Last time

- Protection in General-Purpose Operating Systems
 - History
 - Separation vs. Sharing
 - Segmentation and Paging
 - Access Control Matrix
 - Access Control Lists vs. Capabilities

This time

- Role-based Access Control
- User Authentication
 - Authentication Factors
 - Passwords
 - Attacks on Passwords

Role-based Access Control (RBAC)

- In a company, objects that a user can access often do not depend on the identity of the user, but on the user's job function (role) within the company
 - Salesperson can access customers' credit card numbers, marketing person only customer names
- In RBAC, administrator assigns users to roles and grants access rights to roles
- When a user takes over new role, need to update only her role assignment, not all her access rights
- Available in many commercial databases

RBAC Extensions

- RBAC also supports more complex access control scenarios
- Hierarchical roles
 - "A manager is also an employee"
 - Reduces number of role/access rights assignments
- Users can have multiple roles and assume/give up roles as required by their current task
 - "Alice is a manager for project A and a tester for project B"
 - User's current session contains currently initiated role
- Separation of Duty
 - "A payment order needs to be signed by both a manager and an accounting person, where the two cannot be the same person"

User Authentication

- Computer systems often have to identify and authenticate users
 - OS when a user logs in
 - Web server before handing out confidential information, like your grades
- Identification and authentication is easy among people that know each other
 - You identify your friends based on their face or voice
- More difficult for computers to authenticate people sitting in front of them
- Even more difficult for computers to authenticate people accessing them remotely

Authentication Factors

Four

- Three classes of authentication factors
- Something the user knows
 - User name and password, PIN, answer to secret question
- Something the user has
 - ATM card, badge, browser cookie, physical key, uniform
- Something the user is
 - Biometrics (fingerprint, voice pattern, face,...)
 - Have been used by humans forever, but only recently by computers
- Something about the user's context
 - Location, time

Combination of Auth. Factors

- Different classes of authentication factors can be combined for more solid authentication
 - Two- or multi-factor authentication
- Using multiple factors from the same class might not provide better authentication
 - Remember sophisticated Phishing attacks
- "Something you have" can become "something you know"
 - If token can be easily duplicated, such as magnetic strip on ATM card. That's why ATM fraud is so wide spread
 - Some banks distribute small devices displaying numbers that change over time. Current number needs to be input for online banking. However, knowing number does not imply physical possession of device

Passwords

- Probably oldest authentication mechanism used in computer systems
- User enters user ID and password, maybe multiple attempts in case of error
- Usability problems
 - Forgotten passwords might not be recoverable (though this has been changing recently, see later)
 - Entering passwords is inconvenient
 - If password is disclosed to unauthorized individual, the individual can immediately access protected resource
 - Unless we use multi-factor authentication
 - If password is shared among many people, password updates become difficult

Password Guessing Attacks

- Brute-force: Try all possible passwords using exhaustive search
- It's possible to test 350,000 Microsoft Word passwords per second on a 3-GHz Pentium 4
- For passwords of length 8 consisting only of letters, there are about 2*10¹¹ possibilities
- It takes only 600,000 seconds or 166 hours to test all of them
 - Expected wait till success is 83 hours
- Easy to buy more hardware if payoff is worth it
- Can make attack harder by including digits and special characters in password
- However,...

Password Guessing Attacks

- ... exhaustive search assumes that people choose passwords randomly, which is often not the case
- Attacker can do much better by exploiting this observation
- For example, Password Recovery Toolkit (PRTK) assumes that a password consists of a root and a pre- or postfix appendage
 - "password1", "abc123", "123abc"
- Root is taken from dictionaries (names, English words,...)
- Appendage is two-digit combination, date, single symbol,...
- PRTK could have cracked 55% of 34,000 leaked MySpace passwords in 8 hours
 - Even though passwords turned out to better than passwords from previous studies

Password Guessing Attacks

- So should we just give up on passwords?
- Attack requires that attacker has encrypted password file or encrypted document
 - Offline attack
- Instead attacker might want to guess your banking password by trying to log in to your bank's website
 - Online attack
- Online guessing attacks are detectable
 - Bank shuts down online access to your bank account after n failed login attempts (typically n ≤ 5)
 - But! How can an attacker circumvent this lockout?

Choosing Good Passwords

- Use letters, numbers and special characters
- Choose long passwords
 - At least eight characters
- Avoid guessable roots
- If supported, use pass phrase
 - Mix upper and lower case, introduce misspellings and special characters
 - Avoid common phrases (e.g., advertisement slogans)

Password Hygiene

- Writing down passwords is more secure than storing many passwords on a networked computer or re-using same password across multiple sites
 - Unreasonable to expect users to remember long passwords, especially when changed often
 - Requires physical security for password sheet, don't use sticky notes
- Change passwords regularly
 - Especially if shorter than eight characters
 - Should users be forced to change their password?
 - Leads to password cycling and similar
 - "myFavoritePwd" -> "dummy" -> "myFavoritePwd"
 - goodPwd."1" -> goodPwd."2" -> goodPwd."3"

Password Hygiene

- Don't reveal passwords to others
 - In email or over phone
 - If your bank really wants your password over the phone, switch banks
 - Studies have shown that people disclose their passwords for a cup of coffee, chocolate, or nothing at all
 - Caveat of these studies?
- Don't enter password that gives access to sensitive information on a public computer (e.g., Internet café)
 - Don't do online banking on them
 - While traveling, forward your email to a free Webmail provider and use throwaway (maybe weak) password

Attacks on Password Files

- Website/computer needs to store information about a password in order to validate entered password
- Storing passwords in plaintext is dangerous, even when file is read protected from regular users
 - Password file might end up on backup tapes
 - Intruder into OS might get access to password file
 - System administrator has access to file and might use passwords to impersonate users at other sites
 - Many people re-use passwords across multiple sites

Defending against Attacks

- Store only a digital fingerprint of the password (using cryptographic hash, see later) in the password file
- When logging in, system computes fingerprint of entered password and compares it with user's stored fingerprint
- Still allows guessing attacks when password file leaks
- UNIX makes these attacks harder by storing user-specific salts in the password file
 - Salt is derived from time of day and process ID of /bin/passwd
 - Salt is included when computing password fingerprint
 - Two users who happen to have the same password will have different fingerprints
 - Makes guessing attacks harder, can't just build a single table of fingerprints and passwords and use it for any password file

Defending against Attacks

- Store an encrypted version of the password in the password file
- Need to keep encryption key away from attackers
- As opposed to fingerprints, this approach allows system to (easily) re-compute password if necessary
 - E.g., have system email password to predefined email address when user forgets password
 - Has become the norm for many websites
 - In fact, some people use this reminder mechanism whenever they want to log in to a website
 - This way, they no longer have to remember passwords

Interception Attacks

- Attacker intercepts password while it is being transmitted to website
- One-time passwords make intercepted password useless for later logins
 - In a challenge-response protocol, the server sends a random challenge to the client
 - Client uses challenge and password as an input to a function and computes a one-time password
 - Client sends one-time password to server
 - Server checks whether client's response is valid
 - Given intercepted challenge and response, attacker might be able to brute-force password
- Cryptographic protocols (e.g., SRP) make intercepted information useless to an attacker

- Role-Based Access Control
- User Authentication
 - Authentication Factors
 - Passwords
 - Attacks on Passwords

Next time

- User Authentication
 - Beyond passwords
 - Biometrics
- Security Policies and Models
 - Trusted Operating Systems and Software
 - Military and Commercial Security Policies
 - Bell La-Padula and Biba Security Models
 - Information Flow Control