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Relational Databases

A (relational) database is a structured collection of data (records).

Database management system (DBMS) provides support for queries and
management of the records.

Many popular DBMSes are based on the relational model.

Stores records into one or multiple tables (relations)

Each table has rows (tuples) and named columns (attributes).
Tables can be related to one another.

Structure (schema) set by database administrator.
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Relations: example

Tables have a primary key: an attribute or set of attributes that is unique for each row.

Here is a table that an airline booking agency might use to store details of their
customers:

Last First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCHLY Zeke 501 Union St. Chicago IL 60603 ORD
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH

Q: What is the issue with storing data in a flattened table like this?

A: Lots of repeated parameters. This affects the storage cost, query speed, etc.
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Relations: normalization

Normalization eliminates
redundant storage of
data, which

optimizes the storage
costs,

improves query
speed, and

reduces future
maintenance costs.

Last Address City State Zip

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben

Table: NameInfo

Zip Airport

43210 CMH
60603 ORD

Table: AirportInfo
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Database queries

The most popular language for query and manipulation of a relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Last ="ADAMS")

A join query across multiple tables
SELECT Last, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address =

"1 Town St." WHERE Last = "ADAMS"

Last Address City State Zip

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Zip Airport

43210 CMH
60603 ORD

Table: AirportInfo
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Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client (or server) is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy, failover

Auditability

a.k.a. provenance, proving how we ended up with a specific state
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Access control - Recall OS module

Recall some types of access control

Discretionary Access Control (DAC)

owners can delegate (grant/revoke) privileges to others
If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

ties in users’ privileges to their position or roles in the organization
Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

users and objects are assigned labels based on their ‘security level‘
You don’t own the data even if you create it. The data has labels too and may deny
access from its creator.
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Access control for databases

All three types of access control (DAC, RBAC, MAC) apply to databases (with various
forms of implementations).

Most commercial DBs have native support for DAC and RBAC

Multi-level security database is an implementation of MAC

Things to consider when designing an access control scheme:

Granularity: Access control on relations (tables), records, attributes

Supporting different operations: SELECT, INSERT, UPDATE, DELETE
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DAC for databases

DAC is built-in in the SQL language.

Use the GRANT keyword to assign a privilege to a user

Use the REVOKE keyword to withdraw a privilege.

Different types of privileges have built-in support:

Account-level privileges:

DBMS functionalities (e.g. shutdown server),
creating or modifying tables,
routines (database functions),
users and roles.

Relation-level privileges:

SELECT,
UPDATE,
REFERENCES privileges on a relation
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DAC example: account-level privilege

Accounts A1, A2

, A3

Relations: nil

Account-level privilege

> Admin: GRANT CREATE USER TO A1;

Sysadmin grants user A1 privilege to create users (and roles).

Account-level privilege

> A1: CREATE USER A3;

User A1 now uses her privilege to create another user.
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DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT queries on the
Employee table.

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3 WITH GRANT OPTION;

The table owner (A2) grants user A3 the privilege to run SELECT queries on the
Employee table and to further delegate that privilege to other users.
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DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A3: GRANT SELECT ON Employee TO A1;

A3 now can exercise her delegation rights

Relation-level privilege

> A2: REVOKE SELECT ON Employee FROM A1;

The table owner (A2) however, reserves the rights to revoke any privilege she considers
as improper.
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Fine-grained DAC

Something is missing in the DAC scheme we’ve seen so far:

The solution is SQL views:

For an SQL query, we can generate a view that represents the result of that query.

Views can be used to only reveal certain columns (attributes after SELECT) and
rows (defined by the WHERE clause) for access control.
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Fine-grained DAC using SQL views

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Create a view

> A2: CREATE VIEW CSEmployeePublicInfo

SELECT Name, DOB, Address FROM Employee

WHERE Dpt = "CS";

The table owner (A2) creates a view that only exposes the (Name, DOB, Address)
information for Employees in the CS department.

Relation-level privilege via views

> A2: GRANT SELECT ON CSEmployeePublicInfo TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT queries on the restrict
view instead of the whole Employee table.
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Fine-grained DAC: what about write operations?

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Column-specific update privilege

> A2: GRANT UPDATE ON Employee (Address) TO A3;

The table owner (A2) grants user A3 the privilege to UPDATE the Employee table but
only on the Address attribute.

We can also add additional restrictions with triggers (we will see these later)
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From DAC to RBAC

Q: If we have DAC in the SQL language, why do we need RBAC?

Need to manually change privileges for multiple users who want to perform the
same task, or when a user changes positions in an organization (i.e., roles).
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RBAC for databases

Creating and using roles

> Admin: CREATE ROLE "DptAdmin", "CompanyHR";

> Admin: GRANT "DptAdmin" TO A1;

> Admin: GRANT "CompanyHR" TO A3;

> A2: GRANT SELECT ON CSEmployeePublicInfo TO "DptAdmin";

> A2: GRANT UPDATE ON Employee(Address) TO "CompanyHR";
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What about MAC?

We show a case study that aims to implement MAC for a database: multi-level
security (MLS).

The theory behind MLS is the Bell-LaPadula confidentiality model:

There are security classifications or security levels applied to
Subjects: i.e., database users — security clearances
Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not cleared for that
level.

Principles (simplified view):
The simple security property: S can read O iff L(S) ≥ L(O) (no read up)
The star property: S can write O iff L(S) ≤ L(O) (no write down)
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Recall: Bell-LaPadula

Principles:

The simple security property: S can read O iff L(S) ≥ L(O) (no read up)

The star property: S can write O iff L(S) ≤ L(O) (no write down)

Q: Who can read what? Who can write what?
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Recall: Bell-LaPadula
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MLS table example

Users with different clearances see different versions of reality

Name Salary Performance TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Assume Name is the primary key

Each attribute has a classification label and a value at that label.

TC label (Tuple Classification) = Highest clearance for any of its attributes.

Primary key label ≤ Lowest clearance for any of its attributes.

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what that record is
about.
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MLS read-down by filtering

What is the output of SELECT * FROM Employee for different users?

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Filtering the table for users having classified clearance:

Name Salary Perf TC

Smith U 40000 C - C C
Brown C - C Good C C

Filtering the table for users having unclassified clearance:

Name Salary Perf TC

Smith U - U - U U
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More examples: MLS read-down

Levels are: U < C < S

Name Salary Perf TC

Alice U 40000 U Fair C C
Bob C 80000 C Good C C
Carol C 80000 S Good C S
Dave S 80000 S Fair S S

Q: How do we filter the table for users with clearance levels S, C, and U?

A: S gets the full table.
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MLS invisible polyinstantiation

A user with low clearance attempts to insert data in a field that already contains higher
classification data.
Rejecting an update could leak information downwards.

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with classified clearance issues a write-up:
UPDATE Employee SET Perf = "Great" WHERE Name = "Smith";

Name Salary Perf TC

Smith U 40000 C Fair S S
Smith U 40000 C Great C C
Brown C 80000 S Good C S

We do not merge automatically! Why?
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MLS visible polyinstantiation

A user with high clearance attempts to insert data in a field that already contains lower
classification data.
Overwriting the low data would result in leaking information downwards.

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with secret clearance issues a write-down:
UPDATE Employee SET Perf = "Bad" WHERE Name = "Brown";

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S
Brown C 80000 S Bad S S

An explicit declassification is needed to merge the instantiations. Or maybe you’d like
to keep some information private...
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Recap: DB Access Control

SQL Basics

> SELECT <col> FROM <object> WHERE <condition>;

> UPDATE <object> SET <col=val> WHERE <condition>;

DAC:

> GRANT <privilege> ON <object> TO <user>;

> GRANT <privilege> ON <object> TO <user> WITH GRANT OPTION;

> GRANT UPDATE ON <object> (<col>) TO <user>

> REVOKE <privilege> ON <object> FROM <user>;

> CREATE VIEW <view> SELECT (...); SELECT <col> FROM <view>;

RBAC:

> CREATE ROLE <role>; GRANT <role> TO <user>;
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Recap: DB Access Control

MAC through MLS:

• Attributes have classification labels, you can only see those that have classification
equal or lower to your clearance (you won’t see a row if the primary key has higher
classification).
• TC label is the highest classification of the row; the primary key label has the lowest
classification of the row.

• Invisible polyinstantiation: a user with low clearance inserts data in a field that
already has high classification data.
• Visible polyinstantiation: a user with high clearance inserts data in a field that
already has low classification data.
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Module outline

1 Introduction to database security

2 Access control

3 Integrity

4 Others
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Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client (or server) is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy, failover

Auditability

a.k.a. provenance, proving how we ended up with a specific state
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Isn’t integrity covered in crypto-protocols?

We are talking about a different type of integrity here.

In cryptography: integrity means that data cannot be changed without being
detected

In databases: integrity means that the data records are in a sensible/correct state

We will cover the following types of integrity properties:

Element integrity
Referential integrity
All-or-nothing/Atomicity

The goal of ensuring integrity is to prevent users from making changes that will
result in an invalid database state. These changes can be either intentional or
unintentional.
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Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);

INSERT INTO Employee VALUES ("SMITH", 400);

Q: What is the problem here? Developer mistake?

A: The type system is not expressive enough. There is no way to restrict that Age
must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

At all times, there is at most one employee can have the Position attribute set to
”CEO”.

A salary increase cannot exceed 100% of the current salary.
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Check element integrity with triggers

A typical way to enforce element integrity is to use triggers, i.e., procedures that are
automatically executed after each write operation, including INSERT, UPDATE, DELETE,
. . . queries

An example on SQL trigger

CREATE TRIGGER AgeCheck ON Employee

AFTER INSERT, UPDATE

FOR EACH ROW

BEGIN

IF NEW.Age >= 150

BEGIN

RAISERROR ("Invalid age")

END

END;
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Foreign key

Last

(PK)

Address City State Zip

(FK)

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last

(FK)

First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben

Table: NameInfo

Zip

(PK)

Airport

43210 CMH
60603 ORD

Table: AirportInfo

37 / 195



Introduction Access control Integrity Others

Foreign key

Last (PK) Address City State Zip (FK)

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last (FK) First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben

Table: NameInfo

Zip (PK) Airport

43210 CMH
60603 ORD

Table: AirportInfo

37 / 195



Introduction Access control Integrity Others

Foreign key

The foreign key in a table points at a primary key in another table.

Foreign key in table creation

CREATE TABLE FamilyInfo (

Last VARCHAR(255) NOT NULL,

Address VARCHAR(1024),

City VARCHAR(128),

State VARCHAR(128),

Zip VARCHAR(128),

PRIMARY KEY (Last),

FOREIGN KEY (Zip) REFERENCES AirportInfo(Zip),

);
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Referential integrity

Referential integrity ensures that each value of a foreign key refers to a valid primary
key value, i.e. there are no dangling foreign keys.

One use case: to prevent accidental or intentional deletion of records that are still
being used.

Last (PK) Address City State Zip (FK)

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Zip (PK) Airport

43210 CMH
60603 ORD

Table: AirportInfo

For example: here we cannot delete a tuple in AirportInfo if its primary key is being
used (as a foreign key) in FamilyInfo
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Inconsistent state

Recall that integrity is about ensuring the data records are in a sensible/correct state
at all times.

But what if a transaction requires two or more write operations?
For example: transfer money from Alice to Bob requires two UPDATE:

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

Q: What happens if the database fails after the first UPDATE?

A: The money would be lost!
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Transaction as an all-or-nothing mechanism

Transaction (abort)

BEGIN TRANSACTION;

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

COMMIT TRANSACTION;
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Transaction as an all-or-nothing mechanism

Transaction (commit or rollback)

BEGIN TRANSACTION;

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

IF @balance < 0

BEGIN

ROLLBACK TRANSACTION;

END

ELSE

BEGIN

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

COMMIT TRANSACTION;

END
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Data race

Notice that in the prior example, we used an unusual syntax to update the balance:

Atomic update (implicit)

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

If used on its own (i.e., not in a transaction context), this is implicitly translated into a
transaction:

Atomic update (explicit)

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

Why must we enclose it within a transaction? (see next slide)
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Data race

If two clients send the request concurrently, what will be the result?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

One possible interleaving:

Transaction interleavings
SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How much is deducted from Alice’s balance?
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Transaction as a serialization mechanism

Transaction interleavings
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;
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Recap: Integrity

Integrity in DBs refers to ensuring the records are in a sensible/correct state

Triggers (for element integrity): some code that runs after some instructions
(e.g., INSERT, UPDATE) to check the (element) integrity.

Referential integrity: we can define foreign keys, which point at a primary key in
another table; referential integrity ensures there are no dangling foreign keys.

Atomicity: if a transaction requires more than one operation, we might want to
enclose it with BEGIN TRANSACTION (then we can rollback if something goes
wrong, or commit the transaction if everything went fine).

Atomicity also prevents data race issues.
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Module outline

1 Introduction to database security

2 Access control

3 Integrity

4 Others
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Security requirements for a database

1 Access control: who can read/write

2 Authentication: how do we know if a DB client/server is not masquerading as
someone else

3 Confidentiality: how to protect the data (at rest and in transit)

4 Integrity: how to guarantee that the data is in an intact and sensible state

5 Availability: redundancy, Failover

6 Auditability: keeping logs, proving how we ended up with a specific state
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Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server
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Confidentiality

Q: What does confidentiality in databases mean?

A: Protect the content of the database

The DBMS is simply an application that runs on some OS, alongside with other
applications.

Perhaps that machine itself is stolen and an attacker then removes the hard-drive,
and attempts to read off the database contents from the hard-drive.

Perhaps that other applications are compromised and attackers simply scan over
your file system and extract all files related to the database content.

Perhaps that storage provider itself is malicious, especially in the cloud computing
setting, and are curious about what you store in your database.
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Confidentiality

Solution? If trust is an issue, check if cryptography can be helpful.

File-level encryption

Column-level encryption

Q: Obviously the key cannot be stored alongside the data, then in this case, how do
you supply the key to the DBMS?

A: Many possible solutions, e.g., establish a secure channel with the DBMS via TLS
and send the key, etc.
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Availability

Availability is about recognizing the fact that:

Transactions can fail due to physical problems.

System crashes. Disk failures.
Physical problems/catastrophes: power failures, floods, fire, thefts.

Contingency plans are needed to recover from these events
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High availability in enterprise settings

Redundancy: reduce risk that service is affected from some component failure
transparently transfer operations to another functioning component.

Uninterrupted power supplies.
Multiple hard-drives in RAID configurations (with error-detection codes or
error-correction codes).

Database clusters: Redundancy by more machines. Load-balancing among
clustered machines.

Failover: deal with catastrophes etc., when machines are down.

Clustered machines are in the same physical location, so all machines may be down.
Primary system handles traffic regularly WHILE secondary system takes over in case
of failures.
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Auditability

Expecting the DBMS will never fail in access control or integrity is a dangerous
thought!

In the event of a data breach, we want to be able to:

retroactively identify who has run these queries without authorization.

hold users accountable and deter such accesses.

comply with relevant legislation, e.g. HIPAA for health data.
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Auditability

Set an audit policy (or policies) to observe queries received by the DBMS.

DBMS generates an audit trail or log of events that comply with the audit policy.
This log can be processed later into DB tables.

Archive the audit log periodically to ensure availability of the logs for future.
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Recap: Security requirements for a database

1 Access control: who can read/write

2 Authentication: how do we know if a DB client/server is not masquerading as
someone else

3 Confidentiality: how to protect the data (at rest and in transit)

4 Integrity: how to guarantee that the data is in an intact and sensible state

5 Availability: redundancy, Failover

6 Auditability: keeping logs, proving how we ended up with a specific state
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Privacy and utility Inference Syntactic Privacy

Module outline

5 Introduction: privacy and utility

6 Inference attacks
SQL attacks
Census attacks
Linking attacks

7 Syntactic Notions of Privacy
k-anonymity
ℓ-diversity
t-closeness
Limitations of syntactic privacy notions
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System Model

Possible scenario: some users provide their data to a data owner, the owners shares
some of this data with a data analyst. This has privacy and utility implications.

There are variations of this model, of course... (e.g., maybe the data owner/collector is
a service provider that does the analysis itself)
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System Model

Q: Let’s name at least three possible scenarios that fit this model, together with their
privacy leakage, and the utility gains

Some examples filled during the lecture:

Scenario Privacy risks Utility gain

Social media We publish lots of
sensitive info, pic-
tures, etc.

We use social
media apps for
free

Virtual assistants They hear what we
say

They help us;
also the record-
ings help im-
prove them

Census Personal info in cen-
sus

Helps in de-
termining how
to allocate
resources
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Privacy and utility

Privacy is important for the users, since it’s
their data and their fundamental right to
privacy.

Q: Why is privacy also important for providers?

A: Mostly for policy compliance: in some
contries/regions there are privacy laws that
companies have to follow

Utility can refer both to utility for the users
and for the data owner/service provider

Q: Can you name some examples?

A: Same as in the table above: users get
products for free, the system can improve, the
owner/provider can get money from providing
data, etc.
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Measuring privacy and utility

Choosing metrics for privacy and utility is not an easy task. There is not a cure-all
privacy metric that works for all scenarios. Same for utility.

In this course we will see some syntactic and some semantic notions of privacy.

Syntactic notions: refer to some properties that the revealed/published data must
follow. We will see

1 k-anonymity
2 ℓ-diversity
3 t-closeness

Semantic notions: refer to some property that the data release mechanism must
follow (independently of the actual data itself!). The most popular one, which is
becoming the gold standard for privacy, is differential privacy.
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A conflict of privacy and utility

Regardless of how we quantify privacy and utility, they always go against each other:

Q: What’s an easy approach to be in the
red and blue points here?

A: Red point: do not
provide/release/publish any data.

Blue point: release all data without
protecting it.

Finding data release mechanisms to be
somewhere in between and enjoy a good
privacy-utility trade-off is hard!
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Roadmap

First, we will see different examples of inference attacks that extract private
information from the released data.

1 SQL-based attacks

2 Census attacks

3 Linking attacks

Then, we will see syntactic notions of privacy (and attacks against them)

1 k-anonymity

2 ℓ-diversity

3 t-closeness

Finally, we will see a semantic notion of privacy: differential privacy

64 / 195



Privacy and utility Inference Syntactic Privacy

Module outline

5 Introduction: privacy and utility

6 Inference attacks
SQL attacks
Census attacks
Linking attacks

7 Syntactic Notions of Privacy
k-anonymity
ℓ-diversity
t-closeness
Limitations of syntactic privacy notions
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Inference Attacks

The adversary (e.g., the system provider, a data analyst, an eavesdropper, etc.) gains
access to some (sanitized) data. The adversary could have auxiliary/background
information. An inference attack infers privacy-sensitive information from this
information.
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Inference attacks we will see

As you can imagine, there are many ways of performing an inference attack.

We will see some examples of attacks:

1 Attacks that use SQL queries

2 Attacks on published census data

3 Attacks that link data from multiple sources
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Attacks that use SQL queries: setup

Consider a setting where we have a large relational database (a table) with some
sensitive attributes.

Utility — we want to allow certain SQL queries, as data analysts want to learn
interesting properties of the data.

e.g., get the average salary of everyone in this company

Privacy — We also want to protect the privacy of the users whose data is in the
database.

e.g., without revealing each individual’s salary

We saw that privacy and utility are conflicting goals.
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Attacks that use SQL queries: releasing aggregates

We could think of restricting “dangerous” queries, and allowing “harmless” others.

You’re forbidden to issue queries that fetch a particular attribute

e.g., SELECT Salary FROM Employee ...

But using aggregates (e.g., SUM, AVG, or COUNT) are allowed

e.g., SELECT AVG(Salary) FROM Employee ...

You will learn attacks that use aggregate SQL queries. You need to understand these
attacks and know how to perform them.

Aggregate queries that we will use

SELECT SUM(<Attribute>) FROM <Table> WHERE <Condition>

SELECT COUNT(*) FROM <Table> WHERE <Condition>
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Do aggregates protect against inference?

Data analysts could infer sensitive data, through output of allowed aggregate queries.

Inference does not have to be a full and accurate recovery of the sensitive data
(although sometimes it can be).

e.g., the employee’s salary is $12,345.67

Instead, even a partial revealing of the data is considered as a successful inference and
hence a privacy leak.

e.g., the salary is within the range of $10,000 and $20,000

Our goal is to minimize (unintentional) leaks of sensitive data to the data analysts
through the allowed queries.
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SQL inference attack: single query

One single query that directly outputs the sensitive data

Direct attack
SELECT SUM(Salary) FROM Employee

WHERE Name = "Adams"

AND (Gender = "M" OR Gender = "F" OR Gender = "NB");

Countermeasure

If the SELECT clause output includes less than k results, then drop the query.

k is usually application-specific.
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Inference attack: multiple queries

Name (PK) Age Zip Salary

Alice 32 N2L 0G7 55 000 CAD
Bob 34 N2L 3E4 65 000 CAD
Carol 26 N2L 0E1 35 000 CAD
. . .

Table: Employee (example only)

Countermeasure

If the SELECT clause output
includes less than k results, then
drop the query (e.g., k = N/10)

Q: Only issuing “SELECT SUM(Salary) FROM Employee WHERE (. . . )” queries, how can
we get Alice’s salary?

A: We need two queries:
Q1: SELECT SUM(Salary) FROM Employee;

Q2: SELECT SUM(Salary) FROM Employee WHERE Name != "Alice";

Return Q1 − Q2.
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Inference attack: multiple queries

The countermeasure was not enough! We need a better one:

Countermeasure

Suppose the database has a total of N records. If the SELECT clause output includes
less than k results, or more than N − k results (but less than N results), then drop the
query.

NOTE: a query that includes N records (i.e., all records) is OK.
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Inference attack: multiple queries (v2)

Name (PK) Age Zip Salary

Alice 32 N2L 0G7 55 000 CAD
Bob 34 N2L 3E4 65 000 CAD
Carol 26 N2L 0E1 35 000 CAD
. . .

Table: Employee (example only)

Countermeasure

Suppose the database has a total of N records.
If the SELECT clause output includes less than k
results, or more than N − k results (but less
than N results), then drop the query (e.g.,
k = N/10).

Q: Only issuing “SELECT SUM(Salary) FROM Employee WHERE (. . . )” queries, how can
we get Alice’s salary?

Assumptions:

“Alice” is in the dataset, but you don’t know anything else about them.

The median age in the company is 30.
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Name (PK) Age Zip Salary

Alice ? ? ?
...

...
...

Countermeasure

Suppose the database has a total of N records. If the SELECT

clause output includes less than k results, or more than N − k
results (but less than N results), then drop the query (e.g.,
k = N/10).

The median age in the company is 30

Q1: SELECT SUM(Salary) FROM Employee WHERE

Q2: SELECT SUM(Salary) FROM Employee WHERE

Q3: SELECT SUM(Salary) FROM Employee WHERE
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Inference attack: multiple queries (v2)

Name (PK) Age Zip Salary

Alice 32 N2L 0G7 55 000 CAD
Bob 34 N2L 3E4 65 000 CAD
Carol 26 N2L 0E1 35 000 CAD
. . .

Table: Employee (example only)

Countermeasure

Suppose the database has a total of N records.
If the SELECT clause output includes less than k
results, or more than N − k results (but less
than N results), then drop the query (e.g.,
k = N/10).

A: We need three queries: let C=(Age < 30)
Q1: SELECT SUM(Salary) FROM Employee;

Q2: SELECT SUM(Salary) FROM Employee WHERE Name = "Alice" OR C;

Q3: SELECT SUM(Salary) FROM Employee WHERE Name = "Alice" OR NOT C;

Return

Q2 + Q3 − Q1.
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Inference attack: multiple queries (v2) (Bonus)

Name (PK) Age Zip Salary

Alice 32 N2L 0G7 55 000 CAD
Bob 34 N2L 3E4 65 000 CAD
Carol 26 N2L 0E1 35 000 CAD
. . .

Table: Employee (example only)

Countermeasure

Suppose the database has a total of N records.
If the SELECT clause output includes less than k
results, or more than N − k results (but less
than N results), then drop the query (e.g.,
k = N/10).

Another valid solution proposed in the classroom:

A: We need three queries: let C=(Age < 30)
Q1: SELECT SUM(Salary) FROM Employee;

Q2: SELECT SUM(Salary) FROM Employee WHERE Name != "Alice" AND C;

Q3: SELECT SUM(Salary) FROM Employee WHERE Name != "Alice" AND NOT C;

Return

Q1 − Q2− Q3.
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Inference attack: tracker attack

This is also called the tracker attack.
We find a tracker query T that satisfies the restriction (i.e., that more than k but less
than N − k records satisfy):

e.g., SELECT SUM(Salary) FROM Employee WHERE Age < 30;

Note that this tracker will depend on the problem

Let C be the constraint C = (Age < 30).

Tracker attack

Q1: SELECT SUM(Salary) FROM Employee WHERE Name = "Alice" OR C;

Q2: SELECT SUM(Salary) FROM Employee WHERE Name = "Alice" OR NOT C;

Q3: SELECT SUM(Salary) FROM Employee;

Q1 + Q2 − Q3 reveals the secret salary.
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More practice!

Countermeasure

Database has N records. A query is dropped if it includes less than k results, or more
than N − k results (but less than N results) (k = N/4). Only SUM(<Att>) queries are
allowed.

Q: The Employee table has columns (Name (PK), ZIP, DOB, Salary). The ZIP codes
are all in Waterloo. DOB are just the years, between 1980 and 2000, with
approximately the same number of records per year.

How do we get Alice’s salary with three queries max.?

A: e.g., choose C = DOB > 1990

Then run the three queries in the previous slide
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More practice!

Countermeasure

Database has N records. A query is dropped if it includes less than k results, or more than
N − k results (but less than N results) (k = N/4).

Q: The Employee table has columns
(Name (PK), ZIP, DOB, Salary). The ZIP
codes are all in Waterloo. DOB are just
the years, between 1980 and 2000, with
approximately the same number of records
per year.

How do we get Alice’s ZIP with COUNT(*)

queries only?
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One solution

There are many ways of doing this, since we do not have a restriction on the number
of queries. This is one possible solution:

A: We can run the following three queries for each ZIP z:
N : SELECT COUNT(*) From Employee

Q1 : SELECT COUNT(*) From Employee WHERE DOB > 1990 OR (Name = Alice AND ZIP = z)
Q2 : SELECT COUNT(*) From Employee WHERE DOB ≤ 1990 OR (Name = Alice AND ZIP = z)

If Alice does not have ZIP = z, then

Q1 + Q2 = N.
If Alice does have ZIP = z, then Q1 + Q2 = N + 1

This is very inefficient in the sense that it requires too many queries. In A3 you have
to be a bit more creative to get higher marks.
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SQL-based inference attacks: conclusions

Having controls on the type and shape of queries is unlikely to be sufficient. We need
better (and more systematic) solutions to protect data privacy.

You need to know how to design these attacks (you need them for Assignment 3
written Q4!).

There is not a general way of doing these attacks, you have to understand them
and then be creative with the actual problem at hand.

You cannot assume things that are not explicitly stated in the problem (e.g.,
Alice’s gender)
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The census reconstruction attack

All the examples shown here involve a database that interactively responds to the
attacker’s queries. What if one does a one-time release of aggregated data only? For
example, the census data?

Let’s see an example...
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The census reconstruction attack

Suppose that we have some statistical data about a Census block:

1 There are four people in total.

2 Two of these people have age 17.

3 Two of these people self-identify as White.

4 Two of these people self-identify as Asian.

5 The average age of people who self-identify as White is 30.

6 The average age of people who self-identify as Asian is 32.

Q: Can you guess the age of everyone in the dataset?
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The census reconstruction attack

Suppose that we have some statistical data about a Census block:

1 There are four people in total.

2 Two of these people have age 17.

3 Two of these people self-identify as White.

4 Two of these people self-identify as Asian.

5 The average age of people who self-identify as White is 30.

6 The average age of people who self-identify as Asian is 32.

A: The two people aged 17 cannot both self-identify as White or Asian, as that would violate
points 5 and 6. Thus, they must be one White, one Asian, and we can compute the remaining
ages by ensuring the averages in points 5 and 6 hold

When we have billions of statistics with many more attributes to work with, we can convert the
data into a massive system of equations (and use computers!). See Damien Desfontaines’ blog.
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Inference across multiple sources

What we have seen so far uses information in a single database only.

The inference problem is more severe when the adversary has access to multiple
data sources as long as they can link and aggregate the information from different
sources.

It is more severe because access controls rarely apply across data sources.

How does the adversary get external data sources?

Use publicly available data, e.g. census data, regional records.
Purchase data records from a data broker
Governments might also share their dossiers with each other.
Large companies may collect information about their customers.
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Data linking

Now, what can we learn from combining these datasets that we didn’t learn before?

If these datasets include identifiers that are verinyms, or persistent pseudonyms, one
can link data records across these datasets to learn more information about an
individual or an entity.

We will see a series of inference attacks on public data releases that are supposed to
protect the privacy of the data suppliers but failed.
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Anonymity failure: AOL Search Data Set

August 6, 2006: AOL released 20 million search queries from 658,000 users over a
3-month period in 2006.

AOL assigned a random number to each user:

4417749 “numb fingers”
4417749 “60 single men”
4417749 “landscapers in Lilburn, GA”
4417749 “dog that urinates on everything”
711391 “life in Alaska”

August 9: New York Times article re-identified user 4417749

Thelma Arnold, 62-year old widow from Lilburn, GA

Takeaway: simply attaching a random number to each users’ record is insufficient to
get a high level of nymity.
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Anonymity failure: NYC Taxi dataset release

NYC Taxi Commission released 173 million “anonymized” NYC Taxi trip logs due
to a FOIA request

Each trip log includes information about the trip as well as persistent pseudonyms
for each taxi itself.

pick-up location (latitude, longitude) and time
drop-off location (latitude, longitude) and time
MD5 hash of the taxi medallion number
MD5 hash of the driver license number

These parameters were collected in order to learn about taxi usage and traffic
patterns.
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Anonymity failure: NYC Taxi dataset release

Anonymity problem 1 with this data release: Pick-up / drop-off times and locations
can be correlated with celebrities’ travels (background knowledge from other news
sources).

Example:
You know that a celebrity was spotted leaving the JFK airport at 6pm. =⇒ You look
for pick-up records near JFK around 6pm and see where they drop-off. =⇒ After
filter out infeasible locations, you might be able to identify the taxi that they took and
deduce where they lived or visited.

Takeaway: Perhaps these drop-offs/pick-ups could be published at a lower granularity,
at the cost of lower utility for statistical analysis of traffic etc?
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Anonymity failure: NYC Taxi dataset release

Anonymity problem 2 with this data release: Does hashing help with hiding identities
of the drivers and taxicabs?

Background: These two identifiers have the following structures:

License numbers are 6 or 7 digit numbers
Medallion numbers are either

[0-9][A-Z][0-9][0-9]

[A-Z][A-Z][0-9][0-9][0-9]

[A-Z][A-Z][A-Z][0-9][0-9][0-9]

Q: How would you uncover their identities?

A: brute-force! There are only 1 million license numbers at most, and 17 million
medallion numbers.

Takeaway: Hashing identifiers does not provide anonymity. With a small input space,
a dictionary attack can be conducted efficiently.
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Anonymity failure: Massachusetts Insurance Health Records

Massachusetts released “anonymized”
health records:

ZIP code

Gender

Date of birth

Health information

Massachusetts’ voter registration lists
contains:

ZIP code

Gender

Date of birth

Name

Fun fact: 87% of U.S. population can be uniquely identified using ZIP code, gender,
and date of birth!
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Lessons learned from linking attacks

Datasets included data that was useful for research (primary data), as well as
some identifiers (“quasi-identifiers”).

“Quasi-identifiers” can be used to link data across multiple records in the same
dataset (NYC Taxi dataset or AOL search data) or across different datasets
(Massachusetts case).

Background knowledge relating to the primary data, can be used to further
de-anonymize records.
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Privacy vs utility trade-off

What can be done about each type of data in these data releases?

For quasi-identifiers:

Reduce granularity to deter linking: e.g. year instead of DOB, only first couple
digits of zip code. =⇒ Increases anonymity set.

Remove attribute(s) to prevent linking altogether: e.g. no random number in
AOL dataset or no medallion/license number in NYC taxi dataset. Will reduce
utility of the dataset.

For primary data:

Reduce granularity.

Remove sensitive attributes.

Publish aggregate statistics.

Change values slightly (add randomness).
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Module outline

5 Introduction: privacy and utility

6 Inference attacks
SQL attacks
Census attacks
Linking attacks

7 Syntactic Notions of Privacy
k-anonymity
ℓ-diversity
t-closeness
Limitations of syntactic privacy notions

95 / 195



Privacy and utility Inference Syntactic Privacy

Syntactic Notions of Privacy

Syntactic notions of privacy ensure that the released data satisfies a certain
property.

The data to be protected is typically a table, and the set of attributes can be
classified into:

Identifiers: uniquely identify a participant
Quasi-identifiers: in combination with external information, can identify a participant
(ZIP, DOB, Gender, etc.)
Confidential attributes: attributes (columns) that contains privacy-sensitive
information.
Non-confidential attributes: are not considered sensitive

We are going to see three syntactic notions of privacy:

k-anonymity
ℓ-diversity
t-closeness
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Syntactic Notions of Privacy

We are going to see three syntactic notions of privacy:

k-anonymity
ℓ-diversity
t-closeness

For each syntactic notion of privacy, you will learn (and need to know):

What it is
Why it provides privacy
How to compute it
How to provide it (e.g., by publishing data in a privacy-preserving way by following
certain – given – utility rules)
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k-anonymity

k-anonymity

For each published record, there exists at least k − 1 other records with the same
quasi-identifiers

This can be achieved by pre-processing quasi-identifiers:

Removing a quasi-identifier (e.g., removing the gender attribute)

Reducing the granularity (e.g., hiding the last characters of a ZIP code or the day
from a DOB)

Grouping quasi-identifiers (e.g., reporting age ranges, instead of actual ages)
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k-anonymity example, with a single quasi-identifier

A simple dataset, where the quasi-identifier is ZIP.

ZIP Party affiliation

N1CFFA Green Party
G0ANFA Liberal Party
N1C5YN Green Party
N2J0HJ Conservative Party
N1C4KH Green Party
G0A3G4 Conservative Party
G0A3GN Liberal Party
N2JWBV New Democratic Party
N2JWBV Liberal Party
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k-anonymity example, with a single quasi-identifier

k-anonymity

For each published record, there exists at least k − 1 other records with the same
quasi-identifier(s)

We hide the last three characters of ZIP, then we publish the table:

ZIP Party affiliation

N1C*** Green Party
G0A*** Liberal Party
N1C*** Green Party
N2J*** Conservative Party
N1C*** Green Party
G0A*** Conservative Party
G0A*** Liberal Party
N2J*** New Democratic Party
N2J*** Liberal Party

Q: What is the level of k-anonymity? (or,
the largest k for which this table is
k-anonymous?)

A: The table is 3-anonymous
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k-anonymity example, with multiple quasi-identifiers

A simple dataset table (quasi-identifiers are ZIP and DOB)

ZIP DOB Party affiliation

N1CFF 1962-01-24 Green Party
G0ANF 1975-12-30 Liberal Party
N1C5YN 1966-10-17 Green Party
N2J0HJ 1996-08-14 Conservative Party
N1C4KH 1963-04-06 Green Party
G0A3G4 1977-07-09 Conservative Party
G0A3GN 1973-08-14 Liberal Party
N2JWBV 1990-11-02 New Democratic Party
N2JWBV 1990-01-25 Liberal Party
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k-anonymity example, with multiple quasi-identifiers

Q: What is the k-anonymity level of this table? (ZIP and DOB are QI)

ZIP DOB Party affiliation

N1C*** 196*-**-** Green Party
G0A*** 197*-**-** Liberal Party
N1C*** 196*-**-** Green Party
N2J*** 199*-**-** Conservative Party
N1C*** 196*-**-** Green Party
G0A*** 197*-**-** Conservative Party
G0A*** 197*-**-** Liberal Party
N2J*** 199*-**-** New Democratic Party
N2J*** 199*-**-** Liberal Party

A: The table is 3-anonymous

ZIP DOB Party affiliation

N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party

G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Conservative Party

N2J*** 199*-**-** Conservative Party
N2J*** 199*-**-** New Democratic Party
N2J*** 199*-**-** Liberal Party
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k-anonymity practice!

Age Gender ...

23 F
25 F
33 F
35 F
27 M
30 M
32 M
21 NB
25 NB

Age and Gender are the quasi-identifiers

Q: What is the k-anonymity in the following cases?

1 We hide the Age

2 We hide the Gender (but not the Age)

3 We report the most significant digit of Age, plus the Gender

4 We only report the most significant digit of Age, but not the
Gender

A: The table is:

1 2-anonymous

2 1-anonymous (or just not anonymous)

3 1-anonymous (or just not anonymous)

4 4-anonymous
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More k-anonymity practice!

k-anonymity

For each published record, there exists at least k − 1 other records with the same
quasi-identifier.

Gender DOB Party affiliation

M 1968-**-** Green Party
F 1975-**-** Liberal Party
O 1966-**-** Green Party
M 1962-**-** Green Party
M 1962-**-** Conservative Party
O 1966-**-** Conservative Party
F 1973-**-** Liberal Party
F 1973-**-** Liberal Party
O 1968-**-** Green Party
F 1975-**-** Liberal Party

Q: What is the largest k for which this table is
k-anonymous? (quasi-identifiers are Gender and DOB)

1 As in the left

2 If we hide the least-significant digit of year

3 If we hide the gender column

4 Both 2 and 3

A: 1, 3, 2, 4
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More k-anonymity practice: how to provide it

Age Province ...

21 ON
23 ON
26 ON
32 ON
33 ON
35 ON
36 ON
43 ON
45 ON

22 BC
24 BC
26 BC
27 BC
32 BC
33 BC
43 BC
45 BC
49 BC

Age and Province are the quasi-identifiers. We must reduce
the granularity of Age to provide some k-anonymity.

Q: If we replace the Age with age ranges [20-29], [30-39],
[40-49], what is the k-anonymity level?

A: The table would be 2-anonymous

Q: Can you design ranges that provide a higher level of
k-anonymity, with the constraints that 1) ranges must cover
all ages from 20 to 49, 2) you must create 3 age ranges, 3)
each range must contain at least one record

A: [20-26], [27-35], [36-49] makes the table 3-anonymous
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k-anonymity and privacy

A 3-anonymized table (organized by equi-class)

ZIP DOB Party affiliation

N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party

G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Conservative Party

N2J*** 199*-**-** Conservative Party
N2J*** 199*-**-** New Democratic Party
N2J*** 199*-**-** Liberal Party

You know what k-anonymity is, how to
compute it, and how to provide it

Q: Why does it provide privacy?

A: We cannot identify the actual record of
a user (that provided a record) based on
their quasi-identifiers. This can make it
hard to guess the user’s confidential
attributes

Q: Is this good enough?
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Homogeneity attack

ZIP DOB Party affiliation

N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party

G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Conservative Party

N2J*** 199*-**-** Conservative Party
N2J*** 199*-**-** New Democratic Party
N2J*** 199*-**-** Liberal Party

Q: If you know Alice (N1C***,
196*-**-**) is in this table, what
will you learn?

A: Alice’s party affiliation is the
Green Party

Homogeneity attack

It happens when sensitive values lack diversity. In the worst case, for a given
quasi-identifier, all sensitive data values are identical.
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Background knowledge attack

ZIP DOB Party affiliation

N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party
N1C*** 196*-**-** Green Party

G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Liberal Party
G0A*** 197*-**-** Conservative Party

N2J*** 199*-**-** Conservative Party
N2J*** 199*-**-** New Democratic Party
N2J*** 199*-**-** Liberal Party

Q: If you know Bob (G0A***,
197*-**-**) is in this table, and
Bob does not like Liberal Party,
what will you learn?

A: Bob’s party affiliation is the
Conservative Party

Background knowledge attack

It filters out infeasible values and, in the worst case, narrows the inference down to a
single value.
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ℓ-diversity

ℓ-diversity

For any quasi-identifier value, there should be at least ℓ distinct values of the sensitive
fields

Gender DOB Party affiliation

M 196*-**-** Green Party
M 196*-**-** Liberal Party
M 196*-**-** Conservative Party

O 196*-**-** Green Party
O 196*-**-** Green Party
O 196*-**-** Conservative Party

F 197*-**-** Liberal Party
F 197*-**-** Green Party
F 197*-**-** Conservative Party
F 197*-**-** Liberal Party

quasi-identifiers: (Gender, DOB)
sensitive: Party affiliation

Q: What is the k-anonymity level?

A: The table is 3-anonymized

Q: What is the ℓ-diversity level?

A: The table is 2-diversified
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ℓ-diversity example

A 3-anonymized 3-diversified table

ZIP DOB Salary

N3P*** 199*-**-** 20K
N3P*** 199*-**-** 15K
N3P*** 199*-**-** 25K

H1A*** 196*-**-** 100K
H1A*** 196*-**-** 90K
H1A*** 196*-**-** 120K

S4N*** 197*-**-** 50K
S4N*** 197*-**-** 60K
S4N*** 197*-**-** 65K

You know what ℓ-diversity is, how to compute it,
and (potentially) how to provide it.

Q: Why does it provide privacy?

A: It alleviates the issues of k-anonymity that we
saw above. Given someone’s quasi-identifiers, and
access to the published database, ℓ-diversity makes
it harder to guess that individual’s sensitive values

Q: Is this good enough?
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Similarity attack

ZIP DOB Salary Disease

N3P*** 199*-**-** 20K gastric ulcer
N3P*** 199*-**-** 15K gastritis
N3P*** 199*-**-** 25K stomach cancer

H1A*** 196*-**-** 100K heart attack
H1A*** 196*-**-** 90K flu
H1A*** 196*-**-** 120K bronchitis

S4N*** 197*-**-** 50K COVID
S4N*** 197*-**-** 60K kidney stone
S4N*** 197*-**-** 65K pneumonia

Q: If you know Charles, who earns
a low salary is in this table, what
will you learn?

A: Charles has a stomach disease

Similarity attack

If the sensitive values of an equi-class are different but have the same (or similar)
semantic meaning, ℓ-diversity does not prevent the adversary from learning this.
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Skewness attack

ZIP DOB Virus X Test

N3P*** 199*-**-** Positive
N3P*** 199*-**-** Positive
N3P*** 199*-**-** Positive

... 45 more positive cases ...
N3P*** 199*-**-** Negative

H1A*** 196*-**-** Negative
H1A*** 196*-**-** Negative
H1A*** 196*-**-** Negative

... 945 more negative cases ...
H1A*** 196*-**-** Positive

Q: If you know David (in his 20s)
is in this table, what will you
learn?

A: David probably has the virus

Skewness attack

The distribution of sensitive values matters. Highly-skewed distributions leak
(statistically speaking) more information about an individual’s sensitive value.
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What went wrong?

ZIP DOB Virus X Test

N3P*** 199*-**-** Positive
N3P*** 199*-**-** Positive
N3P*** 199*-**-** Positive

... 45 more positive cases ...
N3P*** 199*-**-** Negative

H1A*** 196*-**-** Negative
H1A*** 196*-**-** Negative
H1A*** 196*-**-** Negative

... 945 more negative cases ...
H1A*** 196*-**-** Positive

The data in each equi-class (i.e.,
records that share the same
quasi-identifier) is unexpectedly
skewed.

The “unexpected” feeling comes from
the distribution of sensitive values of
the whole dataset being different than
the distribution of the sensitive values
per class
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t-closeness

t-closeness

The distribution of sensitive values in each equi-class is no further than a threshold t
from the overall distribution of the sensitive values in the table.

Equi-class: each set of identical quasi-identifiers is an equi-class.

We have to define a notion of distance between distributions. For example, see the
original paper that proposes t-closeness on ICDE’07.

Variational distance (or EMD Categorical Distance – using Equal Distance)

For two distributions over m values, P = (p1, . . . , pm), Q = (q1, . . . , qm):

D[P,Q] =
1

2

m∑
i=1

|pi − qi |
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t-closeness example

EMD Categorical Distance

D[P,Q] =
1

2

m∑
i=1

|pi − qi |

D[PN3P ,Q] = 1
2

(∣∣15
40 − 30

100

∣∣+ ∣∣25
40 − 70

100

∣∣) = 0.075

D[PH1A,Q] = 1
2

(∣∣15
60 − 30

100

∣∣+ ∣∣45
60 − 70

100

∣∣) = 0.05

t-close with t = 0.075 (the maximum of these values)

If you had more equi-classes, that would be more P’s, so you would have to compute
more distances D[P,Q], and then pick the maximum distance as t.
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t-closeness practice (bonus slide, post-lecture)

Q: What is the k-anonymity, ℓ-diversity, and
t-closeness level of this published dataset? (ZIP is
quasi-identifier, Virus is sensitive)

A: The table is 30-anonymous and 3-diversified. For
t-closeness:

D[PN3P ,Q] = 1
2

(∣∣ 5
30

− 17
90

∣∣+ ∣∣ 22
30

− 69
90

∣∣+ ∣∣ 3
30

− 4
90

∣∣) = 1
18

D[PN3P ,Q] = 1
2

(∣∣ 12
60

− 17
90

∣∣+ ∣∣ 47
60

− 69
90

∣∣+ ∣∣ 1
60

− 4
90

∣∣) = 1
36

Therefore, the table is 1
18
-close with respect to Virus.
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Some notes on how to compute t-closeness

If you had k equi-classes, you would have to compute k distances, and take the
maximum of those distances as the value of t.

If you had m distinct sensitive values, the histograms would have m bars.

If you had more than one sensitive attribute (column), you can compute
t-closeness for each sensitive value (e.g., a table is t1-close w.r.t. Salary and
t2-close w.r.t. Virus).

Note: the examples from the original paper by Li et al. use more complicated distance
metrics.
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t-closeness

You know what t-closeness is, how to compute it, and (potentially) how to provide
it.

Q: Why does it provide privacy?

A: It alleviates the skewness issue seen with ℓ-diversity. If each equi-class has a similar
distribution of the sensitive values, then knowing the equi-class of a participant that
contributed to one record does not reveal a lot of information (statistically speaking)
about that individual’s sensitive values.
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Limitations

These privacy notions require a clear distinction between quasi-identifiers and
sensitive attributes, which is not always possible (and very subjective).

These notions of privacy do not provide any guarantees against an adversary with
(arbitrary) background knowledge. We have seen some examples of this.

We need a notion of privacy that is adversary-agnostic.

Differential Privacy is a semantic notion of privacy that is guaranteed by the data
release mechanism itself and is adversary-agnostic.

We will see that next!
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Recap

Privacy vs. utility conflict

SQL inference attacks (single query, multiple queries, tracker attacks)

You need to understand how to attack using aggregate queries when there are simple
countermeasures

Census reconstruction attacks, linking attacks

You need to understand the intuition behind these attacks, and how to do simple
examples.

Syntactic notions of privacy (k-anonymity, ℓ-diversity, t-closeness)

Homogeneity attack, background knowledge attack, similarity attack, skewness
attack (know how to answer questions similar to the ones in the slides)
Know what they are, why they provide privacy, how to compute k, ℓ, and t (no need
to know anything other than EMD Categorical for t-closeness), and how to provide
them (only k-anonymity)
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8 The Dinur-Nissim reconstruction attack

9 Introduction to Differential Privacy

10 Properties of Differential Privacy

11 Differentially Private Mechanisms
Laplace mechanism
Randomized Response
Discrete mechanisms

12 Recap and Practice
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We are being too honest...

In all the cases covered in the inference attacks in Part 2, we always gave faithful
results:

For example:

The SUM of the salaries

The census data

The data release was deterministic. If we instead added some random noise to the
answers, some of these attacks would be much harder (e.g., the SQL attacks we saw)

The Dinur-Nissim reconstruction attack illustrates why, when a mechanism adds
too little noise when responding to aggregated queries, an adversary can still
reconstruct the database with high accuracy and efficiency.
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Let’s formalize the setup

There is a database, D, which potentially contains sensitive information about individuals.

The database curator has access to the full database. We assume the curator is trusted.

The data analyst consumes the data by asking a series of queries to the curator. Each
query is denoted as S and the curator provides a response to query S with RS .
The analyst may be honest or malicious.

The way in which the curator responds to queries is called the mechanism.
Formally, M : S → RS . We’d like a mechanism that

gives statistically useful responses but
avoids leaking sensitive information about individuals.
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Threat model

We assume the adversary knows all
but one attributes. The unknown
attribute is binary (e.g., COVID)

The adversary can ask aggregated
queries (e.g., COUNT(*))

Name ZIP DOB COVID

Alice K8V 7R6 5/2/1984 1
Bob V5K 5J9 2/8/2001 0
Charlie V1C 7J2 10/10/1979 1
David R4K 5T1 4/4/1944 0
Eve G7N 8Y3 1/1/1954 1

For example, the adversary could ask for how many rows satisfying condition
(Name = "Charlie" OR DOB > 1980) have COVID = 1.

Since the adversary knows all other attributes, they pick arbitrary rows, and ask for
how many of those rows have the COVID bit set to 1.

125 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Threat model

We assume the adversary knows all
but one attributes. The unknown
attribute is binary (e.g., COVID)

The adversary can ask aggregated
queries (e.g., COUNT(*))

Name ZIP DOB COVID

Alice K8V 7R6 5/2/1984 1
Bob V5K 5J9 2/8/2001 0
Charlie V1C 7J2 10/10/1979 1
David R4K 5T1 4/4/1944 0
Eve G7N 8Y3 1/1/1954 1

For example, the adversary could ask for how many rows satisfying condition
(Name = "Charlie" OR DOB > 1980) have COVID = 1.

Since the adversary knows all other attributes, they pick arbitrary rows, and ask for
how many of those rows have the COVID bit set to 1.

125 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Threat model

We assume the adversary knows all
but one attributes. The unknown
attribute is binary (e.g., COVID)

The adversary can ask aggregated
queries (e.g., COUNT(*))

Name ZIP DOB COVID

Alice K8V 7R6 5/2/1984 1
Bob V5K 5J9 2/8/2001 0
Charlie V1C 7J2 10/10/1979 1
David R4K 5T1 4/4/1944 0
Eve G7N 8Y3 1/1/1954 1

For example, the adversary could ask for how many rows satisfying condition
(Name = "Charlie" OR DOB > 1980) have COVID = 1.

Since the adversary knows all other attributes, they pick arbitrary rows, and ask for
how many of those rows have the COVID bit set to 1.

125 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Threat model: more general

Representing the database as binary, where
each record contains k bits, the adversary
knows all a’s, and wants to know the b’s.

The adversary can query for counts of how
many rows from a given set have b = 1.

D =


a{1,1} a{1,2} . . . a{1,k−1} b1
a{2,1} a{2,2} . . . a{2,k−1} b2

...
... · · ·

...
...

a{n,1} a{n,2} . . . a{n,k−1} bn



For simplicity, we represent each query as
the set of rows where the adversary wants
to get the sum of the bits b.

Basically, there is a secret binary vector
B = [b1, b2, . . . , bn] and the adversary can
query for sums of bits in arbitrary positions.

For example, if n = 5, then the query
S = [1, 0, 1, 0, 0] will be asking for the sum
b1 + b3, and query S = [0, 1, 0, 1, 1] asks
for b2 + b4 + b5.

But the data curator adds noise to the
summation!
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Curator mechanism

Given a secret bit vector B = [b1, b2, . . . , bn].

Upon receiving a query S = [s1, s2, . . . , sn], the curator first calculates the true answer:

⟨S ,B⟩ =
n∑

i=1

si · bi

Then, the curator adds some random noise N:

RS = ⟨S ,B⟩+ N

Example: for B = [1, 1, 1, 0, 0] and S = [1, 0, 1, 0, 1], then the true answer is
⟨S ,B⟩ = 2.
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Curator mechanism: noise

Upon receiving a query S = [s1, s2, . . . , sn], the curator computes

RS = ⟨S ,B⟩+ N

Let’s consider a noise that is upper-bounded by:

|N| < E

Q: What are the pros/cons of using a noise with large E?

A: More noise (larger E ) provides more privacy, but less utility
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The inefficient attack

Theorem: If the analyst is allowed to ask 2n subset queries to a dataset of n users (n
rows), and the curator adds noise with some bound E , then based on the results, the
adversary can reconstruct the database in (at least) all but 4E positions.

e.g., E = n
400 =⇒ reconstruction of 99% entries in the database.

Algorithm:

For an attacker, there are 2n candidate databases (all possibles values of B).

e.g., if the true database has 3 users, we have 23 = 8 candidate databases

For each candidate database C ∈ {0, 1}n, if there exists a query S such that
|⟨S ,C ⟩ − RS | > E , rule out C .

Any database candidate not ruled out (C ) differs with the actual database (D) by
4E at max.
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The inefficient attack - Example

Let’s see an example.

In the example, we have a database with
n = 3 users (rows).

D =

 a{1,1} a{1,2} . . . a{1,k−1} b1
a{2,1} a{2,2} . . . a{2,k−1} b2
a{3,1} a{3,2} . . . a{3,k−1} b3



The adversary queries for all 2n combinations {0, 1}n, i.e.,
S ∈ {[0, 0, 0], [0, 0, 1], [0, 1, 0], . . . , [1, 1, 1]}

The curator uses noise N sampled randomly from {−0.5,+0.5}.

You need to know how to perform this reconstruction attack, and understand why the
reconstruction attack is possible.
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The inefficient attack - Example (I)
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The inefficient attack - Example (II)
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The inefficient attack - Example (III)
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The inefficient attack - Example (IV)
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The inefficient attack - Practice

Q: Can you guess the privacy-sensitive column B (or a list of candidate B’s)

A: There is only one candidate: B = [1, 1, 0]
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The inefficient attack

Note: If an adversary is allowed to ask a lot of queries, it does not matter how
much (linear) noise is added to the database.

The adversary will be able to reconstruct a large fraction of the data!

But again, for this attack to work, you need to send a large number of queries.

That’s why it is inefficient / impractical!

There is a more efficient attack:

Theorem: If the analyst is allowed to ask O(n) queries to a dataset of n users, and
the curator adds noise with some bound E = O(α

√
n), then based on the results, a

computationally efficient adversary can reconstruct the database in all but O(α2n)
positions.
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Module outline

8 The Dinur-Nissim reconstruction attack

9 Introduction to Differential Privacy

10 Properties of Differential Privacy

11 Differentially Private Mechanisms
Laplace mechanism
Randomized Response
Discrete mechanisms

12 Recap and Practice
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So far...

So far, we have seen some defenses and attacks:

Restrict type and shape of SQL queries

Attacks are still possible (we saw SQL attacks that used SUM and COUNT queries)

Syntactic notions of privacy (k-anonymity, ℓ-diversity, ...)

Attacks are still possible (skewness, background information...)

Naive noise addition

Attacks are still possible (we saw the Dinur-Nissum reconstruction attack)

It seems like nothing works... we need a “notion” of privacy that provides formal
guarantees against attacks.
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How do we provide privacy against auxiliary information?

We have a dataset D, with each user contributing to one entry (row) of the
database.

We have a release mechanism M that publishes some data R = M(D).

Can we provide privacy when the adversary has arbitrary aux. information?
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Example: strong auxiliary information

Q: Thanks to the study, the adversary learns that Alice has higher risk of cancer. Is this a
violation of Alice’s privacy? Is this the study’s fault? Should we design an M to prevent this?

A: The adversary would’ve reached the same conclusion even if Alice hadn’t participated in the
study! We cannot prevent this (without completely destroying utility, i.e., not doing the study)
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Example: strong auxiliary information

A: The adversary can still learn the same sensitive information about Alice, even
though she wasn’t even in the database

We cannot guarantee absolute privacy.
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What if we are less ambitious...

If the adversary has strong background information, there is nothing M can do
about it!

We should instead ensure that the adversary cannot gain significant new
information from R (i.e., we want a “differential” and not an “absolute” privacy)
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Possible privacy goal

What if we try to make these cases similar?

We want the RA and RB to be
“similar” (RA ≈ RB).

This would ensure M does not depend
“too much” on any single user.

However, note that M is randomized
(e.g., adds noise).

Thus, instead of ensuring RA ≈ RB ,
we ensure their probability
distributions are “similar”.
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We’re almost there...

These datasets are
usually called
neighboring datasets
(and usually denoted
by D and D ′)

We want
Pr(M(D) = R) and
Pr(M(D ′) = R) to
be close (for all R)

How do we define
“close”?
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How do we define “close” distributions?

This is a possible definition of “closeness”:

Tentative privacy definition (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the following holds for
all possible outputs R and all pairs of neighboring datasets (D,D ′):

Pr(M(D ′) = R)− p ≤ Pr(M(D) = R) ≤ Pr(M(D ′) = R) + p

Note that here smaller p means more privacy.

This would mean that:
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Does this really work?

Tentative privacy definition (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the following holds for
all possible outputs R and all pairs of neighboring datasets (D,D ′):

Pr(M(D ′) = R)− p ≤ Pr(M(D) = R) ≤ Pr(M(D ′) = R) + p

Case 1:

Case 2:

Case 1 seems fine...

Q: ... but do you see an issue with case 2?

A: There are some outputs R that can only happen if
Bob was in the dataset (i.e., on D ′). These rule out D.
This is what allowed us to do Dinur-Nissim!
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What if we make the distance multiplicative?

Tentative privacy definition II (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the following holds for
all possible outputs R and all pairs of neighboring datasets (D,D ′):

Pr(M(D ′) = R) · 1
p
≤ Pr(M(D) = R) ≤ Pr(M(D ′) = R) · p

Again, smaller p (but p ∈ [1,∞)) means more privacy.

This would mean that:

This makes more sense, since p = ∞ means “no privacy”.
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Finally: Differential Privacy

Instead of a “p”, we use eϵ, with privacy parameter ϵ:

Differential Privacy

A mechanism M : D → R is ϵ-differentially private (ϵ-DP) if, for all possible outputs
R ∈ R and all pairs of neighboring datasets (D,D ′) (∈ D):

Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ

Some notes:

We do not need the e−ϵ on the left, since this must hold
for all (D,D ′); for example, it also holds for (D ′,D).

ϵ ∈ [0,∞); this ensures that eϵ ∈ [1,∞)
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Finally: Differential Privacy

Differential Privacy

A mechanism M : D → R is ϵ-differentially private (ϵ-DP) if, for all possible outputs
R ∈ R and all pairs of neighboring datasets (D,D ′) (∈ D):

Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ

Q: Which is “more private”: ϵ = 1 or ϵ = 2?

A: Smaller ϵ means more privacy; larger ϵ means less privacy

Q: What does ϵ = 0 mean?

A: Perfect privacy! (independent of the database!)
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Some notes

Differential Privacy

A mechanism M : D → R is ϵ-differentially private (ϵ-DP) if, for all possible outputs
R ∈ R and all pairs of neighboring datasets (D,D ′) (∈ D):

Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ

DP was proposed in 2006 Cynthia Dwork et al. [DMNS06]

They won the Gödel Price in 2017 and the Test-of-Time Award in 2016.

Adopted by Apple, Google, Microsoft, and the US Census Bureau for the 2020 US
Census, etc.
There is no consensus on how small ϵ should be. “Roughly”:

ϵ < 0.1 is high privacy (e0.1 ≈ 1.1)
0.1 < ϵ < 1 is good privacy (e1 ≈ 2.7)
ϵ > 5 starts getting too big (e5 ≈ 148)
ϵ > 100 000 is crazy... yet some works use this
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DP interpretation as a game

What does Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ even mean?

We choose the input to be D or D ′ (at
random)

The adversary sees R, and we assume it
knows M and knows that the input was
either D or D ′.

These assumptions are many times
unrealistic, but we want privacy even in
this worst-case scenario

The adversary computes
pD = Pr(M(D) = R) and
pD′ = Pr(M(D ′) = R)

Optimal guess: the input was D if
pD ≥ pD′

If M is ϵ-DP, the adversary’s probability of
error is

1

eϵ + 1
≤ perror ≤ 0.5
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DP interpretation as a game

If M is ϵ-DP, the adversary’s probability of
error is

1

eϵ + 1
≤ perror ≤ 0.5

What does this mean?

ϵ perr range Privacy

0 0.5 ≤ perr ≤ 0.5 Perfect!

0.1 0.47 ≤ perr ≤ 0.5 Very high

1 0.26 ≤ perr ≤ 0.5 OK?

5 0.006 ≤ perr ≤ 0.5 Bad

10 0.00004 ≤ perr ≤ 0.5 Meaningless?

100 000 10−43 430 ≤ perr ≤ 0.5
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About DP and empirical attack performance

DP ensures protection even against a strong adversary that knows that the input
dataset was either D or D ′ (and it provides the guarantee for all possible outputs R,
even those that are very unlikely to happen).

In practice, an algorithm that provides ϵ = 10 might provide high empirical protection
against existing attacks.

But why use DP as a defense if you are going to configure it to ϵ = 10? The
theoretical worst-case guarantee is meaningless at that point, you might as well use
something that does not provide DP.
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Module outline

8 The Dinur-Nissim reconstruction attack

9 Introduction to Differential Privacy

10 Properties of Differential Privacy

11 Differentially Private Mechanisms
Laplace mechanism
Randomized Response
Discrete mechanisms

12 Recap and Practice
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Properties of Differential Privacy

Depending on how we define neighboring datasets, we can distinguish between:

Bounded Differential Privacy

Unbounded Differential Privacy

Depending on who runs the DP mechanism, we have two broad settings:

Central Differential Privacy

Local Differential Privacy

Differentially private mechanisms have some basic properties:

Post-processing

Group privacy

Sequential composition

Parallel composition
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Bounded vs. Unbounded DP

When D and D ′ have the same number of
entries (e.g., n) but differ in the value of
one, we have bounded DP.

When D and D ′ are such that you get one
by deleting an entry from the other one, we
have unbounded DP

These are just slightly different guarantees of privacy. It is important to know which
one your DP algorithm is providing. In practice, there is not a big difference.
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Central DP vs. Local DP

Depending on who runs the DP mechanism, we have two settings:

When there is a centralized (trusted)
aggregator, we call it central DP:

When each user runs the mechanism
themselves, and report it directly to the
analyst (adversary), we call it local DP:

157 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Central DP vs. Local DP

Depending on who runs the DP mechanism, we have two settings:

When there is a centralized (trusted)
aggregator, we call it central DP:

When each user runs the mechanism
themselves, and report it directly to the
analyst (adversary), we call it local DP:

157 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Local DP: what are the “neighboring datasets” here?

In the local setting, usually the user has a value X , and providing ϵ-DP means hiding
whether the value was X or another value X ′:

Local DP

M provides ϵ-DP (or ϵ-LDP – for Local
Differential Privacy), if the following holds
for all X ,X ′ and outputs R:

Pr(M(X ) = R) ≤ Pr(M(X ′) = R) · eϵ

Sometimes this is defined for a notion of
“neighboring inputs”, e.g., for all (X ,X ′)
such that |X − X ′| < 1.
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Properties: robustness to post-processing

If M is differentially private, given any deterministic or randomized function F , F (M)
is also differentially private.

In other words:

Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ ⇒ Pr(F (M(D)) = R) ≤ Pr(F (M(D ′)) = R) · eϵ

With an image: R ′ does not leak more than R (actually, R could leak more!).
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This is not post-processing!

If F uses D again, this is of course NOT post-processing (it’s more like
“re-processing”?)

For example, if F (D,R) = D you just leaked the whole database, and ϵ → ∞ (no
privacy).
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Properties: group privacy

If M provides ϵ-DP for all (D,D ′) that differ in 1 entry, it provides nϵ-DP for all (D,D ′) that
differ in n entries

If this is ϵ-DP:
Pr(M(D) = R) ≤ Pr(M(D ′) = R) · eϵ

Then this is 2ϵ-DP:
Pr(M(D) = R) ≤ Pr(M(D ′) = R) · e2ϵ

Proof:
Pr(M(DA,B) = R) ≤ Pr(M(DA,D) = R) · eϵ ≤ Pr(M(DC ,D) = R) · eϵ · eϵ = Pr(M(DC ,D = R)) · e2ϵ
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Properties: sequential composition

If we run an ϵ-DP mechanism independently n times on the same dataset D,
publishing all results provides nϵ-DP.

This means that releasing
DP information that
depends on the same data
(or even the same user)
decreases privacy a lot.

Here, we have Pr([M(D), . . . ,M(D)] = R) ≤ Pr([M(D ′), . . . ,M(D ′)] = R) · en·ϵ

Note: if we run different mechanisms with ϵ1, ϵ2, . . . , ϵn, publishing all results provides
(
∑n

i=1 ϵi )-DP.
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Here, we have Pr([M(D), . . . ,M(D)] = R) ≤ Pr([M(D ′), . . . ,M(D ′)] = R) · en·ϵ

Note: if we run different mechanisms with ϵ1, ϵ2, . . . , ϵn, publishing all results provides
(
∑n

i=1 ϵi )-DP.
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Properties: parallel composition

If we run an ϵ-DP mechanism independently over disjoint subsets of a dataset D,
publishing all results provides ϵ-DP still.

Changing a row in D = [D1,D2, . . . ,Dn] would only change a row in D′, e.g., D′ = [D′
1,D2, . . . ,Dn], so

Pr([M(D1),M(D2), . . . ,M(Dn)] = R) ≤ Pr([M(D′
1),M(D2), . . . ,M(Dn)] = R) · eϵ

Note: if we run different mechanisms with ϵ1, ϵ2, . . . , ϵn over disjoint subsets, publishing all results provides
(maxi ϵi )-DP.
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Roadmap

We are going to see examples of mechanisms M that provide differential privacy.
We will see:

The Laplace mechanism:

A general mechanism to provide DP in continuous domains.
You need to know how to compute the sensitivity of the query and ϵ.

The Randomized Response mechanism:

A mechanism to provide DP when the inputs and outputs are binary (and typically in
the local model).
You need to know how to compute ϵ for variants of this.
You need to know how to do basic analysis to compute aggregate statistics

For general discrete mechanisms:

You need to know how to compute ϵ.

We will also see how to use the properties of DP we saw before.

165 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

The Laplace mechanism

We are in the central model, and the
analyst/adversary wants the COUNT or SUM
of some attribute in the dataset.

We denote the query by f (e.g., f (D)
would be true output of the query)

ℓ1-sensitivity of a query f

Is the maximum change (in ℓ1-norm, i.e.,
absolute value) in the output of the query when
we run it over D vs. D ′ (for any D, D ′):

∆f = max
D,D′

|f (D)− f (D ′)|

Example: for count queries, ∆f = 1.
Example: for SUM(Salary) queries, ∆f =
“maximum salary difference possible”.

Laplace mechanism

We reply to query f as M(D) = f (D) + Y
where Y is noise from a Laplacian distribution
with parameter b = ∆f /ϵ. This provides ϵ-DP.
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Laplacian noise

Laplace distribution The Laplace probability density function (pdf) is:

pY (y) =
1

2b
· e−

|y|
b

(Disclaimer: I drew these, they are not actually Laplace
pdfs).

Higher b means higher noise.

The variance of the Laplacian is 2b2.

The distribution of R ≡ M(D) = f (D) + Y is therefore
a Laplace distribution centered at f (D)

Mathematically, the Laplacian centered at f (D):
pY (f (D)− R)
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Back to the Laplacian mechanism

Laplacian mechanism

We reply to query f as M(D) = f (D) + Y where Y is noise from a Laplacian
distribution with parameter b = ∆f /ϵ. This provides ϵ-DP.

Comparing Pr(M(D) = R) = pY (f (D)− R) vs. Pr(M(D ′) = R) = pY (f (D
′)− R).

Remember, we set b = ∆f /ϵ.

This makes sense, because:

For a given query (fixed ∆f ), if we
want more privacy (lower ϵ), we need
more noise (higher b).
For a given privacy level (fixed ϵ), if
a query has high sensitivity (higher
∆f ), we need more noise (higher b).

0For simplicity, we also use Pr(M(D) = R) for pdfs in the case R is not discrete
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Proof: why does the Laplacian noise provide DP?

This slide is here for completeness. You won’t be asked to prove things like this. But reading
and understanding this proof will help you understand why the Laplacian distribution is “ideal”
for DP.

Pr(M(D) = R)

Pr(M(D ′) = R)
=

pY (f (D)− R)

pY (f (D ′)− R)
=

1
2b · exp

(
− |f (D)−R|

b

)
1
2b · exp

(
− |f (D′)−R|

b

) = exp

(
−|f (D)− R| − |f (D ′)− R|

b

)

= exp

(
|f (D ′)− R| − |f (D)− R|

b

)
≤ exp

(
|f (D)− f (D ′)|

b

)
≤ exp

(
∆f

b

)

If we set b = ∆f /ϵ, then we get
Pr(M(D) = R)

Pr(M(D ′) = R)
≤ exp(ϵ), which is what we wanted for DP!
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Local DP setting with a binary secret X and response R

We are in the local model. Alice has a secret bit X , and reports another bit R.

This can be used to answer to binary questions, e.g.,

“Have you voted for party Y ?”

“Have you tested positive for virus Z?”

“Have you cheated in exam W ?”
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Randomized Response

Randomized Response

Given your true answer X , you report an answer R following this process:

Q: What are these probabilities?
(with an unbiased coin)
Pr(R = 0|X = 0)
Pr(R = 1|X = 0)
Pr(R = 0|X = 1)
Pr(R = 1|X = 1)

A: The probabilities are:
Pr(R = 0|X = 0) = 0.75
Pr(R = 1|X = 0) = 0.25

Pr(R = 0|X = 1) = 0.25
Pr(R = 1|X = 1) = 0.75
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Randomized Response: computing ϵ

Here we write Pr(M(X ) = R) as Pr(R|X ) (it’s the same)

Differential Privacy (local model)

A mechanism M is ϵ-DP if, for all possible input pairs (X ,X ′) and all possible outputs R,

Pr(R|X ) ≤ Pr(R|X ′) · eϵ ⇒ Pr(R|X )

Pr(R|X ′)
≤ eϵ

A: We have this:
Pr(R = 0|X = 0) = 0.75
Pr(R = 1|X = 0) = 0.25

Pr(R = 0|X = 1) = 0.25
Pr(R = 1|X = 1) = 0.75

For output R = 0:

Pr(R = 0|X = 0)

Pr(R = 0|X = 1)
= 3

Pr(R = 0|X = 1)

Pr(R = 0|X = 0)
= 1/3

Similar for R = 1

Going through all the values of
R,X ,X ′ ∈ {0, 1}, the largest
ratio of probabilities is 3.

Therefore, the ratios are
≤ 3 = e log 3.

Which means ϵ = log 3 ≈ 1.10.
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Randomized Response: doing some statistical analysis

We can draw randomized response as:

where p = 0.75.

Assume there are n users reporting values,
and a fraction p0 have X = 0, while a
fraction p1 = 1− p0 have X = 1.

Now we are the analyst/adversary. We
collect responses from all n users.

Q: Given p0 and p1, what is the probability
that a response is R = 1 (or E{R})?

A: From the users that had X = 0, a
fraction 1− p of them will report R = 1.
From the users that had X = 1, a fraction
p will report R = 1. Therefore,

E{R} = p0 · (1− p) + p1 · p

Maybe you see the math more clearly this way:
E{R} = Pr(R = 1) = Pr(R = 1|X = 0)Pr(X = 0) + Pr(R = 1|X = 1)Pr(X = 1)
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Randomized Response: doing some statistical analysis

We can draw randomized response as:

where p = 0.75.

Assume there are n users reporting values,
and a fraction p0 have X = 0, while a
fraction p1 = 1− p0 have X = 1.

A: E{R} = p0 · (1− p) + p1 · p

We have collected n values of R, so we
have an empirical estimate of E{R}.
Let R̄ be this empirical estimate (the
average of all received R’s).

Q: How would you estimate the percentage
of users that had X = 1?

A: R̄ ≈ p0 · (1− p) + p1 · p

⇒ p̂1 =
R̄ − (1− p)

2 · p − 1
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Let’s do an example!

Disclaimer

You have ϵ = 1.1 (high-ish privacy); no matter what you report in this exercise, you
can always claim that was not your true answer!

Let’s do an example of the statistical analysis. We want to learn how many of you
cheated in an exam before covid.

Q: X = 1 is “I have cheated”. Flip two
coins, get your response, and let’s count
the number of R = 1

p

n

#R = 0

#R = 1

R̄

p̂1 =
R̄ − (1− p)

2 · p − 1
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Computing ϵ for discrete mechanisms

Given a mechanism M with a discrete input space X = {x1, x2, . . . , xn} and discrete
output space R = {r1, r2, . . . , rm}, you can compute ϵ this way:

1 List inputs vs outputs

2 Compute the probabilities

3 Compute the max. ratio per output

4 Take the maximum of the ratios

5 ϵ is the (natural) log of that
maximum.
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Module outline

8 The Dinur-Nissim reconstruction attack

9 Introduction to Differential Privacy

10 Properties of Differential Privacy

11 Differentially Private Mechanisms
Laplace mechanism
Randomized Response
Discrete mechanisms

12 Recap and Practice
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Recap: Differential Privacy

Dinur-Nissim: shows why naive noise addition does not protect against database reconstruction attacks.

You need to know how to run the attack

Differential privacy: ensures the adversary doesn’t gain a lot of new information about a user.

Definition: ensures the output probability distribution does not change much when changing the
input a bit.
DP interpretation as a game: shows that DP assumes a worst-case strong adversary, and gives
insight into the privacy that different values of ϵ provide.

Properties:

Robustness to post-processing. (!)
Group privacy.
Sequential composition. (!)
Parallel composition.

DP mechanisms:

Laplacian (compute sensitivities ∆f , know that b = ∆f /ϵ gives ϵ-DP)
Randomized response (how to compute ϵ and do basic statistical analyses)
Discrete mechanisms (how to compute ϵ)
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Problem 1: computing b in the Laplace mechanism

Q: Find the (smallest) parameter b of the Laplace mechanism that you need to choose to provide ϵ-DP
(assume the “bounded DP” setting) in the following settings. Explain your choices.

1 The dataset has n users, and the analyst wants to learn how many users have tested positive in a test for
VIRUS X.

2 The dataset has n users, and the adversary wants to learn the sum of all the salaries. Salaries range from
$10 000 to $100 000.

3 The dataset has n users, and the adversary wants to learn the average of all the salaries. Salaries range
from $10 000 to $100 000.

Remember, for a query with sensitivity ∆f = maxD,D′ |f (D)− f (D ′)|, if we add
Laplacian noise with b = ∆f /ϵ, we provide ϵ-DP.
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Problem 2: using the properties of DP

Q: We have a dataset with attributes Name and VIRUS. The attribute VIRUS is either Pos (the user tested
positive for the virus) or Neg (negative) The dataset has n users (one row per user).
The data curator returns answers to the analyst by adding Laplacian noise with b = 1 to the true answer.

1 The data analyst asks for the total number of users that tested positive for the virus. What is the value of
ϵ that the mechanism (adding Laplacian noise with b = 1) provides?

2 The data analyst asks for the total number of users that tested positive for the virus. Then, they ask
again for the total number of users that positive for the virus. What is the ϵ after observing these two
responses?

3 The data analyst asks for the total number of users that tested positive for the virus. Then, they ask for
the total number of users that tested negative for the virus. What is the ϵ after observing these two
responses?

Remember, for a query with sensitivity ∆f = maxD,D′ |f (D)− f (D ′)|, if we add
Laplacian noise with b = ∆f /ϵ, we provide ϵ-DP.
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Problem 3: modified randomized response

Q: To report their VIRUS X test results in a differentially private way, citizens of a small town (5 000
residents) use the following modified version of randomized response.

1 Does this provide ϵ-DP? If so, compute the (smallest) ϵ it provides. If not, explain why.

2 A total of 1 500 citizens have reported a POS* result. Give an estimate of the true number of citizens that
have tested positive using the average-based estimator seen in the classroom.
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Problem 4: randomized response with a biased coin

Q: Alice runs randomized response but her coin is biased, and has a slightly lower probably of heads
(Pr(heads) = 0.4, in both coin flips).

1 Does this provide ϵ-DP? If so, compute the (smallest) ϵ it provides. If not, explain why.

2 Does this provide more or less differential privacy than the version of randomized response with an
unbiased coin? Explain why.

3 Alice reports her noisy value to the analyst. The analyst complains that the mechanism is too noisy, and
requests Alice to re-run the mechanism again. Alice does so, providing the analyst with a second output.
Is still Alice protected with the same level of ϵ-DP as in point 1?

183 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

184 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Problem 5: 3-to-2 mechanism

Q:

Trent has designed the following mechanism, that he calls 3-to-2, to
report an individual’s vaccine status in a privacy-preserving way:

1 Does this provide ϵ-DP? If so, compute the (smallest) ϵ it
provides. If not, explain why.

Alice complains that this mechanism is not private enough. She proposes
to re-randomize the output, by performing the following randomized
response after the 3-to-2 mechanism, and calls the mechanism 3-to-2+:

3 Without doing any math: can 3-to-2+ provide a worse DP level
than 3-to-2?

4 Does 3-to-2+ provide ϵ-DP? If so, compute the (smallest) ϵ it
provides. If not, explain why.

3-to-2

3-to-2+ add-on
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Problem 6: generalized randomized response

Q: The following mechanism is an extension of randomized response to a scenario where the input and output
spaces are discrete and contain n elements. In this example, X = R are points of interest in a town. When the
user is in location xi , they report location ri with probability p, and otherwise report any other location in the
map (with the same probability).

1 Consider the case where n = 2. What the ϵ-DP level that this mechanism provide (you can assume
p > 0.5, and need to give a general expression of ϵ as a function of p).

2 Now consider that general case, where n > 2. You can assume that p > 1/n. Give a general expression of
ϵ in this case (as a function of p and n).

3 Check that, when n = 2 and p = 0.75, we should get the ϵ seen in the classroom for the unbiased-coin
randomized response.
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Solutions

The following is a list of solutions for these problems.

If you have any questions about this, please ask on Piazza or come to office hours.
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Problem 1: Solution

A: We just use b = ∆f /ϵ.

1 The sensitivity of a count query is 1, so b = 1/ϵ.

2 The sensitivity of the sum salary query is the maximum difference between
salaries, so b = 90 000/ϵ.

3 The sensitivity of the average query (in the bounded DP notion) is 90 000/n, so
b = 90 000/nϵ.
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Problem 2: Solution

A: We just use b = ∆f /ϵ ⇒ ϵ = ∆f /b.

1 The sensitivity of a count query is 1, and b = 1, so ϵ = 1.

2 This is sequential composition: they are asking two queries that depend on the
same data, so the new ϵ is the sum of the ϵ of both queries, i.e., 2.

3 The is again sequential composition: both queries depend on the whole dataset. ϵ
is also 2.
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Problem 3: Solution

A:

1 It provides DP. The highest ratio in an output is 0.6/0.2 = 3, and therefore
ϵ = log 3.

2 We use the formula:

E{POS*} = Pr(POS) · 0.6 + Pr(NEG) · 0.2

Now, since Pr(NEG) = 1− Pr(POS), and using the approximation
E{POS*} ≈ 1 500/5 000 = 0.3, we can solve for Pr(POS) and we get 0.25.
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Problem 4: Solution

A:

1 It does provide DP. We first compute the probabilities Pr(R|X ):

Pr(0|0) = 0.76,Pr(1|0) = 0.24, Pr(0|1) = 0.16,Pr(1|1) = 0.84

Then,

ϵbRR = log

(
max

{
0.84

0.24
,
0.76

0.16

})
≈ 1.56 .

2 For standard randomized response, we got ϵRR ≈ 1.10, so this biased-RR provides
less privacy (higher ϵ).

3 No, Alice has answered two queries using an ϵbRR -DP mechanism, so reporting
those answers provides ϵ = 2ϵbRR ≈ 3.12 DP.

193 / 195



Dinur-Nissim Differential Privacy DP Properties DP Mechanisms DP Practice

Problem 5: Solution

A:
1 The mechanism does not provide DP! Note that Pr(UNP|DOSE2) = 0 but, for example,

Pr(UNP|UNVAX) = 0.5. When computing probability ratios for this output, we will get a 0.5/0, so ϵ → ∞,
which means it does not provide DP.

2 It cannot provide a worse DP level, because 3-to-2 is already non-DP (ϵ → ∞). However, even if it was
ϵ-DP, adding an extra randomized function would not make it less private (robustness to post-processing)

3 We need to compute the new probabilities of this mechanism. Doing some basic math, we get that the
3-to-2+ can be written as follows:

This means that ϵ = log(0.5/0.2) ≈ 0.92.
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Problem 6: Solution

A:

1 When n = 2, then we have that

ϵ = logmax

(
p

1− p
,
1− p

p

)
Since p > 0.5, then p > (1− p), so ϵ = log(p/(1− p)).

2 Pr(R = ri |X = xi ) = p, and since all the red arrows have the same probability,
Pr(R = ri |X ̸= xi ) = (1− p)/(n − 1).

Since p > 1/n, then Pr(R = ri |X = xi ) > Pr(R = ri |X ̸= xi ), and we get

ϵ = log

(
Pr(R = ri |X = xi )

Pr(R = ri |X ̸= xi )

)
= log

(
p(n − 1)

(1− p)

)
.

3 When n = 2 and p = 0.75, we get ϵ = log(0.75/0.25) = log 3, which is the result we saw
with unbiased RR. 195 / 195
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