
5-1

Last time

● Other malicious code

– Back doors

– Salami attacks

– Rootkits

– Interface illusions

– Keystroke logging

– Man-in-the-middle attacks

● Nonmalicious flaws

– Covert channels

– Side channels

5-2

This time

● Finish side channels

● Controls against security flaws in programs

● Look at the stages of the software development
lifecycle

● How to get the best chance of controlling all of the
flaws?

5-3

Side channels

● Eve can learn information about what Alice's computer
is doing (and what data it is processing) by looking at:

– RF emissions

– Power consumption

– Audio emissions

– Reflected light from a CRT

– Time it takes for Alice's computer to perform a
computation

● These are especially powerful attacks when “Alice's
computer” is a smart card (like a SIM chip or satellite
TV card) that stores some kind of secret but is
physically in Eve's possession

5-4

The picture so far

● We've looked at a large number of ways an attacker
can compromise program security

– Exploit unintentional flaws

– Exploit intentional, but nonmalicious, behaviour of the
system

– Introduce malicious code, including malware

● The picture looks pretty bleak

● Our job is to control these threats

– It's a tough job

5-5

Software lifecycle

● Software goes through several stages in its lifecycle:

– Specification

– Design

– Implementation

– Change management

– Code review

– Testing

– Documentation

– Maintenance

● At which stage should security controls be
considered?

5-6

Security controls—Design

● How can we design programs so that they're less likely
to have security flaws?

● Modularity

● Encapsulation

● Information hiding

● Mutual suspicion

● Confinement

5-7

Modularity

● Break the problem into a number of small pieces
(“modules”), each responsible for a single subtask

● The complexity of each piece will be smaller, so each
piece will be far easier to check for flaws, test,
maintain, reuse, etc.

● Modules should have low coupling

– A coupling is any time one module interacts with another
module

– High coupling is a common cause of unexpected
behaviours in a program

5-8

Encapsulation

● Have the modules be mostly self-contained, sharing
information only as necessary

● This helps reduce coupling

● The developer of one module should not need to know
how a different module is implemented

– She should only need to know about the published
interfaces to the other module (the API)

5-9

Information hiding

● The internals of one module should not be visible to
other modules

● This is a stronger statement than encapsulation: the
implementation and internal state of one module
should be hidden from developers of other modules

● This prevents accidental reliance on behaviours not
promised in the API

● It also hinders some kinds of malicious actions by the
developers themselves!

5-10

Mutual Suspicion

● It's a good idea for modules to check that their inputs
are sensible before acting on them

● Especially if those inputs are received from untrusted
sources

– Where have we seen this idea before?

● But also as a defence against flaws in, or malicious
behaviour on the part of, other modules

– Corrupt data in one module should be prevented from
corrupting other modules

5-11

Confinement

● Similarly, if Module A needs to call a potentially
untrustworthy Module B, it can confine it (also known
as sandboxing)

– Module B is run in a limited environment that only has
access to the resources it absolutely needs

● This is especially useful if Module B is code
downloaded from the Internet

● Suppose all untrusted code were run in this way

– What would be the effect?

5-12

Security controls—Implementation

● When you're actually coding, what can you do to
control security flaws?

● High on the list: Don't use C

● Unfortunately, that's not realistic in many situations

● One useful tool: static code analysis

● Also:

– Formal methods

– Genetic diversity

5-13

Static code analysis

● There are a number of software products available
that will help you find security flaws in your code

– These work for various languages, including C, C++,
Java, Perl, PHP, Python

● They often look for things like buffer overflows, but
some can also point out TOCTTOU and other flaws

● These tools are not perfect!

– They're mostly meant to find suspicious things for you to
look at more carefully

– They also miss things, so they can't be your only line of
defence

5-14

Formal methods

● Instead of looking for suspicious code patterns, formal
methods try to prove that the code does exactly what it's
supposed to do

– And you thought the proofs in your math classes were hard?

– Unfortunately, we can show that this is impossible to do in
general

● But that doesn't mean we can't find large classes of useful
programs where we can do these proofs in particular

● Usually, the programmer will have to “mark up” her code
with assertions or other hints to the theorem proving
program

– This is time-consuming, but if you get a proof out, you can
really believe it!

5-15

Genetic diversity

● The reason worms and viruses are able to propagate
so quickly is that there are many, many machines
running the same vulnerable code

– The malware exploits this code

● If there are lots of different HTTP servers, for example,
there's unlikely to be a common flaw

● This is the same problem as in agriculture

– If everyone grows the same crop, they can all be wiped
out by a single virus

5-16

Security controls—
Change management

● Large software projects can have dozens or hundreds
of people working on the code

● Even if the code's secure today, it may not be
tomorrow!

● If a security flaw does leak into the code, where did it
come from?

– Not so much to assign blame as to figure out how the
problem happened, and how to prevent it from
happening again

5-17

Source code and configuration control

● Track all changes to either the source code or the
configuration information (what features to enable,
what version to build, etc.) in some kind of
management system

● There are dozens of these; you've probably used at
least a simple one before

– CVS, Subversion, git, darcs, Perforce, Mercurial,
Bitkeeper, ...

● Remember that attempted backdoor in the Linux
source we talked about last time?

– Bitkeeper noticed a change to the source repository that
didn't match any valid checkin

5-18

Security controls—Code review

● Empirically, code review is the single most effective
way to find faults once the code has been written

● The general idea is to have people other than the code
author look at the code to try to find any flaws

● This is one of the benefits often touted for open-source
software: anyone who wants to can look at the code

– But this doesn't mean people actually do!

– Even open-source security vulnerabilities can sit
undiscovered for years, in some cases

5-19

Kinds of code review

● There are a number of different ways code review can
be done

● The most common way is for the reviewers to just be
given the code

– They look it over, and try to spot problems that the author
missed

– This is the open-source model

5-20

Guided code reviews

● More useful is a guided walk-through

– The author explains the code to the reviewers

– Justifies why it was done this way instead of that way

– This is especially useful for changes to code
● Why each change was made
● What effects it might have on other parts of the system
● What testing needs to be done

● Important for safety-critical systems!

5-21

“Easter egg” code reviews

● One problem with code reviews (especially unguided
ones) is that the reviewers may start to believe there's
nothing there to be found

– After pages and pages of reading without finding flaws (or
after some number have been found and corrected), you
really just want to say it's fine

● A clever variant currently being researched at Berkeley:
the author inserts intentional flaws into the code

– The reviewers now know there are flaws

– The theory is that they'll look harder, and are more likely to
find the unintentional flaws

– It also makes it a bit of a game

5-22

Security controls—Testing

● The goal of testing is to make sure the implementation
meets the specification

● But remember that in security, the specification
includes “and nothing else”

– How do you test for that?!

● Two main strategies:

– Try to make the program do unspecified things just by
doing unusual (or attacker-like) things to it

– Try to make the program do unspecified things by taking
into account the design and the implementation

5-23

Black-box testing

● A test where you just have access to a completed
object is a black-box test

– This object might be a single function, a module, a
program, or a complete system, depending on at what
stage the testing is being done

● What kinds of things can you do to such an object to
try to get it to misbehave?

● int sum(int inputs[], int length)

5-24

Fuzz testing

● One easy thing you can do in a black-box test is called
fuzz testing

● Supply completely random data to the object

– As input in an API

– As a data file

– As data received from the network

– As UI events

● This causes programs to crash surprisingly often!

– These crashes are violations of Availability, but are often
indications of an even more serious vulnerability

5-25

White-box testing

● If you're testing conformance to a specification by
taking into account knowledge of the design and
implementation, that's white-box testing

– Also called clear-box testing

● Often tied in with code review, of course

● White-box testing is useful for regression testing

– Make a comprehensive set of tests, and ensure the
program passes them

– When the next version of the program is being tested,
run all these tests again

5-26

Recap

● Controls against security flaws in programs

● Various controls applicable to each of the stages in the
software development lifecycle

● To get the best chance of controlling all of the flaws:

– Standards describing the controls to be used

– Processes implementing the standards

– Audits ensuring adherence to the processes

5-27

Next time

● Protection in General-Purpose Operating Systems

– History

– Separation vs. Sharing

– Segmentation and Paging

– Access Control Matrix

– Access Control Lists vs. Capabilities

– Role-based Access Control

