Last time

e Controls against security flaws in programs

* Various controls applicable to each of the stages in the
software development lifecycle

* To get the best chance of controlling all of the flaws:

e Standards describing the controls to be used
* Processes implementing the standards
* Audits ensuring adherence to the processes

6-1



Security controls—Documentation

How can we control security vulnerabilities through the
use of documentation?

Write down the choices you made

- And why you made them

Just as importantly, write down things you tried that
didn't work!

- Let future developers learn from your mistakes
Make checklists of things to be careful of

- Especially subtle and non-obvious security-related
interactions of different components

5-2



Security controls—Maintainance

* By the time the program is out in the field, one hopes
that there are no more security flaws

- But there probably are

* We've talked about ways to control flaws when
modifying programs

- Change management, code review, testing,
documentation

* |s there something we can use to try to limit the
number of flaws that make it out to the shipped
product in the first place?

5-3



Standards, process, and audit

Within an organization, have rules about how things
are done at each stage of the software lifecycle

These rules should incorporate the controls we've
talked about earlier

These are the organization's standards

For example:

- W
- W
- W
- W
- W

nat design methodologies will you use?
nat kind of implementation diversity?
hich change management system?

nat kind of code review?

nat kind of testing?

5-4



Standards, process, and audit

* Make formal processes specifying how each of these
standards should be implemented
- For example, if you want to do a guided code review,
who explains the code to whom? In what kind of forum?
How much detail?

* Have audits, where somebody (usually external to the

organization) comes in and verifies that you're
following your processes properly

* This doesn't guarantee flaw-free code, of course!

5-5



This time

* Protection in General-Purpose Operating Systems

History

Separation vs. Sharing
Segmentation and Paging

Access Control Matrix

Access Control Lists vs. Capabilities

6-6



Operating System

An operating system allows different users to access
different resources in a shared way

The operating system needs to control this sharing
and provide an interface to allow this access

|dentification and authentication are required for this
access control

We will start with memory protection techniques and
then look at access control in more general

6-7



History

Operating systems evolved as a way to allow multiple
users use the same hardware

* Sequentially (based on executives)
* |nterleaving (based on monitors)

OS makes resources available to users if required by
them and permitted by some policy

OS also protects users from each other

* Attacks, mistakes, resource overconsumption

Even for a single-user OS, protecting a user from
him/herself is a good thing

* Mistakes, malware

6-8



Protected Objects

CPU

Memory

/O devices (disks, printers, keyboards,...)
Programs

Data

Networks

6-9



Separation

Keep one user's objects separate from other users
Physical separation

* Use different physical resources for different users

* Easy to implement, but expensive and inefficient
Temporal separation

* Execute different users' programs at different times
Logical separation

* User is given the impression that no other users exist

* As done by an operating system
Cryptographic separation

* Encrypt data and make it unintelligible to outsiders

* Complex

6-10



Sharing

e Sometimes, users do want to share resources
* Library routines (e.g., libc)
* Files or database records
* OS should allow flexible sharing, not “all or nothing”

* Which files or records? Which part of a file/record?
* Which other users?

* Can other users share objects further?

* What uses are permitted?

* Read but not write, view but not print (Feasibility?)
* Aggregate information only
* For how long?

6-11



Memory and Address Protection

Prevent program from corrupting other programs or
data, operating system and maybe itself

Often, the OS can exploit hardware support for this
protection, so it's cheap

(See CS 350 memory management slides)

Memory protection is part of translation from virtual to
physical addresses

* Memory management unit (MMU) generates exception if
something is wrong with virtual address or associated
request

* OS maintains mapping tables used by MMU and deals
with raised exceptions

6-12



Protection Techniques

* Fence register

* Exception if memory access below address in fence
register

* Protects operating system from user programs
* Single user only

* Base/bounds register pair

* Exception if memory access below/above address in
base/bounds register

* Different values for each user program
* Maintained by operating system during context switch
* Limited flexibility

6-13



Protection Techniques

 Tagged architecture

* Each memory word has one or more extra bits that
identify access rights to word

* Very flexible
* Large overhead
* Difficult to port OS from/to other hardware architectures

* Segmentation

* Paging

6-14



Segmentation

Each program has multiple address spaces (segments)
Could use different segments for code, data, and stack

* Or maybe even more fine-grained, e.g., different segments for data
with different access restrictions

Virtual addresses consist of two parts:
<segment name, offset within segment>

OS keeps mapping from segment name to its base physical
address in Segment Table

OS can (transparently) relocate or resize segments and share
them between processes

Each segment has its own memory protection attributes

6-15



Segment Table

Segment Translation Table

Address
MAIN C 0
Logical Program SEG_A o
MAIN
SUB a a
SEG_A PATA?SEG h
’/ b
FETCH<DATA_ SEG,20>
C
SUB
d
DATA_SEG Y €
sONE
g
h
Location 20 Within Segment DATA_SEG 1

6-16



Review of Segmentation

* Advantages:

* Each address reference is checked for protection by
hardware

* Many different classes of data items can be assigned
different levels of protection

* Users can share access to a segment, with potentially
different access rights

* Users cannot access an unpermitted segment
* Disadvantages:

* External fragmentation

* Dynamic length of segments requires costly out-of-
bounds check for generated physical addresses

* Segment names are difficult to implement efficiently

6-17



Paging

Program (i.e., virtual address space) is divided into
equal-sized chunks (pages)

Physical memory is divided into equal-sized chunks
(frames)

Frame size equals page size
Virtual addresses consist of two parts:
<page #, offset within page>

o # bits for offset = log _(page size), no out-of-bounds
possible for offset

OS keeps mapping from page # to its base physical
address in Page Table

Each page has its own memory protection attributes

6-18



Review of Paging

* Advantages:

* Each address reference is checked for protection by
hardware

* Users can share access to a page, with potentially
different access rights

* Users cannot access an unpermitted page
* Disadvantages:

* |nternal fragmentation

* Assigning different levels of protection to different
classes of data items not feasible

6-19



x86 Architecture

* x86 architecture provides both segmentation and
paging
* Linux uses a combination of segmentation and paging

* Only simple form of segmentation to avoid portability
Issues

* Segmentation cannot be turned off on x86
e Same for Windows

* Memory protection bits indicate no access, read/write
access or read-only access

* Recent x86 processors also include NX (No eXecute)
bit, forbidding execution of instructions stored in page

* Enabled in Windows XP SP 2 and some Linux distros
* Helps against some buffer overflows

6-20



Access Control

* Memory is only one of many objects for which OS has
to run access control

* In general, access control has three goals:

* Check every access: Else OS might fail to notice that
access has been revoked

* Enforce least privilege: Grant program access only to
smallest number of objects required to perform a task

* Access to additional objects might be harmless under
normal circumstances, but disastrous in special cases

* Examples?

* Verify acceptable use: Limit types of activity that can be
performed on an object

* E.g., for integrity reasons (ADTSs)

6-21



Access Control Matrix

Set of protected objects: O
— E.q., files or database records

Set of subjects: S

— E.g., humans, processes acting on behalf of
humans or group of humans/processes

Set of rights: R
— E.qg., {read, write, execute, own}

Access control matrix consists of entries
a[s,o], wheres 1S, 00 Oandals,0] IR

6-22



Example Access Control Matrix

File 1

File 2

File 3

Alice

orw

Irx

Bob

orx

Carol

Irx

6-23



Implementing Access Control Matrix

* Access control matrix is hardly ever implemented as a
matrix

* Matrix would likely be sparse
* Updates would likely be tedious

* |Instead, an access control matrix is typically
Implemented as

e g set of access control lists

* column-wise representation
* a set of capabilities

* row-wise representation
* or a combination

6-24



Access Control Lists (ACLs)

* Each object has a list of subjects and their access rights
* E.g., File 1: {Alice:orw, Bob:r}, File 2: {Alice:rx, Bob:orx, Carol:rx}

* ACLs are implemented in Windows file system (NTFS), user entry
can denote entire user group (e.g., “Students”)

* Classic UNIX file system has simple ACLs. Each file lists its owner,
a group and a third entry representing all other users. For each
class, there is a separate set of rights.

Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

* Which of the following can we do quickly for ACLs?

* Determine set of allowed users per object
* Determine set of objects that a user can access
* Revoke a user’s access right to an object or all objects

6-25



Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object

* E.g., Alice: {File 1:.orw}, {File 2:rx}, {File 3:0}

Unforgeability enforced by having OS store and maintain tokens
or by cryptographic mechanisms

* One such mechanism, digital signatures (see later), allows tokens
to be handed out to processes/users. OS will detect tampering
when process/user tries to get access with modified token.

Owner of token might be allowed to transfer token to others

Some research OSs (e.g., Hydra) have fine-grained support for
tokens

* (Caller gives callee procedure only minimal set of tokens required
Answer questions from previous slide for capabilities

6-26



Combined Usage of ACLs and Cap.

* |[n some scenarios, it makes sense to use both ACLs
and capabilities

* E.g., for efficiency reasons

* In a UNIX file system, each file has an ACL, which is
consulted when executing an open() call

* |f approved, caller is given a capability listing type of
access allowed in ACL (read or write)

* Capability is stored in memory space of OS

* Upon read()/write() call, OS looks at capability to
determine whether type of access is allowed

* We cannot withdraw access from a user if user has
already opened file

6-27



Recap

* Protection in General-Purpose Operating Systems
* History
* Separation vs. Sharing
* Segmentation and Paging
* Access Control Matrix
* Access Control Lists vs. Capabilities

6-28



Next time

* Role-Based Access Control

e User Authentication

* Authentication Factors
* Passwords
* Attacks on Passwords
* Biometrics

6-29



