
CS 458 / 658
Computer Security and Privacy

Module 5
Internet Application Security and Privacy

Winter 2019



5-2

Module outline

1 Basics of cryptography

2 Types of cryptosystems

3 Integrity

4 Authentication



5-3

Module outline

5 Security controls using cryptography

6 Cryptography in network security



5-4

Module outline

1 Basics of cryptography

2 Types of cryptosystems

3 Integrity

4 Authentication



5-5

Threats to messages

• Interception

• Interruption

• Modification

• Fabrication



5-6

Cryptography

• What is cryptography?
• Cryptography (“secret writing”) is the art/science of

keeping messages secure.
• Turning plaintext (an ordinary readable message) into

ciphertext (secret messages that are “hard” to read)
• The point of cryptography is to send secure messages

over an insecure medium (like the Internet)

• Related field:
• Cryptanalysis: the art/science of secret messages

breaking
• Recovering the plaintext from the ciphertext

• Cryptology: the art/science of studying both.



5-7

Basic cryptographic scheme

Encryption
Encoding,
Enciphering

Decryption
Decoding,
Deciphering

plaintext

P

ciphertext

C

original
plaintext

P

• P = 〈p1, p2, . . . , pn〉
• P = ”DO NOT TELL ANYBODY” p1 = ”D”,

p2 = ”O”, etc.

• C = 〈c1, c2, . . . , cn〉
• C = ”ep opu ufmm bozcpez” c1 = ”e”, c2 = ”p”, etc.



5-8

Benefits of cryptography

• Adds an envelope (encoding) to an open postcard
(plaintext).

Figure: [cf. L. Lilien, Western Michigan University]



5-9

The scope of these lectures

• The goal of the cryptography unit in this course is
to show you what cryptographic tools exist, and
information about using these tools in a secure
manner
• We won’t be showing you details of how the tools

work
• For that, see CO 487, or chapter 12 of the text

• The overview of public-key encryption and digital
signatures in the textbook is poor.



5-10

Message cryptosystem, formal notation

plaintext Encryption ciphertext

ciphertext Decryption plaintext

• Two functions:
• Enc(M : byte[])→ C : byte[]
• Dec(C : byte[])→ M : byte[]

• Correctness: for all possible plaintext M ,
Dec(Enc(M)) = M .

• Security: for all possible C = Enc(M), it is
”hard” to learn anything interesting about M .



5-11

Dramatis personae

• When talking about cryptography, we often use a
standard cast of characters
• Alice, Bob, Carol, Dave

• People (usually honest) who wish to communicate

• Trent
• A Trusted Third Party



5-12

Dramatis personae

• Eve
• A passive eavesdropper

• Mallory
• An active Man-In-The-Middle

Figure: [cf. D. Evans, University of Virginia]



5-12

Dramatis personae
• Eve

• A passive eavesdropper, who can listen to any
transmitted messages

• Mallory
• An active Man-In-The-Middle, who can listen to, and

modify, insert, or delete transmitted messages

Figure: [cf. D. Evans, University of Virginia]



5-13

Building blocks
• Cryptography contains three major types of

components:

• Confidentiality components

• Preventing Eve from
reading Alice’s messages

• Integrity components

• Preventing Mallory from
modifying Alice’s
messages without being
detected

• Authenticity components

• Preventing Mallory from
impersonating Alice

Cryptography 
Components

Confidentiality 
components

Authenticity 
components

Integrity 
components



5-14

Kerckhoffs’ principle (19th c.)

Figure: [cf. D. Evans University of Virginia]

• All crypto algorithms must be public; Only the
keys are secret
• The security of a cryptosystem should not rely on

a secret that’s hard (or expensive) to change



5-15

Kerckhoffs’ principle (19th c.)

• A cryptosystem should be secure even if
everything about the system, except the key, is
public knowledge.

• ”The enemy knows the system”, reformulation of
Kerckhoffs’ principle by American mathematician
Claude Shannon.



5-16

Kerckhoffs’ principle (19th c.)

• Then what do we do?
• Have a large class of encryption methods, instead

• Hopefully, they’re all equally strong

• Make the class public information

• Use a secret key to specify which one you’re using

• It’s easy to change the key; it’s usually just a
smallish number



5-17

Kerckhoffs’ principle (19th c.)

• This has a number of implications:
• The system is at most as secure as the number of keys
• Eve can just try them all, until she finds the right one
• A strong cryptosystem is one that

• has a large keyspace, as mentioned above. It has a
reasonably large unicity distance.

• will certainly produce ciphertext which appears random
to all standard statistical tests.

• will resist all known previous attacks.



5-18

Strong cryptosystems

• What information do we assume the attacker
(Eve) has when she’s trying to break our system?
• She may:

• Know the algorithm (the public class of encryption
methods)

• Know some part of the plaintext
• Know a number (maybe a large number) of

corresponding plaintext/ciphertext pairs
• Have access to an encryption and/or decryption oracle

• And we still want to prevent Eve from learning the
key!



5-19

Module outline

1 Basics of cryptography

2 Types of cryptosystems

3 Integrity

4 Authentication



5-20

Types of cryptosystems

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-20

Types of cryptosystems

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-21

Secret-key encryption

• Secret-key encryption is the simplest form of
cryptography

• Also called symmetric encryption

• Used for thousands of years

• The key Alice uses to encrypt the message is the
same as the key Bob uses to decrypt it

Encrypt Decrypt
P C P

K K



5-22

Secret-key encryption

• Eve, not knowing the key, should not be able to
recover the plaintext

Encrypt Decrypt
? C ?



5-23

Perfect secret-key encryption
• Is it possible to make a completely unbreakable

cryptosystem?

• Yes: the One-Time Pad

Encrypt Decrypt

One-Time Pad One-Time Pad

plaintext

P

ciphertext

C

plaintext

P

• It’s also very simple:
• The key is a truly random bitstring of the same length

as the message
• The “Encrypt” and “Decrypt” functions are each just

XOR



5-24

One-time pad

Encrypt Decrypt

One-Time Pad One-Time Pad

plaintext

P

ciphertext

C

plaintext

P

• Q: Why does “try every key” not work here?
• It’s very hard to use correctly

• The key must be truly random, not pseudorandom
• The key must never be used more than once!

• A “two-time pad” is insecure!

• Q: How do you share that much secret key?

• Used in the Washington / Moscow hotline for
many years



5-25

Computational security
• In contrast to OTP’s “perfect” or

“information-theoretic” security, most
cryptosystems have “computational” security
• This means that it’s certain they can be broken, given

enough work by Eve

• How much is “enough”?
• Claude Shannon’s criteria (1949):

• Needed degree of secrecy should determine amount of
labor

• How long does the data need to stay secret?

• At worst, Eve tries every key
• How long that takes depends on how long the keys are
• But it only takes this long if there are no “shortcuts”!



5-26

Some data points

• One computer can try about 17 million keys per
second

• A medium-sized corporate or research lab may
have 100 computers
• The BOINC project has 13 million computers

Berkeley Open Infrastructure
for Network Computing

• Remember that most computers are idle most of
the time (they’re waiting for you to type
something); getting them to crack keys in their
spare time doesn’t actually cost anything extra



5-27

40-bit crypto

• 40-bit encryption refers to a key size of forty bits,
or five bytes, for symmetric encryption; this
represents a relatively low level of security.

• This was the US legal export limit for a long time

• 240 = 1,099,511,627,776 possible keys

• One computer: 18 hours

• One lab: 11 minutes

• BOINC: 5 ms



5-28

56-bit crypto

• This was the US government standard (DES) for
a long time

• 256 = 72,057,594,037,927,936 possible keys

• One computer: 134 years

• One lab: 16 months

• BOINC: 5 minutes



5-29

Cracking DES

“DES cracker” machine of Electronic Frontier Foundation



5-30

128-bit crypto

• This is the modern standard

• 2128 = 340,282,366,920,938,463,463,374,607,
431,768,211,456 possible keys

• One computer: 635 thousand million million
million years

• One lab: 6 thousand million million million years

• BOINC: 49 thousand million million years



5-31

Moor’s law

• The number of transistors you can place on a
substrate doubles every two years.

• Computing speed doubles every 18 months

• True since 1960



5-32

Well, we cheated a bit

• This isn’t really true, since computers get faster
over time
• A better strategy for breaking 128-bit crypto is just to

wait until computers get 288 times faster, then break it
on one computer in 18 hours.

• How long do we wait? Moore’s law says 132 years.

• If we believe Moore’s law will keep on working, we’ll
be able to break 128-bit crypto in 132 years (and 18
hours) :-)
• Q: Do we believe this?



5-33

An even better strategy

• Don’t break the crypto at all!

• There are always weaker parts of the system to
attack

• Remember the Principle of Easiest Penetration:
• Eve must be expected to use any available means of

penetration.

• The point of cryptography is to make sure the
information transfer is not the weakest link



5-34

Rubber hose cryptanalysis



5-35

Types of secret-key cryptosystems

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-35

Types of secret-key cryptosystems

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-36

Stream ciphers

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-37

Stream ciphers
• A stream cipher is what you get if you take the

One-Time Pad, but use a pseudorandom
keystream instead of a truly random one

• Stream cipher: 1 char from plaintext −→ 1 char for
ciphertext.

Pseudorandom
Keystream
Generator

XOR

Plaintext

Ciphertext

Keystream

• RC4 is the most commonly used stream cipher on
the Internet today but it is deprecated



5-38

Stream ciphers
• Stream ciphers can be very fast

• This is useful if you need to send a lot of data securely

• But they can be tricky to use correctly!

• What happens if you use the same key to encrypt two
different messages?

• How would you solve this problem without requiring a
new shared secret key for each message? Where have
we seen this technique before?

• WEP, PPTP are great examples of how not to use
stream ciphers



5-39

Block ciphers

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-40

Block ciphers

• Note that stream ciphers operate on the message
one bit at a time

• What happens in a stream cipher if you change
just one bit of the plaintext?

• We can also use block ciphers
• Block ciphers operate on the message one block at a

time
• Blocks are usually 64 or 128 bits long

• AES is the block cipher everyone should use today
• Unless you have a really, really good reason



5-41

AES




5-42

Modes of operation

• Block ciphers work like this:

Encrypt

1 block of plaintext

1 block of ciphertext

• But what happens when the plaintext is larger
than one block?
• The choice of what to do with multiple blocks is called

the mode of operation of the block cipher



5-43

Modes of operation

• The simplest thing to do is just to encrypt each
successive block separately.
• This is called Electronic Code Book (ECB) mode

• But if there are
repeated blocks in the
plaintext, you’ll see
the same repeating
patterns in the
ciphertext:



5-44

Modes of operation

• There are much better modes of operation to
choose from
• Common ones include Cipher Block Chaining (CBC),

Counter (CTR), and Galois Counter (GCM) modes

• Patterns in the
plaintext are no longer
exposed

• But you need an IV
(Initial Value), which
acts much like a salt



5-45

Key exchange

• How do Alice and Bob share the secret key?

• Meet in person; diplomatic courier
• In general this is very hard

• Or, we invent new technology...



5-46

Public key cryptography

Cryptosystems

Secret Key (Symetric) Public Key (Asymetric)

Stream Ciphers Block Ciphers



5-47

Public-key cryptography

• Invented (in public) in the 1970’s
• Also called asymmetric cryptography

• Allows Alice to send a secret message to Bob without
any prearranged shared secret!

• In secret-key cryptography, the same (or a very
similar) key encrypts the message and also decrypts it

• In public-key cryptography, there’s one key for
encryption, and a different key for decryption!

• Some common examples:
• RSA, ElGamal, ECC, NTRU, McEliece



5-48

Public-key cryptography

• How does it work?
• Bob gives everyone a copy of his public encryption key.

Alice uses it to encrypt a message, and sends the
encrypted message to Bob

• Bob uses his private decryption key to decrypt the
message.
• Eve can’t decrypt it; she only has the encryption key.
• Neither can Alice!

• So with this, Alice just needs to know Bob’s
public key in order to send him secret messages
• These public keys can be published in a directory

somewhere



5-49

Public-key cryptography

Encrypt Decrypt
P C P

D

E

E



5-50

Public key sizes

• Recall that if there are no shortcuts, Eve would
have to try 2128 things in order to read a message
encrypted with a 128-bit key
• Unfortunately, all of the public-key methods we

know do have shortcuts
• Eve could read a message encrypted with a 128-bit

RSA key with just 233 work, which is easy!
• If we want Eve to have to do 2128 work, we need to

use a much longer public key



5-51

Public key sizes

Comparison of key sizes for roughly equal strength

AES RSA ECC

80 1024 160
116 2048 232
128 2600 256
160 4500 320
256 14000 512



5-52

Hybrid cryptography

• In addition to having longer keys, public-key
cryptography takes a long time to calculate (as
compared to secret-key cryptography)
• Using public-key to encrypt large messages would be

too slow, so we take a hybrid approach:
• Pick a random 128-bit key K for a secret-key

cryptosystem
• Encrypt the large message with the key K (e.g., using

AES)
• Encrypt the key K using a public-key cryptosystem
• Send the encrypted message and the encrypted key to

Bob

• This hybrid approach is used for almost every
cryptography application on the Internet today



5-53

Is that all there is?

• It seems we’ve got this “sending secret messages”
thing down pat. What else is there to do?



5-54

Is that all there is?

• It seems we’ve got this “sending secret messages”
thing down pat. What else is there to do?

• Even if we’re safe from Eve reading our messages,
there’s still the matter of Mallory

• It turns out that even if our messages are encrypted,
Mallory can sometimes modify them in transit!

• Mallory won’t necessarily know what the message says,
but can still change it in an undetectable way
• e.g. bit-flipping attack on stream ciphers

• This is counterintuitive, and often forgotten
• The textbook even gets this wrong!

• How do we make sure that Bob gets the same
message Alice sent?



5-55

Which components should we consider?

Cryptography 
Components

Confidentiality 
components

Authenticity 
components

Integrity 
components



5-56

Module outline

1 Basics of cryptography

2 Types of cryptosystems

3 Integrity

4 Authentication



5-57

Integrity components

Cryptography 
Components

Confidentiality 
components

Authenticity 
components

Integrity 
components



5-58

Integrity components

• How do we tell if a message has changed in
transit?
• Simplest answer: use a checksum

• For example, add up all the bytes of a message
• The last digits of serial numbers (credit card, ISBN,

etc.) are usually checksums
• Alice computes the checksum of the message, and

sticks it at the end before encrypting and sending it to
Bob. When Bob receives the message and checksum,
he verifies that the checksum is correct



5-59

This doesn’t work!

• With most checksum methods, Mallory can easily
change the message in such a way that the
checksum stays the same

• We need a “cryptographic” checksum

• It should be hard for Mallory to find a second
message with the same checksum as any given one



5-60

Cryptographic hash functions

• A hash function h takes an arbitrary length string
x and computes a fixed length string y = h(x)
called a message digest
• Common examples: MD5, SHA-1, SHA-2, SHA-3

(AKA Keccak, from 2012 on)

• Hash functions should have three properties:
• Preimage-resistance:

• Given y , it’s hard to find x such that h(x) = y (i.e., a
“preimage” of x)

• Second preimage-resistance:
• Given x , it’s hard to find x ′ 6= x such that h(x) = h(x ′)

(i.e., a “second preimage” of h(x))
• Collision-resistance:

• It’s hard to find any two distinct values x , x ′ such that
h(x) = h(x ′) (a “collision”)



5-61

What is “hard”?

• For SHA-1, for example, it takes 2160 work to find
a preimage or second preimage, and 280 work to
find a collision using a brute-force search
• However, there are faster ways than brute force to find

collisions in SHA-1 or MD5

• Collisions are always easier to find than preimages
or second preimages due to the well-known
birthday paradox



5-62

Cryptographic hash functions

• You can’t just send an unencrypted message and
its hash to get integrity assurance
• Even if you don’t care about confidentiality!

• Mallory can change the message and just compute
the new message digest herself



5-63

Cryptographic hash functions

• Hash functions provide integrity guarantees only
when there is a secure way of sending and/or
storing the message digest
• For example, Bob can publish a hash of his public key

(i.e., a message digest) on his business card
• Putting the whole key on there would be too big
• But Alice can download Bob’s key from the Internet,

hash it herself, and verify that the result matches the
message digest on Bob’s card

• What if there’s no external channel to be had?
• For example, you’re using the Internet to communicate



5-64

Module outline

1 Basics of cryptography

2 Types of cryptosystems

3 Integrity

4 Authentication



5-65

Authenticity components

Cryptography 
Components

Confidentiality 
components

Authenticity 
components

Integrity 
components



5-66

Message authentication codes

• We do the same trick as for encryption: have a
large class of hash functions, and use a shared
secret key to pick the “correct” one

• Only those who know the secret key can generate,
or even check, the computed hash value
(sometimes called a tag)

• These “keyed hash functions” are usually called
Message Authentication Codes, or MACs
• Common examples:

• SHA-1-HMAC, SHA-256-HMAC, CBC-MAC



5-67

Message authentication codes

MAC

MAC

M

T =?

K K



5-68

Combining ciphers and MACs

• In practice we often need both confidentiality and
message integrity
• There are multiple strategies to combine a cipher

and a MAC when processing a message
• Encrypt-then-MAC, MAC-then-Encrypt,

Encrypt-and-MAC

• Encrypt-then-MAC is the recommended strategy
• Ideally your crypto library already provides an

authenticated encryption mode that securely
combines the two operations so you don’t have to
worry about getting it right
• E.g., GCM, CCM (used in WPA2, see later), or OCB

mode



5-69

Repudiation

• Suppose Alice and Bob share a MAC key K , and
Bob receives a message M along with a valid tag
T that was computed using the key K
• Then Bob can be assured that Alice is the one who

sent the message M , and that it hasn’t been modified
since she sent it!

• This is like a “signature” on the message
• But it’s not quite the same!
• Bob can’t show M and the tag T to Carol to prove

Alice sent the message M



5-70

Repudiation

• Alice can just claim that Bob made up the
message M , and calculated the tag T himself

• This is called repudiation; and we sometimes want
to avoid it
• Some interactions should be repudiable

• Private conversations

• Some interactions should be non-repudiable
• Electronic commerce



5-71

Digital signatures

• For non-repudiation, what we want is a true
digital signature, with the following properties:
• If Bob receives a message with Alice’s digital

signature on it, then:
• Alice, and not an impersonator, sent the message (like

a MAC)
• the message has not been altered since it was sent

(like a MAC), and
• Bob can prove these facts to a third party (additional

property not satisfied by a MAC).

• How do we arrange this?
• Use similar techniques to public-key cryptography



5-72

Making digital signatures

• Remember public-key crypto:
• Separate keys for encryption and decryption
• Give everyone a copy of the encryption key
• The decryption key is private

• To make a digital signature:
• Alice signs the message with her private signature key

• To verify Alice’s signature:
• Bob verifies the message with his copy of Alice’s

public verification key
• If it verifies correctly, the signature is valid



5-73

Making digital signatures

Sign
Verify

M

Sig T/F

V V

S



5-74

Hybrid signatures

• Just like encryption in public-key crypto, signing
large messages is slow
• We can also hybridize signatures to make them

faster:
• Alice sends the (unsigned) message, and also a

signature on a hash of the message
• The hash is much smaller than the message, and so it

is faster to sign and verify

• Remember that authenticity and confidentiality
are separate; if you want both, you need to do
both



5-75

Combining public-key encryption and
digital signatures
• Alice has two different key pairs: an (encryption,

decryption) key pair and a (signature, verification)
key pair
• So does Bob

• Alice uses Bob’s encryption key to encrypt a
message destined for Bob
• She uses her signature key to sign the ciphertext
• Bob uses Alice’s verification key to check the

signature
• He uses his decryption key to decrypt the

ciphertext
• Similarly for reverse direction



5-76

Relationship between key pairs

• Alice’s (signature, verification) key pair is
long-lived, whereas her (encryption, decryption)
key pair is short-lived
• Gives perfect forward secrecy (see later)

• When creating a new (encryption, decryption) key
pair, Alice uses her signing key to sign her new
encryption key and Bob uses Alice’s verification
key to verify the signature on this new key

• If Alice’s communication with Bob is interactive,
she can use secret-key encryption and does not
need an (encryption, decryption) key pair at all
(see TLS or SSH)



5-77

The Key Management Problem

• One of the hardest problems of public-key
cryptography is that of key management
• How can Bob find Alice’s verification key?

• He can know it personally (manual keying)
• SSH does this

• He can trust a friend to tell him (web of trust)
• PGP does this

• He can trust some third party to tell him (CA’s)
• TLS / SSL do this



5-78

Certificate authorities

• A CA is a trusted third party who keeps a directory
of people’s (and organizations’) verification keys

• Alice generates a (signature, verification) key pair,
and sends the verification key, as well as a bunch
of personal information, both signed with Alice’s
signature key, to the CA

• The CA ensures that the personal information and
Alice’s signature are correct

• The CA generates a certificate consisting of
Alice’s personal information, as well as her
verification key. The entire certificate is signed
with the CA’s signature key



5-79

Certificate authorities

• Everyone is assumed to have a copy of the CA’s
verification key, so they can verify the signature
on the certificate
• There can be multiple levels of certificate

authorities; level n CA issues certificates for level
n+1 CAs
• Public-key infrastructure (PKI)

• Need to have only verification key of root CA to
verify certificate chain



5-80

Putting it all together

• We have all these blocks; now what?

• Put them together into protocols

• This is HARD. Just because your pieces all work,
doesn’t mean what you build out of them will; you
have to use the pieces correctly
• Common mistakes include:

• Using the same stream cipher key for two messages
• Assuming encryption also provides integrity
• Falling for replay attacks or reaction attacks
• LOTS more!



5-81

Module outline

5 Security controls using cryptography

6 Cryptography in network security



5-82

Security controls using cryptography

• Q: In what situations might it be appropriate to
use cryptography as a security control?

• A: Remember that there needs to be some
separation, since any secrets (like the key) need to
be available to the legitimate users but not the
adversaries

• In some situations, this may make secret-key
crypto problematic

• If your web browser can decrypt its file containing
your saved passwords, then an adversary who can
read your web browser probably can, too

• Q: How is this solved in practice?



5-83

Program and OS security

• Using secret-key crypto can be problematic for the
above reason

• But public-key is OK, if the local machine only needs
access to the public part of the key

• So only encryption and signature verification; no
decryption or signing

• E.g., apps can be installed only if digitally signed by
the vendor (BlackBerry) or upgraded only if signed by
the original developer (Android)

• OS may allow execution of programs only if signed
(iOS)



5-84

Encrypted code

• There is research into processors that will only
execute encrypted code

• The processor will decrypt instructions before
executing them

• The decryption key is processor-dependent

• Malware won’t be able to spread without knowing
a processor’s key

• Downsides?



5-85

Encrypted data

• Harddrive encryption protects data when laptop
gets lost/stolen

• It often does not protect data against other users
who legitimately use laptop

• Or somebody installing malware on laptop

• Or somebody (maybe physically) extracting the
decryption key from the laptop’s memory



5-86

OS authentication

• Authentication mechanisms often use
cryptography
• E.g., salted hashes (see Module 3)

• Unfortunately, people are bad at doing
cryptography in their heads, so some mechanisms
require hardware token

Photo from http://itc.ua/

http://itc.ua/


5-87

Module outline

5 Security controls using cryptography

6 Cryptography in network security



5-88

Network security and privacy

• Network cryptography is used at every layer of the
network stack for both security and privacy
applications:
• Link

• WEP, WPA, WPA2
• Network

• VPN, IPsec
• Transport

• TLS / SSL, Tor
• Application

• ssh, Mixminion, PGP, OTR



5-89

Link-layer security controls

• Intended to protect local area networks

• Widespread example: WEP (Wired Equivalent
Privacy)
• WEP was intended to enforce three security goals:

• Confidentiality
• Prevent an adversary from learning the contents of your

wireless traffic
• Access Control

• Prevent an adversary from using your wireless
infrastructure

• Data Integrity

• Unfortunately, none of these is actually enforced!



5-90

WEP description

IV IV

Shared Secret Key

Encrypt Decrypt

RC4 RC4

keystream keystream

24-bit IV Shared Secret Key 24-bit IV Shared Secret Key

24-bit IV

K K

plaintext,checksum

〈M ,C (M)〉
ciphertext

C

plaintext,checksum

〈M ,C (M)〉



5-91

Problem number 0: Widely shared
“secrets”

http://www.theregister.co.uk/2014/06/25/brace_yourselves_brazil_dill_in_world_cup_wifi_spill/

http://www.theregister.co.uk/2014/06/25/brace_yourselves_brazil_dill_in_world_cup_wifi_spill/


5-92

WEP description

• Brief description:
• The sender and receiver share a secret k

• The secret k is either 40 or 104 bits long

• In order to transmit a message M :
• Compute a checksum c(M)

• this does not depend on k

• Pick an IV (a random number) v and generate a
keystream RC4(v , k)

• XOR 〈M , c(M)〉 with the keystream to get the
ciphertext

• Transmit v and the ciphertext over the wireless link



5-93

WEP description

• Upon receipt of v and the ciphertext:
• Use the received v and the shared k to generate the

keystream RC4(v , k)
• XOR the ciphertext with RC4(v , k) to get 〈M ′, c ′〉
• Check to see if c ′ = c(M ′)
• If it is, accept M ′ as the message transmitted

• Problem number 1: v is 24 bits long
• Why is this a problem?



5-94

WEP data integrity

• Problem 2: the checksum used in WEP is CRC-32
• Quite a poor choice; there’s already a CRC in the

protocol to detect random errors, and a CRC can’t
help you protect against malicious errors.

• The CRC has two important properties:
• It is independent of k and v
• It is linear: c(M XOR D) = c(M) XOR c(D)

• Why is linearity a pessimal property for your
integrity mechanism to have when used in
conjunction with a stream cipher?



5-95

WEP access control

• What if the adversary wants to inject a new
message F onto a WEP-protected network?

• All he needs is a single plaintext/ciphertext pair

• This gives him a value of v and the corresponding
keystream RC4(v , k)

• Then C ′ = 〈F , c(F )〉 XOR RC4(v , k), and he
transmits v ,C ′

• C ′ is in fact a correct encryption of F , so the
message must be accepted



5-96

WEP authentication protocol

• How did the adversary get that single
plaintext/ciphertext pair required for the attack
on the previous slide?
• Problem 3: It turns out the authentication protocol

gives it to the adversary for free!

• This is a major disaster in the design!

• The authentication protocol (described on the
next slide) is supposed to prove that a certain
client knows the shared secret k
• But if I watch you prove it, I can turn around and

execute the protocol myself!
• “What’s the password?”



5-97

WEP authentication protocol

• Here’s the authentication protocol:
• The access point sends a challenge string to the client
• The client sends back the challenge, WEP-encrypted

with the shared secret k
• The wireless access point checks if the challenge is

correctly encrypted, and if so, accepts the client

• So the adversary has just seen both the plaintext
and the ciphertext of the challenge

• Problem number 4: this is enough not only to
inject packets (as in the previous attack), but also
to execute the authentication protocol himself!



5-98

WEP decryption

• Somewhat surprisingly, the ability to modify and
inject packets also leads to ways the adversary can
decrypt packets!
• The access point knows k ; it turns out the adversary

can trick it into decrypting the packet for him and
telling him the result.

• Note that none of the attacks so far:
• Used the fact that the stream cipher was RC4

specifically
• Recovered k



5-99

Recovering a WEP key

• Since 2002, there have been a series of analyses of
RC4 in particular
• Problem number 5: it turns out that when RC4 is

used with similar keys, the output keystream has a
subtle weakness
• And this is (often) how WEP uses RC4!

• These observations have led to programs that can
recover either a 104-bit or 40-bit WEP key in
under 60 seconds, most of the time
• See the optional reading for more information on this



5-100

Replacing WEP

• Wi-fi Protected Access (WPA) was rolled out as a
short-term patch to WEP while formal standards
for a replacement protocol (IEEE 802.11i, later
called WPA2) were being developed
• WPA:

• Replaces CRC-32 with a real MAC (here called a MIC
to avoid confusion with a Media Access Control
address)

• IV is 48 bits
• Key is changed frequently (TKIP)
• Ability to use 802.1x authentication server

• But maintains less-secure PSK (Pre-Shared Key) mode
for home users

• Able to run on most older WEP hardware



5-101

Replacing WEP

• The 802.11i standard was finalized in 2004, and
the result (called WPA2) has been required for
products calling themselves “Wi-fi” since 2006

• WPA2:
• Replaces the RC4 and MIC algorithms in WPA with

the CCM authenticated encryption mode (using AES)
• Considered strong, except in PSK mode

• Dictionary attacks still possible



5-102

Network-layer security

• Suppose every link in our network had strong
link-layer security

• Why would this not be enough?

• We need security across networks
• Ideally, end-to-end

• At the network layer, this is usually accomplished
with a Virtual Private Network (VPN)



5-103

Virtual Private Networks

• Connect two (or more) networks that are
physically isolated, and make them appear to be a
single network
• Alternately: connect a single remote host (often a

laptop) to one network

• Goal: adversary between the networks should not
be able to read or modify the traffic flowing across
the VPN
• But DoS and some traffic analysis still usually possible



5-104

Setting up a VPN

• One host on each side is the VPN gateway
• Could be the firewall itself, or could be in DMZ
• In the laptop scenario, it will of course be the laptop

itself on its side

• Traffic destined for the “other side” is sent to the
local VPN gateway
• The local VPN gateway uses cryptography

(encryption and integrity techniques) to send the
traffic to the remote VPN gateway
• Often by tunnelling (see next slide)

• The remote VPN gateway decrypts the messages
and sends them on to their appropriate
destinations



5-105

Tunnelling
• Tunnelling is the sending of messages of one protocol

inside (that is, as the payload of) messages of another
protocol, out of their usual protocol nesting sequence

• So TCP-over-IP is not tunnelling, since you’re
supposed to send TCP (a transport protocol) over IP
(a network protocol; one layer down in the stack)

• But IP-over-TCP is tunnelling (going up the stack
instead of down), as are IP-over-IP (same place in the
stack), and PPP (a link layer protocol; bottom of the
stack) over DNS (an application layer protocol; top of
the stack)



5-106

IPsec

• One standard way to set up a VPN is by using
IPsec

• Many corporate VPNs use this (open) protocol
• Two modes:

• Transport mode
• Useful for connecting a single laptop to a home network
• Only the contents of the original IP packet are encrypted

and authenticated
• Tunnel mode

• Useful for connecting two networks
• The contents and the header of the original IP packet are

encrypted and authenticated; result is placed inside a
new IP packet destined for the remote VPN gateway



5-107

Other styles of VPNs

• In addition to IPsec, there are a number of other
standard ways to set up a VPN

• Microsoft’s PPTP was an older protocol
• It had about as many design flaws as WEP
• Most users now migrating to IPsec

• VPNs based on ssh
• Tunnel PPP over ssh

• That is, IP-over-PPP-over-ssh-over-TCP-over-IP
• Some efficiency concern, but extremely easy to set up on

a standard Unix/Linux box

• OpenSSH v4 supports IP-over-SSH tunnelling directly



5-108

Transport-layer security and privacy

• Network-layer security mechanisms arrange to
send individual IP packets securely from one
network to another

• Transport-layer security mechanisms transform
arbitrary TCP connections to add security
• And similarly for “privacy” instead of “security”

• The main transport-layer security mechanism:
• TLS (formerly known as SSL)

• The main transport-layer privacy mechanism:
• Tor



5-109

TLS / SSL
• In the mid-1990s, Netscape invented a protocol

called Secure Sockets Layer (SSL) meant for
protecting HTTP (web) connections
• The protocol, however, was general, and could be used

to protect any TCP-based connection
• HTTP + SSL = HTTPS

• Historical note: there was a competing protocol
called S-HTTP. But Netscape and Microsoft both
chose HTTPS, so that’s the protocol everyone
else followed
• SSL went through a few revisions, and was

eventually standardized into the protocol known
as TLS (Transport Layer Security, imaginatively
enough)



5-110

TLS at a high level
• Exists between the application layer and the

transport layer.
• Two protocol layers.

https://sites.google.com/site/tlsssloverview/ssl-tls-protocol-layers

https://sites.google.com/site/tlsssloverview/ssl-tls-protocol-layers


5-111

TLS at a high level

• Exists between the application layer and the
transport layer.
• Two protocol layers.

• Handshake layer which is responsible for the initial
handshake done in SSL/TLS.

• Record layer which gets data from the application
layer, encrypts it, optionally compress or decompress
it, fragments it to an appropriate size and sends it on
to the Transport Layer.



5-112

TLS handshake at a high level



5-113

TLS at a high level

• Client connects to server, indicates it wants to
speak TLS, and which ciphersuites it knows
• Server sends its certificate to client, which

contains:
• Its host name
• Its verification key
• Some other administrative information
• A signature from a Certificate Authority (CA)

• Server also chooses which ciphersuite to use



5-114

TLS at a high level (cont.)

• Client validates server’s certificate
• Is its signature from a CA whose public key is

embedded in the client (e.g., browser or app)?
• Does the host name in the certificate match the host

name of the web site that client wants to access?

• Client and server run a key agreement protocol to
establish keys for symmetric encryption and MAC
algorithms from the chosen ciphersuite
• Server signs its protocol messages with its signature

key, client checks the signatures

• Communication now proceeds using chosen
symmetric encryption and MAC algorithms



5-115

Security properties provided by TLS

• Server authentication

• Message integrity

• Message confidentiality

• Client authentication (optional)



5-116

The success of TLS

• Though designed as a security mechanism, TLS
(including SSL) has become the most successful
Privacy Enhancing Technology (PET) ever

• Why?
• It comes with your browser

• Which encouraged web server operators to bother paying
$$ for their certificates

• It just works, without you having to configure anything
• Most of the time, it even protects the privacy of your

communications
• Increasingly important due to the success of WiFi



5-117

Privacy Enhancing Technologies

• So far, we’ve only used encryption to protect the
contents of messages

• But there are other things we might want to
protect as well!
• We may want to protect the metadata

• Who is sending the message to whom?
• If you’re seen sending encrypted messages to Human

Rights Watch, bad things may happen

• We may want to hide the existence of the
message
• If you’re seen sending encrypted messages at all, bad

things may happen



5-118

Privacy Enhancing Technologies

• Technologies that enhance user control and
remove personal identifiers.
• User wants privacy
• Hundreds of new technologies has been developed

• https://www.epic.org

• Four categories of privacy enhancing technologies:

• Encryption tools e.g. SSL
• Policy tools e.g. P3P and TRUSTe
• Filtering tools e.g. Spyware
• Anonymity tools e.g. Anonymizer and iPrivacy

https://www.epic.org


5-119

Tor
• Tor is another successful privacy enhancing

technology that works at the transport layer
• Hundreds of thousands of users
• June 2017: 2.2-2.4 million daily users

• Normally, a TCP connection you make on the
Internet automatically reveals your IP address
• Why?

• Tor allows you to make TCP connections without
revealing your IP address

• It’s most commonly used for HTTP (web)
connections



5-120

How Tor works

• Scattered around the Internet are about 7,000 Tor
nodes, also called Onion Routers

• Alice wants to connect to a web server without
revealing her IP address



5-121

How Tor works

• Alice picks one of the Tor nodes (Onion Router OR1)
and uses public-key cryptography to establish an
encrypted communication channel to it (much like
TLS)



5-122

How Tor works

• Alice tells OR1 to contact a second node (OR2), and
establishes a new encrypted communication channel to
OR2, tunnelled within the previous one to OR1



5-123

How Tor works

• Alice tells OR2 to contact a third node (OR3), and
establishes a new encrypted communication channel to
OR3, tunnelled within the previous one to OR2



5-124

How Tor works

• And so on, for as many steps as she likes (usually 3)

• Alice tells the last node (within the layers of tunnels)
to connect to the website



5-125

Sending messages with Tor



5-126

Sending messages with Tor

• Alice now shares three secret keys:
• K1 with OR1

• K2 with OR2

• K3 with OR3

• When Alice wants to send a message M , she
actually sends EK1

(EK2
(EK3

(M)))

• Node OR1 uses K1 to decrypt the outer layer, and
passes the result EK2

(EK3
(M)) to OR2

• Node OR2 uses K2 to decrypt the next layer, and
passes the result EK3

(M) to OR3

• Node OR3 uses K3 to decrypt the final layer, and
sends M to the website



5-127

Replies in Tor

• When the website replies with message R , it will
send it to node OR3
• Why?

• Node OR3 will encrypt R with K3 and send
EK3

(R) to OR2

• Node OR2 will encrypt that with K2 and send
EK2

(EK3
(R)) to OR1

• Node OR1 will encrypt that with K1 and send
EK1

(EK2
(EK3

(R))) to Alice

• Alice will use K1, K2, and K3 to decrypt the layers
of the reply and recover R



5-128

Who knows what?
• Notice that node OR1 knows that Alice is using Tor,

and that her next node is OR2, but does not know
which website Alice is visiting
• Node OR3 knows some Tor user (with previous node

OR2) is using a particular website, but doesn’t know
who
• The website itself only knows that it got a connection

from Tor node OR3

• Note: the connection between OR3 and the website is
not encrypted! If you want encryption as well as the
benefits of Tor, you should use end-to-end encryption
in addition
• Like HTTPS



5-129

How much information about a sender’s
identity is revealed in a Tor transaction?

• Level of nymity:
• Verinymity

• Government ID, SIN, credit card #, address
• Persistent pseudonymity

• Pen name (”Noms de plume”), many blogs
• Linkable anonymity

• Prepaid phone cards, loyalty cards
• Unlinkable anonymity

• Cash payments



5-130

How much information about a sender’s
identity is revealed in a Tor transaction?

• Tor provides for anonymity in TCP connections
over the Internet, both unlinkably (long-term) and
linkably (short-term)

• What does this mean?
• There’s no long-term identifier for a Tor user
• If a web server gets a connection from Tor today, and

another one tomorrow, it won’t be able to tell whether
those are from the same person

• But two connections in quick succession from the
same Tor node are more likely to in fact be from the
same person



5-131

The Nymity Slider

• If you build a system at a certain level of nymity,
it’s easy to modify it to have a higher level of
nymity, but hard to modify it to have a lower level
• For example:

• It’s easy to add a loyalty card to a cash payment, or a
credit card to a loyalty card

• It’s hard to remove identity information if you’re
paying by credit card

• The lesson: design systems with a low level of
nymity fundamentally; adding more is easy



5-132

Application-layer security and privacy

• TLS can provide for encryption at the TCP socket
level
• “End-to-end” in the sense of a network connection
• Is this good enough? Consider SMTPS (SMTP/email

over TLS)

• Many applications would like true end-to-end
security
• Human-to-human would be best, but those last 50 cm

are really hard!
• We usually content ourselves with desktop-to-desktop

• We’ll look at three particular applications:
• Remote login, email, instant messaging



5-133

Secure remote login (ssh)

• You’re already familiar with this tool for securely
logging in to a remote computer (the ugster
machines)
• Usual usage (simplified):

• Client connects to server
• Server sends its verification key

• The client should verify that this is the correct key
• Client and server run a key agreement protocol to

establish session keys, server signs its messages
• All communication from here on in is encrypted and

MACd with the session keys

• Client authenticates to server
• Server accepts authentication, login proceeds (under

encryption and MAC)



5-134

Authentication with ssh

• There are two main ways to authenticate with ssh:

• Send a password over the encrypted channel
• The server needs to know (a hash of) your password

• Sign a random challenge with your private signature
key
• The server needs to know your public verification key

• Which is better? Why?



5-135

Anonymity for email: remailers

• Tor allows you to anonymously communicate over
the Internet in real time
• What about (non-interactive) email?
• This is actually an easier problem, and was

implemented much earlier than Tor

• Anonymous remailers allow you to send email
without revealing your own email address
• Of course, it’s hard to have a conversation that way
• Pseudonymity is useful in the context of email

• Nymity Slider



5-136

Type 0 remailers

• In the 1990s, there were very simple (“type 0”)
remailing services, the best known being
anon.penet.fi (1993–1996)

• How it worked:
• Send email to anon.penet.fi
• It is forwarded to your intended recipient
• Your “From” address is changed to

anon43567@anon.penet.fi (but your original address is
stored in a table)

• Replies to the anon address get mapped back to your
real address and delivered to you



5-137

anon.penet.fi

• This works, as long as:
• No one’s watching the net connections to or from

anon.penet.fi
• The operator of anon.penet.fi and the machine itself

remain trustworthy and uncompromised
• The mapping of anon addresses to real addresses is

kept secret

• Unfortunately, a lawsuit forced Julf (the operator)
to turn over parts of the list, and he shut down
the whole thing, since he could no longer legally
protect it



5-138

Type I remailers

• Cypherpunk (type I) remailers removed the central
point of trust

• Messages are now sent through a “chain” of
several remailers, with dozens to choose from

• Each step in the chain is encrypted to avoid
observers following the messages through the
chain; remailers also delay and reorder messages

• Support for pseudonymity is dropped: no replies!



5-139

Nym servers

• Recovering pseudonymity: “nym servers” mapped
pseudonyms to “reply blocks” that contained a
nested encrypted chain of type I remailers.
Attaching your message to the end of one of these
reply blocks would cause it to be sent through the
chain, eventually being delivered to the nym owner

• But remember that there were significant privacy
issues with the type I remailer system

• Easier recipient anonymity:
alt.anonymous.messages



5-140

Mixnet

https://en.wikipedia.org/wiki/Mix_network

https://en.wikipedia.org/wiki/Mix_network


5-141

Type II remailers
• Mixmaster (type II) remailers appeared in the late

1990s

• Constant-length messages to avoid an observer
watching “that big file” travel through the
network

• Protections against replay attacks

• Improved message reordering

• But! Requires a special email client to construct
the message fragments
• premail (a drop-in wrapper for sendmail) makes it easy



5-142

Type II remailers

https://crypto.is/blog/remailers_weve_got

https://crypto.is/blog/remailers_weve_got


5-143

Type III remailers

• Mixminion (type III) remailer
• Native (and much improved) support for pseudonymity

• No longer reliant on type I reply blocks

• Improved protection against replay and key
compromise attacks

• But it’s not very well deployed or mature
• “You shouldn’t trust Mixminion with your anonymity

yet”



5-144

Pretty Good Privacy

• The first popular implementation of public-key
cryptography.
• Originally made by Phil Zimmermann in 1991

• He got in a lot of trouble for it, since cryptography
was highly controlled at the time.

• But that’s a whole ’nother story. :-)

• Today, there are many (more-or-less) compatible
programs
• GNU Privacy Guard (gpg), Hushmail, etc.



5-145

Pretty Good Privacy

• What does it do?
• Its primary use is to protect the contents of email

messages

• How does it work?
• Uses public-key cryptography to provide:

• Encryption of email messages (using hybrid encryption)
• Digital signatures on email messages (hash-then-sign)



5-146

Recall

• In order to use public-key encryption and digital
signatures, Alice and Bob must each have:
• A public encryption key
• A private decryption key
• A private signature key
• A public verification key



5-147

Sending a message

• To send a message to Bob, Alice will:
• Write a message
• Sign it with her own signature key
• Encrypt both the message and the signature with

Bob’s public encryption key

• Bob receives this, and:
• Decrypts it using his private decryption key to yield

the message and the signature
• Uses Alice’s verification key to check the signature



5-148

Back to PGP

• PGP’s main functions:
• Create these four kinds of keys

• encryption, decryption, signature, verification

• Encrypt messages using someone else’s encryption key
• Decrypt messages using your own decryption key
• Sign messages using your own signature key
• Verify signatures using someone else’s verification key
• Sign other people’s keys using your own signature key

(see later)



5-149

PGP encryption and decryption

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

https://en.wikipedia.org/wiki/Pretty_Good_Privacy


5-150

PGP signature generation and
verification



5-151

(If you want to be extra safe, check that there’s a big block of
jumbled characters at the bottom.)



5-152

Obtaining keys

• Earlier, we said that Alice needs to get an
authentic copy of Bob’s public key in order to
send him an encrypted message
• How does she do this?

• In a secure way?

• Bob could put a copy of his public key on his
webpage, but this isn’t good enough to be really
secure!
• Why?



5-153

Verifying public keys

• If Alice knows Bob personally, she could:
• Download the key from Bob’s web page
• Phone up Bob, and verify she’s got the right key
• Problem: keys are big and unwieldy!

mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat

01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2

tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt

m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/

rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD

8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL

UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM



5-154

Fingerprints

• Luckily, there’s a better way!

• A fingerprint is a cryptographic hash of a key
• This, of course, is much shorter:

• B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

• Remember: there’s no (known) way to make two
different keys that have the same fingerprint,
provided that we use a collision-resistant hash
function



5-155

Fingerprints

• So now we can try this:
• Alice downloads Bob’s key from his webpage
• Alice’s software calculates the fingerprint
• Alice phones up Bob, and asks him to read his key’s

actual fingerprint to her
• If they match, Alice knows she’s got an authentic copy

of Bob’s key

• That’s great for Alice, but what about Carol, who
doesn’t know Bob
• At least not well enough to phone him



5-156

Signing keys

• Once Alice has verified Bob’s key, she uses her
signature key to sign Bob’s key

• This is effectively the same as Alice signing a
message that says “I have verified that the key
with fingerprint B117 2656 DFF9 83C3 042B
C699 EB5A 896A 2898 8BF5 really belongs to
Bob”

• Bob can attach Alice’s signature to the key on his
webpage



5-157

Key signing parties

(Never bring tequila to a key signing party!)



5-158

Web of Trust



5-159

Web of Trust

• Now Alice can act as an introducer for Bob
• If Carol doesn’t know Bob, but does know Alice

(and has already verified Alice’s key, and trusts
her to introduce other people):
• she downloads Bob’s key from his website
• she sees Alice’s signature on it
• she is able to use Bob’s key without having to check

with Bob personally

• This is called the Web of Trust, and the PGP
software handles it mostly automatically



5-160

So, great!

• So if Alice and Bob want to have a private
conversation by email:
• They each create their sets of keys
• They exchange public encryption keys and verification

keys
• They send signed and encrypted messages back and

forth

• Pretty Good, no?



5-161

Plot twist

• Suppose (encrypted) communications between
Alice and Bob are recorded by the “bad guys”
• criminals, competitors, subpoenaed by the RCMP

• Later, Bob’s computer is stolen by the same bad
guys
• Or just broken into

• Virus, trojan, spyware

• All of Bob’s key material is discovered
• Oh, no!



5-162

The bad guys can...

• Decrypt past messages

• Learn their content

• Learn that Alice sent them

• And have a mathematical proof they can show to
anyone else!

• How private is that?



5-163

What went wrong?

• Bob’s computer got stolen?

• How many of you have never...
• Left your laptop unattended?
• Not installed the latest patches?
• Run software with a remotely exploitable bug?

• What about your friends?



5-164

What really went wrong

• PGP creates lots of incriminating records:
• Key material that decrypts data sent over the public

Internet
• Signatures with proofs of who said what

• Alice had better watch what she says!
• Her privacy depends on Bob’s actions



5-165

Casual conversations

• Alice and Bob talk in a room
• No one else can hear

• Unless being recorded

• No one else knows what they say
• Unless Alice or Bob tells them

• No one can prove what was said
• Not even Alice or Bob

• These conversations are “off-the-record”



5-166

We like off-the-record conversations

• Legal support for having them
• Illegal to record other people’s conversations without

notification

• We can have them over the phone
• Illegal to tap phone lines

• But what about over the Internet?



5-167

Crypto tools

• We have the tools to do this
• We’ve just been using the wrong ones
• (when we’ve been using crypto at all)

• We want perfect forward secrecy

• We want deniable authentication



5-168

Perfect forward secrecy
• Future key compromises should not reveal past

communication
• Use secret-key encryption with a short-lived key (a

session key)
• The session key is created by a modified

Diffie-Hellman protocol
• Discard the session key after use

• Securely erase it from memory

• Use long-term keys only to authenticate the
Diffie-Hellman protocol messages

• Q: Why does this approach not have the very
same forward secrecy problem as PGP?



5-169

Diffie-Hellman key exchange protocol

http://internetokracy.appspot.com/crypto1#

http://internetokracy.appspot.com/crypto1#


5-170

Deniable authentication

• Do not want digital signatures
• Non-repudiation is great for signing contracts, but

undesirable for private conversations

• But we do want authentication
• We can’t maintain privacy if attackers can

impersonate our friends

• Use Message Authentication Codes
• We talked about these earlier



5-171

No third-party proofs

• Shared-key authentication
• Alice and Bob have the same MK
• MK is required to compute the MAC
• How is Bob assured that Alice sent the message?

• Bob cannot prove that Alice generated the MAC
• He could have done it, too
• Anyone who can verify can also forge

• This gives Alice a measure of deniability



5-172

Using these techniques

• Using these techniques, we can make our online
conversations more like face-to-face
“off-the-record” conversations

• But there’s a wrinkle:
• These techniques require the parties to communicate

interactively
• This makes them unsuitable for email
• But they’re still great for instant messaging!



5-173

Off-the-Record Messaging

• Off-the-Record Messaging (OTR) is software that
allows you to have private conversations over
instant messaging, providing:
• Confidentiality

• Only Bob can read the messages Alice sends him

• Authentication
• Bob is assured the messages came from Alice



5-174

Off-the-Record Messaging

• Perfect Forward Secrecy
• Shortly after Bob receives the message, it becomes

unreadable to anyone, anywhere

• Deniability
• Although Bob is assured that the message came from

Alice, he can’t convince Charlie of that fact
• Also, Charlie can create forged transcripts of

conversations that are every bit as accurate as the real
thing



5-175

Signal Protocol

• Signal is an app for iOS, Android, and Chrome
• Original protocol based on OTR and used for

encrypted SMS

• The Signal Protocol is now used by WhatsApp,
Google Allo, and Facebook Messenger

• Provides forward secrecy, improved deniability



5-176

Signal Protocol

• Perfect forward secrecy
• Similar to OTR, uses a “ratchet” technique to

constantly rotate session keys

• Deniability
• Uses “Triple Diffie-Hellman” deniable authenticated

key exchange (DAKE)
• Anyone can forge a conversation between Alice and

Bob using only their public keys



5-177

Recap

• Basics of cryptography

• Secret-key encryption

• Public-key encryption

• Integrity

• Authentication

• Security controls using cryptography

• Link-layer security

• Network-layer security

• Transport-layer security and privacy

• Application-layer security and privacy


	Cryptography
	Basics of cryptography
	Types of cryptosystems
	Secret-key encryption
	Public-key encryption

	Integrity
	Authentication

	Internet security and privacy
	Security controls using cryptography
	Cryptography in network security
	Link-layer security
	Network-layer security
	Transport-layer security and privacy
	Application-layer security and privacy



	fd@rm@0: 


