e Other malicious code

- Back doors

- Salami attacks

- Rootkits

- Interface illusions

- Keystroke logging

- Man-in-the-middle attacks
* Nonmalicious flaws

— Covert channels
- Side channels

Last time

5-1



This time

Finish side channels
Controls against security flaws in programs

Look at the stages of the software development
lifecycle

How to get the best chance of controlling all of the
flaws?

5-2



Side channels

* Eve can learn information about what Alice's computer
is doing (and what data it is processing) by looking at:

- RF emissions

- Power consumption

- Audio emissions

- Reflected light from a CRT

- Time it takes for Alice's computer to perform a
computation

* These are especially powerful attacks when “Alice's
computer” is a smart card (like a SIM chip or satellite
TV card) that stores some kind of secret but is
physically in Eve's possession

5-3



The picture so far

* \We've looked at a large number of ways an attacker
can compromise program security

- Exploit unintentional flaws

- Exploit intentional, but nonmalicious, behaviour of the
system

- Introduce malicious code, including malware

* The picture looks pretty bleak

* Qur job is to control these threats
- It's a tough job

5-4



Software lifecycle

* Software goes through several stages in its lifecycle:
- Specification
- Design
- Implementation
- Change management
- Code review
- Testing
- Documentation
- Maintenance

* At which stage should security controls be
considered?

5-5



Security controls—Design

How can we design programs so that they're less likely
to have security flaws?

Modularity
Encapsulation
Information hiding
Mutual suspicion

Confinement

5-6



Modularity

* Break the problem into a number of small pieces
(“modules™), each responsible for a single subtask

* The complexity of each piece will be smaller, so each
piece will be far easier to check for flaws, test,
maintain, reuse, etc.

* Modules should have low coupling

- A coupling is any time one module interacts with another
module

- High coupling is a common cause of unexpected
behaviours in a program

5-7



Encapsulation

* Have the modules be mostly self-contained, sharing
information only as necessary

* This helps reduce coupling

* The developer of one module should not need to know
how a different module is implemented

- She should only need to know about the published
interfaces to the other module (the API)

5-8



Information hiding

The internals of one module should not be visible to
other modules

This is a stronger statement than encapsulation: the
implementation and internal state of one module
should be hidden from developers of other modules

This prevents accidental reliance on behaviours not
promised in the API

It also hinders some kinds of malicious actions by the
developers themselves!

5-9



Mutual Suspicion

* |t's a good idea for modules to check that their inputs
are sensible before acting on them

* Especially if those inputs are received from untrusted
sources

- Where have we seen this idea before?

* But also as a defence against flaws in, or malicious
behaviour on the part of, other modules

— Corrupt data in one module should be prevented from
corrupting other modules

5-10



Confinement

* Similarly, if Module A needs to call a potentially
untrustworthy Module B, it can confine it (also known
as sandboxing)

- Module B is run in a limited environment that only has
access to the resources it absolutely needs

* This is especially useful if Module B is code
downloaded from the Internet

* Suppose all untrusted code were run in this way
- What would be the effect?

5-11



Security controls—Implementation

When you're actually coding, what can you do to
control security flaws?

High on the list: Don't use C
Unfortunately, that's not realistic in many situations
One useful tool: static code analysis

Also:

- Formal methods
- Genetic diversity

5-12



Static code analysis

* There are a number of software products available
that will help you find security flaws in your code

- These work for various languages, including C, C++,
Java, Perl, PHP, Python

* They often look for things like buffer overflows, but
some can also point out TOCTTOU and other flaws

* These tools are not perfect!

- They're mostly meant to find suspicious things for you to
look at more carefully

- They also miss things, so they can't be your only line of

defence
5-13



Formal methods

* Instead of looking for suspicious code patterns, formal
methods try to prove that the code does exactly what it's
supposed to do

- And you thought the proofs in your math classes were hard?

- Unfortunately, we can show that this is impossible to do in
general

* But that doesn't mean we can't find large classes of useful
programs where we can do these proofs in particular

e Usually, the programmer will have to "mark up” her code
with assertions or other hints to the theorem proving
program

- This is time-consuming, but if you get a proof out, you can
really believe it!
5-14



Genetic diversity

* The reason worms and viruses are able to propagate
so quickly is that there are many, many machines
running the same vulnerable code

— The malware exploits this code

* |f there are lots of different HTTP servers, for example,
there's unlikely to be a common flaw

* This is the same problem as in agriculture

- |f everyone grows the same crop, they can all be wiped
out by a single virus

5-15



Security controls—
Change management

* Large software projects can have dozens or hundreds
of people working on the code

* Even if the code's secure today, it may not be
tomorrow!

* |If a security flaw does leak into the code, where did it
come from?

- Not so much to assign blame as to figure out how the
problem happened, and how to prevent it from
happening again

5-16



Source code and configuration control

* Track all changes to either the source code or the
configuration information (what features to enable,
what version to build, etc.) in some kind of
management system

* There are dozens of these; you've probably used at
least a simple one before

- CVS, Subversion, git, darcs, Perforce, Mercurial,
Bitkeeper, ...

* Remember that attempted backdoor in the Linux
source we talked about last time?

- Bitkeeper noticed a change to the source repository that
didn't match any valid checkin

5-17



Security controls—Code review

 Empirically, code review is the single most effective
way to find faults once the code has been written

* The general idea is to have people other than the code
author look at the code to try to find any flaws

* This is one of the benefits often touted for open-source
software: anyone who wants to can look at the code

— But this doesn't mean people actually do!

- Even open-source security vulnerabilities can sit
undiscovered for years, in some cases

5-18



Kinds of code review

* There are a number of different ways code review can
be done

* The most common way is for the reviewers to just be
given the code

- They look it over, and try to spot problems that the author
missed

— This is the open-source model

5-19



Guided code reviews

* More useful is a guided walk-through

- The author explains the code to the reviewers
- Justifies why it was done this way instead of that way

- This is especially useful for changes to code

* Why each change was made
* What effects it might have on other parts of the system
* What testing needs to be done

* Important for safety-critical systems!

5-20



"Easter egg” code reviews

* One problem with code reviews (especially unguided
ones) is that the reviewers may start to believe there's
nothing there to be found

— After pages and pages of reading without finding flaws (or
after some number have been found and corrected), you
really just want to say it's fine

* A clever variant currently being researched at Berkeley:
the author inserts intentional flaws into the code

— The reviewers now know there are flaws

- The theory is that they'll look harder, and are more likely to
find the unintentional flaws

- It also makes it a bit of a game
5-21



Security controls—Testing

* The goal of testing is to make sure the implementation
meets the specification

* But remember that in security, the specification
includes “and nothing else”

- How do you test for that?!

* Two main strategies:

- Try to make the program do unspecified things just by
doing unusual (or attacker-like) things to it

- Try to make the program do unspecified things by taking
iInto account the design and the implementation

5-22



Black-box testing

* Atest where you just have access to a completed
object is a black-box test

- This object might be a single function, a module, a
program, or a complete system, depending on at what
stage the testing is being done

* What kinds of things can you do to such an object to
try to get it to misbehave?

e Int sum(int inputs[], int length)

5-23



Fuzz testing

* One easy thing you can do in a black-box test is called
fuzz testing

* Supply completely random data to the object
- As input in an API
- As a data file
— As data received from the network
- As Ul events
* This causes programs to crash surprisingly often!

- These crashes are violations of Availability, but are often
indications of an even more serious vulnerability

5-24



White-box testing

* |f you're testing conformance to a specification by
taking into account knowledge of the design and
iImplementation, that's white-box testing

— Also called clear-box testing

e Often tied in with code review, of course

* White-box testing is useful for regression testing

- Make a comprehensive set of tests, and ensure the
program passes them

- When the next version of the program is being tested,
run all these tests again

5-25



Recap

* Controls against security flaws in programs

* Various controls applicable to each of the stages in the
software development lifecycle

* To get the best chance of controlling all of the flaws:

- Standards describing the controls to be used
- Processes implementing the standards
- Audits ensuring adherence to the processes

5-26



Next time

* Protection in General-Purpose Operating Systems
- History
— Separation vs. Sharing
- Segmentation and Paging
— Access Control Matrix
— Access Control Lists vs. Capabilities
- Role-based Access Control

5-27



