Last time

- Malicious code: Malware
 -Viruses
 -Trojan horses
 -Logic bombs
- Other malicious code: web bugs
This time

• Other malicious code
 – Back doors
 – Salami attacks
 – Rootkits
 – Interface illusions
 – Keystroke logging
 – Man-in-the-middle attacks

• Nonmalicious flaws
 – Covert channels
 – Side channels
Back doors

- A back door (also called a trapdoor) is a set of instructions designed to bypass the normal authentication mechanism and allow access to the system to anyone who knows the back door exists.
 - Sometimes these are useful for debugging the system, but don't forget to take them out before you ship!

- Fanciful examples:
 - “Reflections on Trusting Trust” (mandatory reading)
 - “The Net”
 - “WarGames”
Examples of back doors

● Real examples:
 – Debugging back door left in sendmail
 – Back door planted by Code Red worm
 – Port knocking
 ● The system listens for connection attempts to a certain pattern of (closed) ports. All those connection attempts will fail, but if the right pattern is there, the system will open, for example, a port with a root shell attached to it.
 – Attempted hack to Linux kernel source code
 • if ((options == (__WCLONE|__WALL)) && (current->uid = 0))
 retval = -EINVAL;
Sources of back doors

- Forget to remove them
- Intentionally leave them in for testing purposes
- Intentionally leave them in for maintenance purposes
 - Field service technicians
- Intentionally leave them in for malicious purposes
 - Note that malicious users can use back doors left in for non-malicious purposes, too!
Salami attacks

- A salami attack is an attack that is made up of many smaller, often considered inconsequential, attacks.

- Classic example: send the fractions of cents of roundoff error from many accounts to a single account owned by the attacker.

- More commonly:
 - Credit card thieves make very small charges to very many cards.
 - Clerks slightly overcharge customers for merchandise.
 - Gas pumps misreport the amount of gas dispensed.
Privilege escalation

- Most systems have the concept of differing levels of privilege for different users
 - Web sites: everyone can read, only a few can edit
 - Unix: you can write to files in your home directory, but not in /usr/bin
 - Mailing list software: only the list owner can perform certain tasks

- A **privilege escalation** is an attack which raises the privilege level of the attacker (beyond that to which he would ordinarily be entitled)
Sources of privilege escalation

• A privilege escalation flaw often occurs when a part of the system that **legitimately** runs with higher privilege can be tricked into executing commands (with that higher privilege) on behalf of the attacker
 - Buffer overflows in setuid programs or network daemons
 - Component substitution (see text)

• Also: the attacker might trick the system into thinking he is in fact a legitimate higher-privileged user
 - Problems with authentication systems
 • “-froot” attack
A rootkit is a tool often used by “script kiddies”

It has two main parts:

- A method for gaining unauthorized root / administrator privileges on a machine (either starting with a local unprivileged account, or possibly remotely)
 - This method usually exploits some known flaw in the system that the owner has failed to correct
 - It often leaves behind a back door so that the attacker can get back in later, even if the flaw is corrected

- A way to hide its own existence
 - "Stealth" capabilities
 - Sometimes just this stealth part is called the rootkit
Stealth capabilities

• How do rootkits hide their existence?

 – Clean up any log messages that might have been created by the exploit

 – Modify commands like `ls` and `ps` so that they don't report files and processes belonging to the rootkit

 – Alternately, modify the kernel so that no user program will ever learn about those files and processes!
Example: Sony XCP

- Mark Russinovich was developing a rootkit scanner for Windows
- When he was testing it, he discovered his machine already had a rootkit on it!
- The source of the rootkit turned out to be Sony audio CDs equipped with XCP “copy protection”
- When you insert such an audio CD into your computer, it contains an `autorun.exe` file which automatically executes

`autorun.exe` installs the rootkit
Example: Sony XCP

- The “primary” purpose of the rootkit was to modify the CD driver in Windows so that any process that tried to read from an XCP-protected CD would get garbled output.

- The “secondary” purpose was to make itself hard to find and uninstall:
 - Hid all files and processes whose names started with sys

- After people complained, Sony eventually released an uninstaller:
 - But running the uninstaller left a back door on your system!
Keystroke logging

• Almost all of the information flow from you (the user) to your computer (or beyond, to the Internet) is via the keyboard
 – A little bit from the mouse, a bit from devices like USB keys
• An attacker might install a keyboard logger on your computer to keep a record of:
 – All email / IM you send
 – All passwords you type
• This data can then be accessed locally, or it might be sent to a remote machine over the Internet
Who installs keyboard loggers?

- There are certainly keyboard loggers installed by malware
 - Capture passwords, especially banking passwords
 - Send the information to the remote attacker

- But most keyboard loggers are installed by one family member to spy on another
 - Spying on children
 - Spying on spouses
 - Spying on boy/girlfriends
Kinds of keyboard loggers

- Application-specific loggers:
 - Record only those keystrokes associated with a particular application, such as an IM client

- System keyboard loggers:
 - Record all keystrokes that are pressed (maybe only for one particular target user)

- Hardware keyboard loggers:
 - A small piece of hardware that sits between the keyboard and the computer
 - Works with any OS
 - Completely undetectable in software
Interface illusions

• You use user interfaces to control your computer all the time

• For example, you drag on a scroll bar to see offscreen portions of a document

• But what if that scrollbar isn't really a scrollbar?
 – This really happened

• What if dragging on that “scrollbar” really dragged a program (from a malicious website) into your “Startup” folder (in addition to scrolling the document)?
 – This really happened
Interface illusions

- We expect our computer to behave in certain ways when we interact with “standard” user interface elements.

- But often, malicious code can make “nonstandard” user interface elements in order to trick us!

- We think we're doing one thing, but we're really doing another

- How might you defend against this?
Phishing is an example of an interface illusion

It looks like you're visiting Paypal's website, but you're really not.
- If you type in your password, you've just given it to an attacker

Advanced phishers can make websites that look every bit like the real thing
- Even if you carefully check the address bar, or even the SSL certificate!
Man-in-the-middle attacks

- Keyboard logging, interface illusions, and phishing are examples of **man-in-the-middle attacks**

- The website/program/system you're communicating with isn't the one you *think* you're communicating with

- A man-in-the-middle intercepts the communication from the user, and then passes it on to the intended other party

 - That way, the user thinks nothing's wrong, because his password works, he sees his account balances, etc.
Man-in-the-middle attacks

- But not only is the man-in-the-middle able to see (and record) everything you're doing, and can capture passwords, but once you've authenticated to your bank (for example), the man-in-the-middle can hijack your session to insert malicious commands
 - Make a $700 payment to attacker@evil.com
- You won't even see it happen on your screen, and if the man-in-the-middle is clever enough, he can edit the results (bank balances, etc.) being displayed to you so that there's no visible record (to you) that the transaction occurred
 - Stealthy, like a rootkit
Nonmalicious flaws

● For the rest of this lecture, we'll look at flaws in systems that, although not inserted maliciously, and not inadvertent errors, can still be exploited to cause a failure

● We will look at two main sources of nonmalicious flaws:
 - Covert channels
 - Side channels
Covert channels

- Suppose Alice has access to very sensitive information, and Eve is an attacker who wants it
 - Medical information
 - Banking information
 - Alice's own password

- Eve can even arrange for malicious code to be running on Alice's machine
 - Trojan horse, logic bomb, etc.
Covert channels

- Normally, Eve would just have the Trojan horse send the sensitive data to her over the Internet

- But Alice is too clever for that!
 - She closely watches all Internet traffic from her computer
 - Better, she doesn't connect her computer to the Internet at all!

- How does Eve get Alice's data?
Covert channels

• If there's no information at all that goes from Alice to somewhere Eve can get it, there's really nothing Eve can do.
 – But this is rare

• Suppose Alice publishes a weekly report summarizing some (nonsensitive) statistics
 – Modifications to spacing, wording, or the statistics itself
 – This is called a covert channel
 – See the text for an example (and Assignment 1)
Side channels

• What if Eve can't get Trojaned software on Alice's computer in the first place?

• It turns out there are some very powerful attacks called side channel attacks
 – Eve watches how Alice's computer behaves when processing the sensitive data
 – Eve usually has to be somewhere in the physical vicinity of Alice's computer to pull this off

• But not always!
Side channels

- Eve can learn information about what Alice's computer is doing (and what data it is processing) by looking at:
 - RF emissions
 - Power consumption
 - Audio emissions
 - Reflected light from a CRT
 - Time it takes for Alice's computer to perform a computation

- These are especially powerful attacks when “Alice's computer” is a smart card (like a SIM chip or satellite TV card) that stores some kind of secret but is physically in Eve's possession
Recap

• Other malicious code
 – Back doors
 – Salami attacks
 – Rootkits
 – Interface illusions
 – Keystroke logging
 – Man-in-the-middle attacks

• Nonmalicious flaws
 – Covert channels
 – Side channels
Next time

• Controls against security flaws in programs

• Look at the stages of the software development lifecycle

• How to get the best chance of controlling all of the flaws?