
6-1

Last time

● Controls against security flaws in programs

● Various controls applicable to each of the stages in the
software development lifecycle

● To get the best chance of controlling all of the flaws:
● Standards describing the controls to be used
● Processes implementing the standards
● Audits ensuring adherence to the processes

5-2

Security controls—Documentation

● How can we control security vulnerabilities through the
use of documentation?

● Write down the choices you made

– And why you made them

● Just as importantly, write down things you tried that
didn't work!

– Let future developers learn from your mistakes

● Make checklists of things to be careful of

– Especially subtle and non-obvious security-related
interactions of different components

5-3

Security controls—Maintainance

● By the time the program is out in the field, one hopes
that there are no more security flaws

– But there probably are

● We've talked about ways to control flaws when
modifying programs

– Change management, code review, testing,
documentation

● Is there something we can use to try to limit the
number of flaws that make it out to the shipped
product in the first place?

5-4

Standards, process, and audit

● Within an organization, have rules about how things
are done at each stage of the software lifecycle

● These rules should incorporate the controls we've
talked about earlier

● These are the organization's standards

● For example:

– What design methodologies will you use?

– What kind of implementation diversity?

– Which change management system?

– What kind of code review?

– What kind of testing?

5-5

Standards, process, and audit

● Make formal processes specifying how each of these
standards should be implemented

– For example, if you want to do a guided code review,
who explains the code to whom? In what kind of forum?
How much detail?

● Have audits, where somebody (usually external to the
organization) comes in and verifies that you're
following your processes properly

● This doesn't guarantee flaw-free code, of course!

6-6

This time

● Protection in General-Purpose Operating Systems
● History
● Separation vs. Sharing
● Segmentation and Paging
● Access Control Matrix
● Access Control Lists vs. Capabilities

6-7

Operating System

● An operating system allows different users to access
different resources in a shared way

● The operating system needs to control this sharing
and provide an interface to allow this access

● Identification and authentication are required for this
access control

● We will start with memory protection techniques and
then look at access control in more general

6-8

History

● Operating systems evolved as a way to allow multiple
users use the same hardware
● Sequentially (based on executives)
● Interleaving (based on monitors)

● OS makes resources available to users if required by
them and permitted by some policy

● OS also protects users from each other
● Attacks, mistakes, resource overconsumption

● Even for a single-user OS, protecting a user from
him/herself is a good thing
● Mistakes, malware

6-9

Protected Objects

● CPU

● Memory

● I/O devices (disks, printers, keyboards,...)

● Programs

● Data

● Networks

6-10

Separation

● Keep one user's objects separate from other users
● Physical separation

● Use different physical resources for different users
● Easy to implement, but expensive and inefficient

● Temporal separation
● Execute different users' programs at different times

● Logical separation
● User is given the impression that no other users exist
● As done by an operating system

● Cryptographic separation
● Encrypt data and make it unintelligible to outsiders
● Complex

6-11

Sharing

● Sometimes, users do want to share resources
● Library routines (e.g., libc)
● Files or database records

● OS should allow flexible sharing, not “all or nothing”
● Which files or records? Which part of a file/record?
● Which other users?
● Can other users share objects further?
● What uses are permitted?

● Read but not write, view but not print (Feasibility?)
● Aggregate information only

● For how long?

6-12

Memory and Address Protection

● Prevent program from corrupting other programs or
data, operating system and maybe itself

● Often, the OS can exploit hardware support for this
protection, so it’s cheap

● (See CS 350 memory management slides)
● Memory protection is part of translation from virtual to

physical addresses
● Memory management unit (MMU) generates exception if

something is wrong with virtual address or associated
request

● OS maintains mapping tables used by MMU and deals
with raised exceptions

6-13

Protection Techniques

● Fence register
● Exception if memory access below address in fence

register
● Protects operating system from user programs
● Single user only

● Base/bounds register pair
● Exception if memory access below/above address in

base/bounds register
● Different values for each user program
● Maintained by operating system during context switch
● Limited flexibility

6-14

Protection Techniques

● Tagged architecture
● Each memory word has one or more extra bits that

identify access rights to word
● Very flexible
● Large overhead
● Difficult to port OS from/to other hardware architectures

● Segmentation

● Paging

6-15

Segmentation
● Each program has multiple address spaces (segments)

● Could use different segments for code, data, and stack
● Or maybe even more fine-grained, e.g., different segments for data

with different access restrictions

● Virtual addresses consist of two parts:

<segment name, offset within segment>

● OS keeps mapping from segment name to its base physical
address in Segment Table

● OS can (transparently) relocate or resize segments and share
them between processes

● Each segment has its own memory protection attributes

6-16

Segment Table

Segment Table also contains memory protection attributes

6-17

Review of Segmentation

● Advantages:
● Each address reference is checked for protection by

hardware
● Many different classes of data items can be assigned

different levels of protection
● Users can share access to a segment, with potentially

different access rights
● Users cannot access an unpermitted segment

● Disadvantages:
● External fragmentation
● Dynamic length of segments requires costly out-of-

bounds check for generated physical addresses
● Segment names are difficult to implement efficiently

6-18

Paging

● Program (i.e., virtual address space) is divided into
equal-sized chunks (pages)

● Physical memory is divided into equal-sized chunks
(frames)

● Frame size equals page size
● Virtual addresses consist of two parts:

<page #, offset within page>
● # bits for offset = log

2
(page size), no out-of-bounds

possible for offset
● OS keeps mapping from page # to its base physical

address in Page Table
● Each page has its own memory protection attributes

6-19

Review of Paging

● Advantages:
● Each address reference is checked for protection by

hardware
● Users can share access to a page, with potentially

different access rights
● Users cannot access an unpermitted page

● Disadvantages:
● Internal fragmentation
● Assigning different levels of protection to different

classes of data items not feasible

6-20

x86 Architecture

● x86 architecture provides both segmentation and
paging
● Linux uses a combination of segmentation and paging

● Only simple form of segmentation to avoid portability
issues

● Segmentation cannot be turned off on x86
● Same for Windows

● Memory protection bits indicate no access, read/write
access or read-only access

● Recent x86 processors also include NX (No eXecute)
bit, forbidding execution of instructions stored in page
● Enabled in Windows XP SP 2 and some Linux distros
● Helps against some buffer overflows

6-21

Access Control

● Memory is only one of many objects for which OS has
to run access control

● In general, access control has three goals:
● Check every access: Else OS might fail to notice that

access has been revoked
● Enforce least privilege: Grant program access only to

smallest number of objects required to perform a task
● Access to additional objects might be harmless under

normal circumstances, but disastrous in special cases
● Examples?

● Verify acceptable use: Limit types of activity that can be
performed on an object

● E.g., for integrity reasons (ADTs)

6-22

Access Control Matrix

• Set of protected objects: O
– E.g., files or database records

• Set of subjects: S
– E.g., humans, processes acting on behalf of

humans or group of humans/processes

• Set of rights: R
– E.g., {read, write, execute, own}

• Access control matrix consists of entries
a[s,o], where s ∈ S, o ∈ O and a[s,o] ⊆ R

6-23

Example Access Control Matrix

rxCarol

orxrBob

orxorwAlice

File 3File 2File 1

6-24

Implementing Access Control Matrix

● Access control matrix is hardly ever implemented as a
matrix
● Matrix would likely be sparse
● Updates would likely be tedious

● Instead, an access control matrix is typically
implemented as
● a set of access control lists

● column-wise representation
● a set of capabilities

● row-wise representation
● or a combination

6-25

Access Control Lists (ACLs)
● Each object has a list of subjects and their access rights

● E.g., File 1: {Alice:orw, Bob:r}, File 2: {Alice:rx, Bob:orx, Carol:rx}
● ACLs are implemented in Windows file system (NTFS), user entry

can denote entire user group (e.g., “Students”)
● Classic UNIX file system has simple ACLs. Each file lists its owner,

a group and a third entry representing all other users. For each
class, there is a separate set of rights.
Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

● Which of the following can we do quickly for ACLs?
● Determine set of allowed users per object
● Determine set of objects that a user can access
● Revoke a user’s access right to an object or all objects

6-26

Capabilities
● A capability is an unforgeable token that gives its owner some

access rights to an object
● E.g., Alice: {File 1:orw}, {File 2:rx}, {File 3:o}

● Unforgeability enforced by having OS store and maintain tokens
or by cryptographic mechanisms

● One such mechanism, digital signatures (see later), allows tokens
to be handed out to processes/users. OS will detect tampering
when process/user tries to get access with modified token.

● Owner of token might be allowed to transfer token to others

● Some research OSs (e.g., Hydra) have fine-grained support for
tokens

● Caller gives callee procedure only minimal set of tokens required

● Answer questions from previous slide for capabilities

6-27

Combined Usage of ACLs and Cap.

● In some scenarios, it makes sense to use both ACLs
and capabilities
● E.g., for efficiency reasons

● In a UNIX file system, each file has an ACL, which is
consulted when executing an open() call

● If approved, caller is given a capability listing type of
access allowed in ACL (read or write)
● Capability is stored in memory space of OS

● Upon read()/write() call, OS looks at capability to
determine whether type of access is allowed

● We cannot withdraw access from a user if user has
already opened file

6-28

Recap

● Protection in General-Purpose Operating Systems
● History
● Separation vs. Sharing
● Segmentation and Paging
● Access Control Matrix
● Access Control Lists vs. Capabilities

6-29

Next time

● Role-Based Access Control

● User Authentication
● Authentication Factors
● Passwords
● Attacks on Passwords
● Biometrics

