time pads
 

What happens if you use the same key to encrypt 
two messages?

C1⊕C2= M1⊕K ⊕ M2⊕K =(M1⊕M2)

C1=M1⊕K, C2=M2⊕K

Messages are not purely random.

⊕ =



Computational Security

In contrast to One-Time Pad’s perfect or Information 
Theoretic security, most cryptosystems have 
computational security.

We want: Enough == NOT practical

This means that it is certain they can be broken by enough work by Eve



40-bit Cryptography

This was the US legal export limit for a long time 
(cryptosystems were classified as munitions unit the late 90’s)

240 ~ 1012   possible keys   

18 hours   

11 hours   

4.2 ns

Computer ~107 key per second 

Lab ~109 key per second 

Bitcoin Network ~1020 key per second 



56-bit Cryptography

This was the US Government Standard (DES) for a 
long time

134 years   

16 months   

0.22 ms

Computer ~107 key per second 

Lab ~109 key per second 

Bitcoin Network ~1020 key per second 

256 ~ 7.2 x 1026   possible keys   



128-bit Cryptography

This is the modern Standard

6.3 x ~1023 years   Computer ~107 key per second 

Lab ~109 key per second 

Bitcoin Network ~1020 key per second 

6.3 x ~1021 years   

4.1 x ~1010 years   

2128 ~ 1038   possible keys   



128-bit crypto can’t be broken?

What about Quantum Computers?

What about Moore’s Law?

If we believe Moore’s Law after 132 years we’ll have computers 
that break 128-bit Crypto in 18 hours

They will not really help



Types of secret-key cryptosystems

Stream Ciphers Block Ciphers&

There are two main types of secret-key 
cryptosystems:



Types of secret-key cryptosystems

Stream Ciphers
A stream cipher operates one bit at a time. Basically, take the 
One-Time Pad, but use a pseudorandom keystream instead of 
a truly random one. plaintext

ciphertext
Pseudorandom Keystream Generator

Keystream



Types of secret-key cryptosystems

Stream Ciphers
Can be very fast! And can allow us to send a lot of data securely

We saw the issue with re-using a key (two-time pad)
WEP, PPTP are great examples of how NOT use stream ciphers.

Concatenate the key with nonce.



Types of secret-key cryptosystems

Stream Ciphers
RC4 was the most common stream cipher (now deprecated)

ChaCha increasingly popular, and SNOW3G in mobile phones

plaintext

ciphertext
Pseudorandom Keystream Generator

Keystream|| Nonce



Stream Ciphers
What happens in a stream cipher if you flip just one bit of the 
plain text?

The corresponding bit of the cipher text is flipped.
“Bit-flipping attacks”

Types of secret-key cryptosystems

Have we already seen a bit-flipping attack in the class?

Yes, You increased your salary!



Types of secret-key cryptosystems

Stream Ciphers Block Ciphers&

There are two main types of secret-key 
cryptosystems:



Types of secret-key cryptosystems

Block Ciphers
Operate on the messages one block at a time.
Blocks are usually 64 or 128 bits long.

Example:  AES is a block cipher everyone should use today.

  (unless you have a really good reason) 

 



BLOCK ciphers

Block Ciphers

Encrypt

1 block of plaintext

1 block of ciphertext
If plaintext is smaller than one block: padding

If plaintext is larger than one block: The choice of what to do with 
multiple blocks is called the mode of operation of the block cipher

Operate on the messages one block at a time.
Blocks are usually 64 or 128 bits long.



Electronic code book (ECB) Mode

E

E

E

M1

M2

C1

C2

C3M3

Encrypts each successive block separately.

What happens if some blocks in the plain 
text are identical.

Ci=EK Mi  &&   Ci=EK Mi , Then, Ci=Cj 



ECB Mode 



Improving ecb mode (v1)

E

E

E

C1

C2

C3

We can provide feedback among 
different block, to avoid repeating 
patterns 

Does this avoid repeating patterns?

We can undo the XOR if we get 
all the cipher texts

M1

M2

M3



Improving ecb mode (v2)

Does this solve the issue of 
encrypting equal block?

What would happen if we encrypt 
the message twice with the same 
key?

C1=E M , C2=E(M) implies C1=C2
We could change the key ,,, but there’s a better way

E

E

E

C1

C2

C3

M1

M2

M3

Yes!!, However …



Cipher block chaining (CBC) MODE

Does this solve the issue of 
encrypting equal block?

Can we share IV in the clear?

Yes!!! (IV = Initialization Vector)

E

E

E

C1

C2

C3

M1

M2

M3

IV

Yes, This is called CBC mode



CBC Mode 



KEY exchange

How do Alice and Bob share a key?

Maybe they meet in person
In General, this is very hard

Or we invent a new technology



That’s all for today, Folks!



Recap

What is Confidentiality, Integrity, and Authenticity?
What makes a strong cryptosystem?

Modes of Operation.

Stream Cipher vs. Block Cipher
One-Time-Pads give perfect Secrecy but are hard to use

Key Exchange



How do Alice and Bob 
Securely share a key?



Public Key Cryptography



Key-Exchange 

Public Color = YELLOW



key-exchange

Private Color Private Color

Public Color = YELLOW



Internet key-exchange

Eve learns these two colors



key-exchange

Eve cannot learn 
this new color



How is it that Alice & Bob’s final mixtures are identical?

Alice mixed  [(Yellow + Teal) from Bob]  + Orange
Bob mixed [(Yellow + Orange) from Alice] + Teal

key-exchange



Why doesn’t Eve get know the colors?

Unmixing a color into its component colors is a hard 
problem

key-exchange



Discrete log problem

s = gn mod p; where p is a large prime number
Easy: given g, n, & p, solve for s

Hard: given s, g, & p, solve for n
Property:   ga*b mod p = gb*a mod p

These are ONE-WAY functions



(gx mod p , p, g) gy mod p

x y



(gx mod p , p, g)gy mod p

(gy)x= (gxy) (gx)y = (gxy )

x y



What can go wrong?

Eve pretend to be Alice with Bob
And pretend to be Bob with Alice.



(gey mod p , p, g)

gex mod p

(gey )x= (gxey ) (gex )y = (gexy )

x y

ey ex

(gx ) (gy )



(gey mod p , p, g)

(gey )x= (gxey ) (gex )y = (gexy )

x y

ey ex

gex mod p

(gx ) (gy )

(gey )x= (gxey ) (gex )y = (gexy )



What just happened here?

Eve negotiated a key with Alice pretending to Bob
Eve negotiated a key with Bob pretending to Alice



Let us park this 
problem for a 
while and will get 
back to it later



Public Key Cryptography

Broadcasts a public key

Only Bob can decrypt them using his private key

Anybody can encrypt a message using 
the public key

Private Key



Public key cryptography

Encryption Key Decryption Key

Also known as asymmetric cryptography 
Allows Alice to send a secret 
message to Bob without 
prearranged shared secret



Public key cryptography

Encryption Key Decryption Key

Invented (in public) 1970s Also called asymmetric cryptography

Examples: RSA ElGamal ECC NTRU McEliece

Allows Alice to send a secret message to Bob 
without any prearranged shared secret 



Public key cryptography

Encryption Key

Decryption Key



Public key cryptography

Encryption Key

Decryption Key



Public key cryptography

Encryption Key

Decryption Key



Public key cryptography

Encryption Key

Decryption Key



Public key cryptography

Encryption Key

Decryption Key



Public key cryptography

Encryption Key

Decryption Key



RSA Cryptography

Adi Shamir, Ron Rivest, Leonard Adelman



Textbook RSA

Choose two large primes p and q.

Compute  n = p⋅q

Choose a number e, and find d such that me d ≡ m (modulo n)

Public Key: (e, n) Private Key: d

Encryption: c ≡ me (modulo n)

Decryption: m≡ c d (modulo n)



Chosen Cipher text attack

We are Eve. Alice is using RSA 
and her public key is (e, n)

Bob sends a super secret message 
m which is encrypted as c=E(m). 
We intercept c

Can we ask Alice to decrypt something else 
(other than c) that helps us generate m?

Choose two large primes p and q.
Compute  n = p⋅q

Choose a number e, and find d such that me d ≡ m (modulo n)
Public Key: (e, n) Private Key: d

Encryption: c ≡ me (modulo n)

Decryption: m≡ c d (modulo n)



Chosen Cipher text attack

Can we ask Alice to decrypt 
something else (other than c) 
that helps us generate m?

Bob sends c1 = Ee(m). We intercept c1 .

We divide the result by 2, and we get m.

The decrypt, yields:  2e⋅c1
d
= 2m

We ask Alice to decrypt c2 ≡ 2e⋅c1

We fix this by something 
called padding techniques

Choose two large primes p and q.
Compute  n = p⋅q

Choose a number e, and find d such that me d ≡ m (modulo n)
Public Key: (e, n) Private Key: d

Encryption: c ≡ me (modulo n)

Decryption: m≡ c d (modulo n)



Public key sizes

AES RSA ECC
80 1024 160
116 2048 232
128 2600 256
160 4500 320
256 14000 512



Hybrid cryptography

What is the advantage/disadvantage of Public Cryptography?

What is the advantage/disadvantage of Secret-Key Cryptography?

Shorter Keys, Faster, Same Key to Encrypt-Decrypt

Longer Keys, Slower, Different Key to Encrypt-Decrypt



Hybrid cryptography

Send the encrypted message and the encrypted key to Bob

Pick a random 128-bit key K for a secret-key cryptosystem
Encrypt the large message with the key K (e.g., using AES)
Encrypt the key K using a public-key cryptosystem

The hybrid approach is used for almost every 
cryptographic application on the internet today.



QUIZ Time

eA and dA are the public parameters
K is the secret key parameter

eB and dB are the public parameters

How does Alice send a LARGE message to Bob

Alice uses Public Key encryption to send K and encrypts M with K



So, we can secret messages. 
But, what else can Eve do?

Eve can modify our encrypted messages in transit.

How do we make sure that Bob gets the same 
message Alice sent?

QUIZ Time



Integrity



How do we tell if a message changed in transit?

Simplest answer use a checksum!

For example, add up all the bytes of a message.



Does a checksum work?

Eve can easily change the message in such a way that 
checksum stays the same

What can Eve do?

cryptographic checksumWe need a

Integrity Components



cryptographic checksum
It should be hard for Eve to find a second message with same 
checksum as any given one



take an object ― say, a potato ― and then “hash” it up until it looks just like 
anything else and lacks any of its original structure







▪ A  H that turns any message into a “short”, “unique”, and “irreversible” string of bits

▪ Output of a hash function is called a “hash”, a “digest” or a “fingerprint” of the input

function

Cryptographic hash function



▪ A  H that turns any message into a “short”, “unique”, and “irreversible” string of bitsfunction

Cryptographic hash function



Cryptographic hash function

function
predictable mapping of inputs↦outputs

- Mapping is deterministic: H(x)==H(x), always  



▪ A  H that turns any message into a “short”, “unique”, and “irreversible” string of bitsfunction

Cryptographic hash function



any message
input can be any  bit string of any length

- whether 1 byte or 100 petabyte or more

(Formally, the domain of H is {0，1}*, the set of all finite bit string)

Cryptographic hash function



▪ A  H that turns any message into a “short”, “unique”, and “irreversible” string of bitsfunction

Cryptographic hash function



short
output is a string of some fixed length

- most commonly that’s 256 bits (32 bytes),
  though 128, 192, 512… aren’t unheard of

(Formally, the range of H is {0，1}λ, the set of all λ-bit strings)

Cryptographic hash function



A  H that turns any message into a “short”, “unique”, and “irreversible” string of bitsfunction

Cryptographic hash function



unique
two inputs “almost always” map to two outputs*

* Note: This this is clearly impossible!?

- there are 2256 possible outputs
   (2256  is a really, really, REALLY  big number…)

Cryptographic hash function



▪ A  H that turns any message into a “short”, “unique”, and “irreversible” string of bitsfunction

Cryptographic hash function



irreversible
no good way to recover the inputs from outputs

- best available method is to guess and check

Cryptographic hash function



IS that all?

m, h(m) m’, h(m’)

Suppose we don’t care about confidentiality! 
What can Eve do to change the message?



IS that all?

m’, h(m’)E(m), h(E(m))

Now, What can Eve do to change the message?



Cryptographic Hash Functions

Hash Functions provide integrity only when there 
is a secure way of sending the message digest



Authentication



Message Authentication Codes (MAC)

We can use key has functions, that are usually called 
Message Authentication Code

Only those who know the secret key can generate, 
on even check, the computed hash value (sometimes 
called a tag).



M H(M) What is wrong with this?

How can we fix it? M H(M|        )

Message Authentication Codes (MAC)



MAC

MAC

Message Authentication Codes (MAC)

m

tag
??



Combining ciphers and macs

In practice we often need both confidentiality and message integrity!

MAC-and-then-Encrypt, 
Encrypt-and-MAC, 
Encrypt-then-MAC

What are our options?

What’s the issue with this?



Combining ciphers and macs

MAC-then-Encrypt

Encrypt-then-MAC

MAC-and-Encrypt

E(m || MAC(m))

E(m) || MAC(m))

E(m) || MAC(E(m) ))

What is recommended strategy?
Encrypt-then-MAC see this blog

https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html


repudIatIon

Bob can’t prove to Eve that Alice sent m, though.

Bob can be assured that Alice is the one who sent m and 
that the message has not been modified since she sent it!
We have confidentiality, integrity, and authentication

E(m) || MAC(E(m))) E(m) || MAC(E(m)))

This is like a “signature” on the message... but not quite the same!



repudIatIon

Bob can’t prove to Eve that Alice sent m, though.

E(m) || MAC(E(m))) E(m) || MAC(E(m)))

WHY?
Either Alice or Bob could create any of the message and MAC combinations. 
Also, Eve doesn’t know the secret keys.



repudiation

Alice can just claim that Bob made up the 
message m, and calculated the MAC himself

??? E(m) || MAC(E(m)))

This is called repudiation!!!

Did She???



repudiation

Some interactions should be repudiable

Private conversations

??? E(m) || MAC(E(m)))

Did She???



repudiation

Some interactions should be non-repudiable

Electronic Commerce

??? E(m) || MAC(E(m)))

Did She???



Digital Certificates



Alice has $1 and Bob needs $1



Alice has $1 and Bob needs $1

So Alice graciously loans the $1 to Bob

IOU $1

Dear Alice:



Alice has $1 and Bob needs $1

So Alice graciously loans the $1 to Bob
In exchange, Bob writes an IOU for Alice

…and signs it

IOU $1

Dear Alice:



Signatures are the
digital analog of the
preceding scenario

A digital signature scheme has three algorithms:
1. Gen creates a pair of keys;

2. Sign produces a signature under a given key;

3. Ver checks a signature using associated the key.



An digital signature scheme has three algorithms:

1. Gen creates a pair of keys;

2. Sign produces a signature under a given key;
3. Ver checks a signature using associated the key.

• sk (“signing key”) creates signatures over messages

• vk (“verification key”) checks if signatures are valid

Kind of like the inverse of public-key encryption

Encryption: Anybody can close padlock; only keyholder can open it

vs.
Signatures: Anybody can open padlock; only keyholder can close it 



Digital signatures

Sign

Verify

m

signature T/F



Faster signatures

Just like encryption in public-key crypto signing large 
messages is slow
We can also “hybridize” signatures to make them faster:

Alice sends the (unsigned) message, and also a signature on a hash of the message
 The hash is much smaller than the message, and so it is faster to sign and verify



Faster signatures

m || sig

sig = Sign(h(m))
Verify(sig, h(m))

Remember that authenticity and confidentiality are separate; if 
you want both, you need to do both



Combining public-key encryption and 
digital signatures

Alice has two different key pairs
Alice uses to encryption key to encrypt the message
Alice uses the signing key to sign the cipher text.

Bob also has two different key pairs

Alice uses to verification key to verify the cipher text

Alice uses the decryption key to decrypt the message.



The key management problem

How can Alice and Bob be sure that are talking 
to each other?

By having each other’s verification key

But, How do we verify each others’ verification 
key?



Certification authority (ca)

A CA is a trusted third party who keeps a directory 
of people’s (and organizations’) verification keys

Trent



Certification authority (ca)

Everyone is assumed to have a copy of the CA’s verification key (vCAk ), so they can 
verify the signature on the certificate

There can be multiple levels of certificate authorities; level n 
CA issues certificates for level n+1 CAs – Public-key 
infrastructure (PKI)

Need to have only verification key of root CA to 
verify the certificate chain

Root CA

Sign Verification Key



If I’ve a root certificate authority I’ve never used before, I won’t treat it any 
differently from the same certificate I’ve always used. 

See this amazing talk by Joel Reardon

All Root Certificate Authorities are Equal.

Certification authority (ca)

https://www.youtube.com/watch?v=3B6hgdMDrQc&t=265s


In principle there is nothing wrong if an 
obscure Dutch CA starts singing many 
Iranian Websites



Certification Transparency

Every New Certificate Gets added to a list

Doesn’t prevent generation of bad certs. 
Provides Accountability

Does it prevent Bad Certificates?



RECAP of CRYPTO TOOLs

Secret Key Cryptography

Public Key Cryptography

Integrity

Authentication

One-Time Pads
Stream Ciphers
Block Ciphers

Checksums
Hash Functions

Textbook RSA
Secret vs. Public Key Cryptography
Hybrid Cryptography

MACs
Digital signatures
Key Management



RECAP QUIZ

Doesn’t prevent generation of bad certs. 

Does it prevent Bad Certificates?



Overview of Security 
Controls



NETWORKING 101

Alice is sitting in her office at U Waterloo. 
She connects her phone to the WiFi.
Goes to Amazon.com
Buys a new laptop.

How do packets travel in the network?



NETWORKING 101

Link Layer: At the link layer, Alice's mobile device establishes a wireless 
connection with the Wi-Fi access point. The link layer protocols, such as 
Wi-Fi (e.g., 802.11), handle the transmission of data between her device and 
the access point.



NETWORKING 101

Network Layer: Once the Wi-Fi connection is established, Alice's mobile 
device obtains an IP address through DHCP (Dynamic Host Configuration 
Protocol). The network layer protocols, such as IP (Internet Protocol), come 
into play. Alice's mobile device sends an IP packet containing the source and 
destination IP addresses.



NETWORKING 101

Transport Layer: Alice's mobile device chooses a transport layer protocol, 
typically TCP (Transmission Control Protocol) for web browsing. A TCP 
connection is established between her device and Amazon's server. The 
transport layer segments the data into TCP segments and adds the source 
and destination port numbers.



NETWORKING 101

Application Layer: At the application layer, Alice's mobile device initiates a 
request to Amazon's server using an HTTP (Hypertext Transfer Protocol) 
request. The request includes the specific Amazon URL, such as 
"https://www.amazon.com," and any additional parameters or data 
required for the purchase.

https://www.amazon.com/


Journey of a packet

Link Layer

Network Layer

Transport Layer

Application Layer Where do we need to 
apply cryptography?

All the Layers



WEP

Link Layer
WEP was used for Wireless Networks



WEP

WEP was intended to enforce three security goals:
Data Confidentiality 
 Prevent an adversary from learning the contents of the wireless traffic

Data Integrity 
 Prevent an adversary from modifying the wireless traffic or 
 fabricating traffic

Access Control 
 Prevent an adversary from using your wireless infrastructure



WEP

WEP was intended to enforce three security goals:

Unfortunately, none of these is 
actually enforced!!!



WEP

RC4

⊕

=

M

v

k
C

M

K

v

C



WEP

In order to transmit a message M:
Compute a checksum c(M) (which does nor depend on k)

Pick an IV v and generate a keystream K=RC4(v,k)

Ciphertext C=K⊕⟨M || c M ⟩
Transmit v and C over the wireless link



WEP description

In order to transmit a message M:
Compute a checksum c(M) (which does nor depend on k)

Pick an IV v and generate a keystream K=RC4(v,k)

Ciphertext C=K⊕⟨M || c M ⟩

Transmit v and C over the wireless link

What kind of cipher is this?

It is a stream cipher (symmetric)

Use the received v and the shared k for K = RC4(v, k)
Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M′ ∥ c′⟩ = M′ ∥ c′
Check to see if c′ = c(M′)
If it is, accept M′ as the message transmitted

What does the receiver do with v and C?



Problem 1 (Key reuse)

What is the problem with this?

Key-stream gets re-used after 224 iterations

IV(v) is too short: only three bytes = 24 bits

Secret (k) is rarely changed.



Problem 2 (integrity breach)

Why is linearity a pessimal property for your integrity mechanism to 
have when used in conjunction with a stream cipher?

The checksum algorithm in WEP is CRC32, which has 
two important (and undesirable) properties:

It is independent of k and v
It is linear: c M⊕δ =c M ⊕c(δ)



Problem 2 (integrity breach)

The sender transmits C and v. If Eve wants to modify the plain text 

M into M′=M⊕δ

Calculate C′=C⊕⟨δ‖c δ ⟩

Send (C’, v) instead of (C, v)
This passes the integrity check of the recipient



WEP authentication (DISASTER)

WEP’s authentication protocol to prove that a client knows k:

The access point sends a challenge string R to the client

The client sends back the challenge,
WEP-encrypted with the shared secret k

The wireless access point checks if the challenge is 
correctly encrypted, and if so, accepts the client

The adversary has seen both R and (C, v)



Challenge: R

Response: C, v

C=RC4 k,v ⊕⟨R‖c(R)〉



Network layer security

Suppose every link in our network had strong link-layer security. 
Why would this not enough?

Source, destinations IPs may not share the same link. Network layer 
threats such as IP spoofing still exist. 

We need end-to-end security across networks, i.e., security network layer 
packets from one host to another so that routers or other hosts in the middle 
cannot modify or read the packet payload 



Network layer security

The IP Security suite (IPSec) extends the Internet Protocol (IP) to 
provide confidentiality and integrity of packets transmitted across 
the network. IPSec enables various architectures of Virtual 
Private Networks (VPNs) which is the foundation in network-layer 
security



Recall the  ip-diagram

IP Header
TCP/UDP 
Header TCP/UDP Payload

IP Data (IP datagram payload)

IP Header
TCP/UDP 
Header TCP/UDP Payload



IPSEC Overview

Internet Key Exchange (IKE) to agree on a shared symmetric key.

We use this key to encrypt and compute MACs over IP packets or 
parts of it.

Modes of operation

Transport mode
Tunnel mode

Header Types
Authentication Header
Encapsulated Security
Payload



Internet key-exchange



Internet key-exchange



Internet key-exchange



Internet key-exchange



(gx mod p , p, g) gy mod p

x y



MODES OF OPERATION

IPSec has two main modes of operation:

Transport Mode: uses the original IP header
Tunnel Mode: encapsulates the original header 



TRANSPORT MODE

uses the original IP header

Tunnel Mode: encapsulates the original header 



TUNNEL MODE

Tunnel Mode: encapsulates the original header 



TRANSPORT VS. TUNNEL MODE

Transport Mode

Tunnel Mode

Tunnel Mode



Authentication Header

Provides source authentication and data integrity via hash-based MAC

Protects against Replay Attacks by using monotonically increasing sequence 
numbers.

Does not provide confidentiality 



Authentication Header

Data

Authentication Data

Sequence Number 

IP Header



ENCAPSULATING SECURITY PAYLOAD

Provides confidentiality (via Symmetric Key Cryptography)

If you want confidentiality you have to use ESP

If you want to both integrity and confidentiality, use both 
ESP and AH or only ESP

If you want integrity only, you could you ESP or AH



AH vs ESP



IPSEC headers

Authentication Header (AH) Encapsulated Security Payload (ESP)

Offers integrity and data source 
authentication
Authenticates payload and parts of IP 
header that do not get modified during 
transfer, e.g., source IP address

Offers protection against replay attacks
Via extended sequence numbers

Offers confidentiality
IP data is encrypted during transmission

Offers authentication functionality similar to AH
But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic
Makes traffic analysis harder



IPSEC deployment challenges

Needs to be included in the kernel’s network stack.

There may be legitimate reasons to modify some IP header fields; IPSec breaks networking 
functionalities that require such changes.

with AH, you cannot replace a private address for a public one at a NAT box. 
with ESP, it depends:
 In transport usually does not work due to TCP and UDP checksums
 In tunnel mode it is fine

IPSec is complex, hard to audit, and prone to misconfigurations



TRANSPORT-LAYER SECURITY 

Network-layer security mechanisms arrange to send individual IP packets securely 
from one network to another

The main transport-layer security mechanism is TLS (formerly known as SSL)

Transport-layer security mechanisms transform arbitrary TCP connections to add 
security and privacy

The main transport-layer privacy mechanism Tor



Tls/ssl

In the mid-1990s, Netscape invented a protocol called Secure Sockets Layer (SSL) meant for 
protecting HTTP (web) connections

The protocol, however, was general, and could be used to protect any TCP-based 
Connection HTTP + SSL = HTTPS

Historical note: there was a competing protocol called S-HTTP. But Netscape and Microsoft 
both chose HTTPS, so that’s the protocol everyone else followed

SSL went through a few revisions, and was eventually standardized into the protocol known as TLS 
(Transport Layer Security, imaginatively enough)



Client connects to server, indicates it wants to speak TLS, with:
 Client key-share under ECDHE
 The list of ciphersuites it knows

Server sends its certificate to client, which contains:
 Server key-share under ECDHE
 Its host name, 
 Its verification key, 
          Some other administrative information, 
          A signature from a Certificate Authority (CA)

Both client and server derives the same session key K (which is hard for Eve to derive) based on the two key shares

Server also chooses which ciphersuite to use

All remaining traffic will be encrypted and authenticated under K

TLS at a high-level



TLS CONNECTION ESTABLISHMENT



Security properties Tls

Server Authentication

Message Integrity

Message Confidentiality

Client Authentication



Ca in tls

A certification authority acts a trusted third-party that:

Issues digital certificates

Certificates the ownership of a public key by the named subject of 
the certificate

Manages certificate revocation lists (CRLs)



Ca in tls

A certification authority acts a trusted 
third-party that:

Issues digital certificates
Certificates the ownership of a public 
key by the named subject of the 
certificate
Manages certificate revocation lists 
(CRLs)



What can go wrong

Basic Idea: Alice accepts the connection if she receives a certificate

The certificate is signed by a CA she trusts vkCA
The certificate is for the domain she’s requesting
When talking to the web server, Alice can verify the signatures with vkWS



What can go wrong
Basic Idea: Alice accepts the connection if she receives a certificate

The certificate is signed by a CA she trusts vkCA

The certificate is for the domain she’s requesting

When talking to the web server, Alice can verify the signatures with vkWS



Ca in tls
What can go wrong with TLS?

An adversary can compromise a CA to plant fake certificates
(e.g., DigiNotar’s fake *.google.com certificates used by an ISP in Iran)



Ca in tls

What can go wrong with TLS?

An adversary can install a custom CA on users’ devices, 
allowing them to sign certificates that clients will accept for 
any site (e.g. in 2019, Kazakhstan’s ISPs mandated the 
installation of a root certificate mandated by the government.



WIREGUARD

IPSec

SSL VPNs

Is complex, hard to audit, and prone to misconfigurations
Big book of IPSec RFCs: Internet security architecture (Loshin, ’99)
Does not prevent you from making bad choices
Supports all ciphers, including obsolete ones and NULL
 

Also, on the complex side
Tends to be slow
Also does not prevent you from making bad choices



RECAP of Cryptography use cases

Link Layer: WEP Problems

Network layer: IPSec

Transport TLS

Wireguard

Short IV → two-time pad → make it bigger!

Protocol summary (ECDHE, etc.)
Key management: CAs
Issues with TLS: MITM

IKE: Diffie-Hellman

Better VPN
Modes: Transport, Tunnel
Headers: AH, ESP

Checksum → integrity breach → use MACs
Protocol disaster → packet injection



RECAP of CRYPTO TOOLs

Secret Key Cryptography

Public Key Cryptography

Integrity

Authentication

One-Time Pads
Stream Ciphers
Block Ciphers

Checksums
Hash Functions

Textbook RSA
Secret vs. Public Key Cryptography
Hybrid Cryptography

MACs
Digital signatures
Key Management



RECAP QUIZ

What is Hybrid Cryptography

Under what conditions does Hashing provide integrity?

What is the point of MACs?

What is the point of Digital Signatures?



RECAP QUIZ

What is the point of CAs? 

What is Repudiation? When do we need it?

What are the problems with Root CA?

What is one thing which Digital Signatures Provide, that MAC 
do not?



Overview of Security 
Controls



SECURITY CONTROL USING 
CRYPTOGRAPHY

We use cryptography as security control in situations where trust cannot be assumed

We will focus on network security (link layer, network layer, transport layer, and application 
layer).

But first, we will see other use cases.



SECURITY CONTROL USING 
CRYPTOGRAPHY

• Apps can be installed only if digitally signed by the vendor (BlackBerry) or upgraded 
only if signed by the original developer (Android)

• OS allows execution of programs only if signed (iOS)

• OS allows loading of certified device drivers only (Windows)

• Secure boot: OS components booted only if correctly signed



Entities you can only communicate with over a network are inherently less trustworthy
(e.g., they may not be who they claim to be). 
This makes networking a primary scenario for cryptography.

This is a separation of concern, and in particular, “separating the security of the
medium from the security of the message”

NETWORK Security and PRIVACY



NETWORKING 101

Alice is sitting in her office at U Waterloo. 
She connects her phone to the WiFi.
Goes to Amazon.com
Buys a new laptop.

How do packets travel in the network?



NETWORKING 101

Link Layer: At the link layer, Alice's mobile device establishes a wireless 
connection with the Wi-Fi access point. The link layer protocols, such as 
Wi-Fi (e.g., 802.11), handle the transmission of data between her device and 
the access point.



NETWORKING 101

Network Layer: Once the Wi-Fi connection is established, Alice's mobile 
device obtains an IP address through DHCP (Dynamic Host Configuration 
Protocol). The network layer protocols, such as IP (Internet Protocol), come 
into play. Alice's mobile device sends an IP packet containing the source and 
destination IP addresses.



NETWORKING 101

Transport Layer: Alice's mobile device chooses a transport layer protocol, 
typically TCP (Transmission Control Protocol) for web browsing. A TCP 
connection is established between her device and Amazon's server. The 
transport layer segments the data into TCP segments and adds the source 
and destination port numbers.



NETWORKING 101

Application Layer: At the application layer, Alice's mobile device initiates a 
request to Amazon's server using an HTTP (Hypertext Transfer Protocol) 
request. The request includes the specific Amazon URL, such as 
"https://www.amazon.com," and any additional parameters or data 
required for the purchase.

https://www.amazon.com/


Journey of a packet

Link Layer

Network Layer

Transport Layer

Application Layer Where do we need to 
apply cryptography?

All the Layers



WEP

Link Layer
WEP was used for Wireless Networks



WEP

WEP was intended to enforce three security goals:
Data Confidentiality 
 Prevent an adversary from learning the contents of the wireless traffic

Data Integrity 
 Prevent an adversary from modifying the wireless traffic or 
 fabricating traffic

Access Control 
 Prevent an adversary from using your wireless infrastructure



WEP

WEP was intended to enforce three security goals:

Unfortunately, none of these is 
actually enforced!!!



WEP

RC4
⊕

=

M

v

k

C

M

K

v

C

C(M)



WEP

In order to transmit a message M:
Compute a checksum c(M) (which does nor depend on k)

Pick an IV v and generate a keystream K=RC4(v,k)

Ciphertext C=K⊕⟨M || c M ⟩
Transmit v and C over the wireless link



WEP description

In order to transmit a message M:
Compute a checksum c(M) (which does nor depend on k)

Pick an IV v and generate a keystream K=RC4(v,k)

Ciphertext C=K⊕⟨M || c M ⟩

Transmit v and C over the wireless link

What kind of cipher is this?

It is a stream cipher (symmetric)

Use the received v and the shared k for K = RC4(v, k)
Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M′ ∥ c′⟩ = M′ ∥ c′
Check to see if c′ = c(M′)
If it is, accept M′ as the message transmitted

What does the receiver do with v and C?



Problem 1 (Key reuse)

What is the problem with this?

Key-stream gets re-used after 224 iterations

IV(v) is too short: only three bytes = 24 bits
Secret (k) is rarely changed.!!



RC4
⊕

=

M

v

k

C

M

K

v

C

C(M)



Problem 2 (integrity breach)

Why is linearity a pessimal property for your integrity mechanism to 
have when used in conjunction with a stream cipher?

The checksum algorithm in WEP is CRC32, which has 
two important (and undesirable) properties:

It is independent of k and v
It is linear: c M⊕δ =c M ⊕c(δ)



Problem 2 (integrity breach)

The sender transmits C and v. If Eve wants to modify the plain text 

M into M′=M⊕δ

Calculate C′=C⊕⟨δ‖c δ ⟩

Send (C′ , v) instead of (C, v)
This passes the integrity check of the recipient



v

C

C
⊕

δ C(δ)

=

C”

C′

K
⊕

=

δ C(δ)

M C(M)

⊕



WEP authentication (DISASTER)

WEP’s authentication protocol to prove that a client knows k:

The access point sends a challenge string R to the client
The client sends back the challenge,
WEP-encrypted with the shared secret k

The wireless access point checks if the challenge is correctly 
encrypted, and if so, accepts the client

The adversary has seen both R and (C, v)



Challenge: R

Response: C, v

C=RC4 k,v ⊕⟨R‖c(R)〉

The adversary has seen both R and (C, v)

What can Eve do with this information?

Compute a valid v and RC4(k,v)



WEP authentication (DISASTER)

The adversary has seen both R and (C, v)

Eve wants to authenticate herself to the AP. The AP sends Eve a 
new challenge R′. Can Eve successfully run the authentication 
protocol?

Yes! Note that Eve knows RC4 k,v =C⊕⟨R c R . Eve can 

just compute C′=RC4 k,v ⊕⟨R′‖ c(R′)〉 and C′ and v to the AP



Problem 3 PACKET INJECTION

We saw that seeing R, C, and v gives Eve a value of v and the corresponding 
keystream RC4(v, k)

Send (C’, v) instead of (C, v)

C’ is in fact the correct encryption of F, so the message is accepted

The same way Eve encrypted the challenge R’ in the previous slide, she can 
encrypt any other value F; C′=RC4 k,v ⊕⟨F‖ c(F)〉



MORE PROBLEMS with WEP

Somewhat surprisingly, the ability to modify and inject packets leads to ways in
which Mallory can trick the AP to decrypt packets!

Note that none of the attacks so far use the fact that the stream cipher was RC4.
It turns out that when RC4 is used with similar keys, the output keystream has a
subtle weakness, which lead the recovery of either a 104-bit or 40-bit WEP key in
under 60 seconds, most of the time.

Check this talk by Ian Goldberg

https://www.youtube.com/watch?v=LbgMgbar8gw&t=1707s


REPLACING WEP

Wi-fi Protected Access (WPA) was rolled out as a short-term patch to WEP while 
formal standards for a replacement protocol (IEEE 802.11i, later called WPA2) were 
being developed

Ability to run on older WEP hardware

Key is changed frequently (TKIP)
IV is 48 bits

Replaces CRC-32 with a real MAC



WEP RECAP

What have we learned from WEP?

Do not use checksums for integrity. Use keyed MACs instead

Use sufficiently long IVs, don’t share a key with many people, don’t reuse 
short-term secret keys and IVs



Network layer security

Suppose every link in our network had strong link-layer security. 
Why would this not enough?

Source, destinations IPs may not share the same link. Network layer 
threats such as IP spoofing still exist. 

We need end-to-end security across networks, i.e., security network layer 
packets from one host to another so that routers or other hosts in the middle 
cannot modify or read the packet payload 



Network layer security

The IP Security suite (IPSec) extends the Internet Protocol (IP) to 
provide confidentiality and integrity of packets transmitted across 
the network. IPSec enables various architectures of Virtual 
Private Networks (VPNs) which is the foundation in network-layer 
security



IPSEC Overview

Internet Key Exchange (IKE) to agree on a shared symmetric key.

We use this key to encrypt and compute MACs over IP packets or parts of it.

Modes of operation

Transport mode
Tunnel mode

Header Types
Authentication Header
Encapsulated Security Payload



Internet key-exchange



Internet key-exchange



Internet key-exchange



Internet key-exchange



(gx mod p , p, g) gy mod p

x y



(gx mod p , p, g)gy mod p

(gy)x= (gxy) (gx)y = (gxy )

x y



MODES OF OPERATION

IPSec has two main modes of operation:

Transport Mode
Tunnel Mode



TRANSPORT MODE

Transport Mode :
The original IP header remains intact. 

In transport mode, only the payload (the actual data being 
transmitted) of the IP packets is encrypted and authenticated. 



TUNNEL MODE

Tunnel Mode: encapsulates the original header 
In tunnel mode, both the original IP header and the payload are 
encapsulated within a new IP packet. This new packet has a new IP 
header, which is used to route the traffic between the VPN 
gateways. 

The original IP packet is encrypted and authenticated, providing end-to-end 
security.



TRANSPORT VS. TUNNEL MODE

Transport Mode

Tunnel Mode

Tunnel Mode



TRANSPORT MODE vs. tunnel Mode

Transport Mode is typically used for end-to-end communication between two 
hosts or devices. Transport mode provides protection for the data while it is in 
transit but does not hide the original IP addresses of the communicating 
devices.

Tunnel mode is commonly used in site-to-site VPNs, where the entire IP packet 
is protected and the original source and destination IP addresses are hidden. It 
allows for secure communication between networks over an untrusted network 
(such as the Internet).



Authentication Header

Provides source authentication and data integrity via hash-based MAC

Protects against Replay Attacks by using monotonically increasing sequence 
numbers.

Does not provide confidentiality 



Authentication Header



ENCAPSULATING SECURITY PAYLOAD

Provides confidentiality (via Symmetric Key Cryptography)

If you want confidentiality you have to use ESP

If you want to both integrity and confidentiality, use both 
ESP and AH or only ESP

If you want integrity only, you could you ESP or AH



ENCAPSULATING SECURITY PAYLOAD



AH vs ESP



IPSEC headers

Authentication Header (AH) Encapsulated Security Payload (ESP)

Offers integrity and data source 
authentication
Authenticates payload and parts of IP 
header that do not get modified during 
transfer, e.g., source IP address

Offers protection against replay attacks
Via extended sequence numbers

Offers confidentiality
IP data is encrypted during transmission

Offers authentication functionality similar to AH
But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic
Makes traffic analysis harder



IPSEC deployment challenges

Needs to be included in the kernel’s network stack.

There may be legitimate reasons to modify some IP header fields; IPSec breaks networking 
functionalities that require such changes.

with AH, you cannot replace a private address for a public one at a NAT box. 
with ESP, it depends:
 In transport usually does not work due to TCP and UDP checksums
 In tunnel mode it is fine

IPSec is complex, hard to audit, and prone to misconfigurations



IPSEC

What does IPSec protect us against and what does it not protect.

IPSec lets you make a secure tunnel between Alice and a 
VPN server. This is protecting against eavesdroppers on 
Alice's network but not against the VPN server itself or 
eavesdroppers on the VPN server's network or along the way 
to the actual destination.



TRANSPORT-LAYER SECURITY 

Network-layer security mechanisms arrange to send 
individual IP packets securely from one network to another

Transport-layer security mechanisms transform 
arbitrary TCP connections to add security and privacy



TRANSPORT-LAYER SECURITY 

The main transport-layer security mechanism is TLS 
(formerly known as SSL)

The main transport-layer privacy mechanism Tor



Tls/ssl

In the mid-1990s, Netscape invented a protocol called Secure Sockets 
Layer (SSL) meant for protecting HTTP (web) connections

The protocol, however, was general, and could be used to protect any 
TCP-based Connection HTTP + SSL = HTTPS



Tls/ssl

Historical note: there was a competing protocol called S-HTTP. But 
Netscape and Microsoft both chose HTTPS, so that’s the protocol 
everyone else followed

SSL went through a few revisions, and was eventually standardized 
into the protocol known as TLS (Transport Layer Security, 
imaginatively enough)



Client connects to server, indicates it wants to speak TLS, with:
 Client key-share under ECDHE
 The list of ciphersuites it knows

Server sends its certificate to client, which contains:
 Server key-share under ECDHE
 Its host name, 
 Its verification key, 
          Some other administrative information, 
          A signature from a Certificate Authority (CA)

TLS at a high-level



Both client and server derives the same session key K 
(which is hard for Eve to derive) based on the two key 
shares

Server also chooses which ciphersuite to use

All remaining traffic will be encrypted and authenticated under K

TLS at a high-level



TLS CONNECTION ESTABLISHMENT



Security properties Tls

Server Authentication

Message Integrity

Message Confidentiality

Client Authentication



Ca in tls

A certification authority acts a trusted third-party that:

Issues digital certificates

Certificates the ownership of a public key by the named subject of 
the certificate

Manages certificate revocation lists (CRLs)



Ca in tls

A certification authority acts a trusted 
third-party that:

Issues digital certificates
Certificates the ownership of a public 
key by the named subject of the 
certificate
Manages certificate revocation lists 
(CRLs)



What can go wrong

Basic Idea: Alice accepts the connection if she receives a certificate

The certificate is signed by a CA she trusts vkCA
The certificate is for the domain she’s requesting
When talking to the web server, Alice can verify the signatures with vkWS



What can go wrong
Basic Idea: Alice accepts the connection if she receives a certificate

The certificate is signed by a CA she trusts vkCA

The certificate is for the domain she’s requesting

When talking to the web server, Alice can verify the signatures with vkWS



Ca in tls
What can go wrong with TLS?

An adversary can compromise a CA to plant fake certificates
(e.g., DigiNotar’s fake *.google.com certificates used by an ISP in Iran)



Ca in tls

What else can go wrong with TLS?

An adversary can install a custom CA on users’ devices, 
allowing them to sign certificates that clients will accept for 
any site (e.g. in 2019, Kazakhstan’s ISPs mandated the 
installation of a root certificate mandated by the government.



Ca in tls

What else else can go wrong with TLS?

Companies may think it is an excellent idea e.g., Lenovo’s Superfish or Sennheiser 
HeadSetup root certificates (for advertisement and communication purposes, 
respectively)
There have been many issues with TLS/SSL implementations



SSL-BASES VPNS

We can use SSL/TLS to create secure site-to-site tunnels
 Similarly, to IPSec
A more flexible “user-space VPN”
 In contrast to IPSec, it does not require kernel-level access
 Virtual network interfaces are used instead
Several solutions available:
 e.g., OpenVPN, Cisco AnyConnect



WIREGUARD

IPSec

SSL VPNs

Is complex, hard to audit, and prone to misconfigurations
Big book of IPSec RFCs: Internet security architecture (Loshin, ’99)
Does not prevent you from making bad choices
Supports all ciphers, including obsolete ones and NULL
 

Also, on the complex side
Tends to be slow
Also does not prevent you from making bad choices



Faster than IPSec and TLS-based VPN solutions

WIREGUARD

New (and simpler) VPN design built from the ground-up

Offers a kernel and a user-space implementation



Hard to get it wrong
 Single cipher suite

WIREGUARD

Easy to configure
 But no PKI, keys are distributed manually

Easy to audit
 4,000 LoCs vs IPSec’s 400,000 LoCs



RECAP of Cryptography use cases

Link Layer: WEP Problems

Network layer: IPSec

Transport TLS

Wireguard

Short IV → two-time pad → make it bigger! Protocol summary (ECDHE, etc.)
Key management: CAs
Issues with TLS: MITM

IKE: Diffie-Hellman
Better VPNModes: Transport, Tunnel

Headers: AH, ESP

Checksum → integrity breach → use MACs
Protocol disaster → packet injection


	Slide 1: Security and Privacy of Internet Applications  (Module 5)
	Slide 2: Basics of Cryptography
	Slide 3: Cryptology
	Slide 4: Cryptology
	Slide 5: Cryptology
	Slide 6: THE SCOPE
	Slide 7: The Main Cast
	Slide 8: Building Blocks
	Slide 9: Strong Cryptosystems
	Slide 10: Building Blocks
	Slide 11: Strong Cryptosystems
	Slide 12: Building Blocks
	Slide 13: Strong Cryptosystems
	Slide 14: Strong Cryptosystems
	Slide 15: Kirchhoff's Principle
	Slide 16: SHANNON’s Maxim
	Slide 17: SHANNON’s Maxim
	Slide 18: Strong Cryptosystems 
	Slide 19: Strong Cryptosystems 
	Slide 20: Strong Cryptosystems 
	Slide 21: Strong Cryptosystems
	Slide 22: Strong Cryptosystems 
	Slide 23: Strong Cryptosystems 
	Slide 24: Strong Cryptosystems 
	Slide 25: Strong Cryptosystems
	Slide 26: Strong Cryptosystems 
	Slide 27: ENCRYPTION
	Slide 28: ENCRYPTION
	Slide 29: ENCRYPTION
	Slide 30: ENCRYPTION
	Slide 31
	Slide 32
	Slide 33: Old Ciphers
	Slide 34: Cryptography in World War II
	Slide 35: THE ENIGMA MACHINE
	Slide 36: THE ENIGMA MACHINE
	Slide 37: THE ENIGMA MACHINE
	Slide 38: THE ENIGMA MACHINE
	Slide 39: THE ENIGMA MACHINE
	Slide 40: “Flaw” in THE ENIGMA
	Slide 41: “Flaw” in THE ENIGMA
	Slide 42: BREAKING THE ENIGMA CODE
	Slide 43: BREAKING THE ENIGMA CODE
	Slide 44: BREAKING THE ENIGMA CODE
	Slide 45: BREAKING THE ENIGMA CODE
	Slide 46: Modern Cryptography
	Slide 47: Secret Key Cryptography
	Slide 48: Gilbert Vernam (1890—1960)
	Slide 49
	Slide 50: Vernam’s one-time pad
	Slide 51: Vernam’s one-time pad
	Slide 52: Vernam’s one-time pad
	Slide 53: Vernam’s one-time pad
	Slide 54: One Time Pads
	Slide 55: problem with One Time Pads
	Slide 56: problem with One Time Pads
	Slide 57: Issues with two-time pads 
	Slide 58: Computational Security
	Slide 59: 40-bit Cryptography
	Slide 60: 56-bit Cryptography
	Slide 61: 128-bit Cryptography
	Slide 62: 128-bit crypto can’t be broken?
	Slide 63: Types of secret-key cryptosystems
	Slide 64: Types of secret-key cryptosystems
	Slide 65: Types of secret-key cryptosystems
	Slide 66: Types of secret-key cryptosystems
	Slide 67
	Slide 68: Types of secret-key cryptosystems
	Slide 69: Types of secret-key cryptosystems
	Slide 70: BLOCK ciphers
	Slide 71: Electronic code book (ECB) Mode
	Slide 72: ECB Mode 
	Slide 73: Improving ecb mode (v1)
	Slide 74: Improving ecb mode (v2)
	Slide 75: Cipher block chaining (CBC) MODE
	Slide 76: CBC Mode 
	Slide 77: KEY exchange
	Slide 78: That’s all for today, Folks!
	Slide 79: Recap
	Slide 80
	Slide 81: Public Key Cryptography
	Slide 82: Key-Exchange 
	Slide 83: key-exchange
	Slide 84: Internet key-exchange
	Slide 85: key-exchange
	Slide 86: key-exchange
	Slide 87: key-exchange
	Slide 88: Discrete log problem
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: Public Key Cryptography
	Slide 97: Public key cryptography
	Slide 98: Public key cryptography
	Slide 99: Public key cryptography
	Slide 100: Public key cryptography
	Slide 101: Public key cryptography
	Slide 102: Public key cryptography
	Slide 103: Public key cryptography
	Slide 104: Public key cryptography
	Slide 105: RSA Cryptography
	Slide 106: Textbook RSA
	Slide 107: Chosen Cipher text attack
	Slide 108: Chosen Cipher text attack
	Slide 109: Public key sizes
	Slide 110: Hybrid cryptography
	Slide 111: Hybrid cryptography
	Slide 112: QUIZ Time
	Slide 113: QUIZ Time
	Slide 114: Integrity
	Slide 115
	Slide 116: Integrity Components
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Cryptographic hash function
	Slide 124
	Slide 125
	Slide 126: Cryptographic hash function
	Slide 127: Cryptographic hash function
	Slide 128: Cryptographic hash function
	Slide 129: Cryptographic hash function
	Slide 130: Cryptographic hash function
	Slide 131: Cryptographic hash function
	Slide 132: IS that all?
	Slide 133: IS that all?
	Slide 134: Cryptographic Hash Functions
	Slide 135: Authentication
	Slide 136:  Message Authentication Codes (MAC)
	Slide 137:  Message Authentication Codes (MAC)
	Slide 138:  Message Authentication Codes (MAC)
	Slide 139: Combining ciphers and macs
	Slide 140: Combining ciphers and macs
	Slide 141: repudIatIon
	Slide 142: repudIatIon
	Slide 143: repudiation
	Slide 144: repudiation
	Slide 145: repudiation
	Slide 146: Digital Certificates
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152: Digital signatures
	Slide 153: Faster signatures
	Slide 154: Faster signatures
	Slide 155: Combining public-key encryption and digital signatures
	Slide 156: The key management problem
	Slide 157: Certification authority (ca)
	Slide 158: Certification authority (ca)
	Slide 159: Certification authority (ca)
	Slide 160
	Slide 161: Certification Transparency
	Slide 162: RECAP of CRYPTO TOOLs
	Slide 163: RECAP QUIZ
	Slide 164: Overview of Security Controls
	Slide 165: NETWORKING 101
	Slide 166: NETWORKING 101
	Slide 167: NETWORKING 101
	Slide 168: NETWORKING 101
	Slide 169: NETWORKING 101
	Slide 170: Journey of a packet
	Slide 171: WEP
	Slide 172: WEP
	Slide 173: WEP
	Slide 174: WEP
	Slide 175: WEP
	Slide 176: WEP description
	Slide 177: Problem 1 (Key reuse)
	Slide 178: Problem 2 (integrity breach)
	Slide 179: Problem 2 (integrity breach)
	Slide 180: WEP authentication (DISASTER)
	Slide 181
	Slide 182: Network layer security
	Slide 183: Network layer security
	Slide 184: Recall the  ip-diagram
	Slide 185: IPSEC Overview
	Slide 186: Internet key-exchange
	Slide 187: Internet key-exchange
	Slide 188: Internet key-exchange
	Slide 189: Internet key-exchange
	Slide 190
	Slide 191: MODES OF OPERATION
	Slide 192: TRANSPORT MODE
	Slide 193: TUNNEL MODE
	Slide 194: TRANSPORT VS. TUNNEL MODE
	Slide 195: Authentication Header
	Slide 196: Authentication Header
	Slide 197: ENCAPSULATING SECURITY PAYLOAD
	Slide 198: AH vs ESP
	Slide 199: IPSEC headers
	Slide 200: IPSEC deployment challenges
	Slide 201: TRANSPORT-LAYER SECURITY 
	Slide 202: Tls/ssl
	Slide 203: TLS at a high-level
	Slide 204: TLS CONNECTION ESTABLISHMENT
	Slide 205: Security properties Tls
	Slide 206: Ca in tls
	Slide 207: Ca in tls
	Slide 208: What can go wrong
	Slide 209: What can go wrong
	Slide 210: Ca in tls
	Slide 211: Ca in tls
	Slide 212: WIREGUARD
	Slide 213: RECAP of Cryptography use cases
	Slide 214: RECAP of CRYPTO TOOLs
	Slide 215: RECAP QUIZ
	Slide 216: RECAP QUIZ
	Slide 217: Overview of Security Controls
	Slide 218: SECURITY CONTROL USING CRYPTOGRAPHY
	Slide 219: SECURITY CONTROL USING CRYPTOGRAPHY
	Slide 220: NETWORK Security and PRIVACY
	Slide 221: NETWORKING 101
	Slide 222: NETWORKING 101
	Slide 223: NETWORKING 101
	Slide 224: NETWORKING 101
	Slide 225: NETWORKING 101
	Slide 226: Journey of a packet
	Slide 227: WEP
	Slide 228: WEP
	Slide 229: WEP
	Slide 230: WEP
	Slide 231: WEP
	Slide 232: WEP description
	Slide 233: Problem 1 (Key reuse)
	Slide 234
	Slide 235: Problem 2 (integrity breach)
	Slide 236: Problem 2 (integrity breach)
	Slide 237
	Slide 238: WEP authentication (DISASTER)
	Slide 239
	Slide 240: WEP authentication (DISASTER)
	Slide 241: Problem 3 PACKET INJECTION
	Slide 242: MORE PROBLEMS with WEP
	Slide 243: REPLACING WEP
	Slide 244: WEP RECAP
	Slide 245: Network layer security
	Slide 246: Network layer security
	Slide 247: IPSEC Overview
	Slide 248: Internet key-exchange
	Slide 249: Internet key-exchange
	Slide 250: Internet key-exchange
	Slide 251: Internet key-exchange
	Slide 252
	Slide 253
	Slide 254: MODES OF OPERATION
	Slide 255: TRANSPORT MODE
	Slide 256: TUNNEL MODE
	Slide 257: TRANSPORT VS. TUNNEL MODE
	Slide 258: TRANSPORT MODE vs. tunnel Mode
	Slide 259: Authentication Header
	Slide 260: Authentication Header
	Slide 261: ENCAPSULATING SECURITY PAYLOAD
	Slide 262: ENCAPSULATING SECURITY PAYLOAD
	Slide 263: AH vs ESP
	Slide 264: IPSEC headers
	Slide 265: IPSEC deployment challenges
	Slide 266: IPSEC
	Slide 267: TRANSPORT-LAYER SECURITY 
	Slide 268: TRANSPORT-LAYER SECURITY 
	Slide 269: Tls/ssl
	Slide 270: Tls/ssl
	Slide 271: TLS at a high-level
	Slide 272: TLS at a high-level
	Slide 273: TLS CONNECTION ESTABLISHMENT
	Slide 274: Security properties Tls
	Slide 275: Ca in tls
	Slide 276: Ca in tls
	Slide 277: What can go wrong
	Slide 278: What can go wrong
	Slide 279: Ca in tls
	Slide 280: Ca in tls
	Slide 281: Ca in tls
	Slide 282: SSL-BASES VPNS
	Slide 283: WIREGUARD
	Slide 284: WIREGUARD
	Slide 285: WIREGUARD
	Slide 286: RECAP of Cryptography use cases

