Last time

- User Authentication
 - Authentication Factors
 - Passwords
 - Attacks on Passwords
This time

- User Authentication
 - Beyond passwords
 - Biometrics

- Security Policies and Models
 - Trusted Operating Systems and Software
 - Military and Commercial Security Policies
Interception Attacks

• Attacker intercepts password while it is being transmitted to website

• One-time passwords make intercepted password useless for later logins
 • In a challenge-response protocol, the server sends a random challenge to the client
 • Client uses challenge and password as an input to a function and computes a one-time password
 • Client sends one-time password to server
 • Server checks whether client’s response is valid
 • Given intercepted challenge and response, attacker might be able to brute-force password

• Cryptographic protocols (e.g., SRP) make intercepted information useless to an attacker
Interception Attacks

• Proposed solutions are difficult to deploy
 • Patent issues
 • Changes to HTTP protocol required (i.e., every browser and many servers would have to be changed)
 • Challenge-response functions need to be irreversible, but also computable by humans for easy deployment, which makes them rare
Graphical Passwords

- Graphical passwords are an alternative to text-based passwords

- Multiple techniques, e.g.,
 - User chooses a picture; to log in, user has to re-identify this picture in a set of pictures
 - User chooses set of places in a picture; to log in, user has to click on each place

- Issues similar to text-based passwords arise
 - E.g., choice of places is not necessarily random

- Shoulder surfing becomes a problem

- Ongoing research
Graphical Passwords
Server authentication

- With the help of a password, system authenticates user (client)
- But **user should also authenticate system (server)** so that password does not end up with attacker instead!

Classic attack:
- In a computing lab, have a program display a fake login screen
- When user “logs in”, program prints error message, sends captured user ID and password to attacker and ends current session (which will start actual login screen)
- That’s why Windows requires you to press `<CTRL-ALT-DELETE>` for login. Always gives login window and cannot be overridden

Today’s attack:
- Phishing
Biometrics

- Biometrics have been hailed as a way to get rid of the problems with password and token-based authentication
- Unfortunately, they have their own problems
- Idea: Authenticate user based on physical characteristics
 - Fingerprints, iris scan, voice, handwriting, typing pattern,…
- If observed trait is sufficiently close to previously stored trait, accept user
 - Observed fingerprint will never be completely identical to a previously stored fingerprint of the same user
- Biometrics work well for local authentication, but are less suited for remote authentication or for identification
Local vs. Remote Authentication

- In local authentication, a guard can ensure that:
 - I put my own finger on a fingerprint scanner, not one made out of gelatin
 - Watch corresponding MythBusters episode on YouTube
 - I stand in front of a camera and don’t just hold up a picture of somebody else
- In remote authentication, this is much more difficult
Authentication vs. Identification

- **Authentication**: Does a captured trait correspond to a particular stored trait?
- **Identification**: Does a captured trait correspond to any of the stored traits?
 - Identification is an (expensive) search problem, which is made worse by the fact that in biometrics, matches are based on closeness, not on equality (as for passwords)
- **False positives** can make biometrics-based identification useless
 - False positive: Alice is accepted as Bob
 - False negative: Alice is incorrectly rejected as Alice
Biometrics-based Identification

- Example (from Bruce Schneier’s “Beyond Fear”):
 - Face-recognition software with (unrealistic) accuracy of 99.9% is used in a football stadium to detect terrorists
 - 1-in-1,000 chance that a terrorist is not detected
 - 1-in-1,000 chance that innocent person is flagged as terrorist
 - If one in 10 million stadium attendees is a known terrorist, there will be 10,000 false alarms for every real terrorist
 - Remember “The Boy Who Cried Wolf”?
- After pilot study, German FBI recently concluded that this kind of surveillance is useless
 - Average detection accuracy was 30%
Other Problems with Biometrics

- Privacy concerns
 - Why should my employer (or a website) have information about my fingerprints, iris,..?
 - Aside: Why should a website know my date of birth, my mother’s maiden name,… for “secret questions”?
 - What if this information leaks? Getting a new password is easy, but much more difficult for biometrics

- Accuracy: False negatives are annoying
 - What if there is no other way to authenticate?
 - What if I grow a beard, hurt my finger,…?
Trusted Operating Systems

- Trusting an entity means that if this entity misbehaves, the security of the system fails.

- We trust an OS if we have confidence that it provides security services, i.e.,
 - Memory and file protection
 - Access control and user authentication

- Typically a trusted operating system builds on four factors:
 - **Policy**: A set of rules outlining what is secured and how
 - **Model**: A model that implements the policy and that can be used for reasoning about the policy
 - **Design**: A specification of how the OS implements the model
 - **Trust**: Assurance that the OS is implemented according to design
Trusted Software

- Software that has been rigorously developed and analyzed, giving us reason to trust that the code does what it is expected to do and nothing more
- Functional correctness
 - Software works correctly
- Enforcement of integrity
 - Wrong inputs don’t impact correctness of data
- Limited privilege
 - Access rights are minimized and not passed to others
- Appropriate confidence level
 - Software has been rated as required by environment
- Trust can change over time, e.g., based on experience
Security Policies

- Many OS security policies have their roots in military security policies
 - That’s where lots of research funding came from
- Each object/subject has a sensitivity/clearance level
 - “Top Secret” > “Secret” > “Confidential” > “Unclassified” where “>” means “more sensitive”
- Each object/subject might also be assigned to one or more compartments
 - E.g., “Soviet Union”, “East Germany”
 - Need-to-know rule
- Subject s can access object o iff level(s) ≥ level(o) and compartments(s) ⊇ compartments(o)
 - s dominates o, short “s ≥ o”
Example

- Secret agent James Bond has clearance “Top Secret” and is assigned to compartment “East Germany”
- Can he read a document with sensitivity level “Secret” and compartments “East Germany” and “Soviet Union”?
- Which documents can he read?
Commercial Security Policies

- Rooted in military security policies
- Different classification levels for information
 - E.g., external vs. internal
- Different departments/projects can call for need-to-know restrictions
- Assignment of people to clearance levels typically not as formally defined as in military
 - Maybe on a temporary/ad hoc basis
Other Security Policies

- So far we’ve looked only at confidentiality policies
- Integrity of information can be as or even more important than its confidentiality
 - E.g., Clark-Wilson Security Policy
 - Based on well-formed transactions that transition system from a consistent state to another one
 - Also supports Separation of Duty (see RBAC slides)
- Another issue is dealing with conflicts of interests
 - Chinese Wall Security Policy
 - Once you’ve decided for a side of the wall, there is no easy way to get to the other side
Chinese Wall Security Policy

• Once you have been able to access information about a particular kind of company, you will no longer be able to access information about other companies of the same kind
 • Useful for consulting, legal or accounting firms
 • Need history of accessed objects
 • Access rights change over time

• ss-property: Subject s can access object o iff each object previously accessed by s either belongs to the same company as o or belongs to a different kind of company than o does

• *-property: For a write access, we also need to ensure that all objects readable by s either belong to the same company as o or have been sanitized
Example

- Fast Food Companies = \{McDonalds, Wendy’s\}
- Book Stores = \{Chapters, Amazon\}
- Alice has accessed information about McDonalds
- Bob has accessed information about Wendy’s
- ss-property prevents Alice from accessing information about Wendy’s, but not about Chapters or Amazon
 - Similar for Bob
- Alice could write information about McDonalds to Chapters and Bob could read this information from Chapters
 - Indirect information flow violates Chinese Wall Policy
 - *-property forbids this kind of write
Security Models

- Many security models have been defined and interesting properties about them have been proved.
- Unfortunately, for many models, their relevance to practically used security policies is not clear.
- We’ll focus on two prominent models:
 - Bell-La Padula Confidentiality Model
 - Biba Integrity Model
 - See text for others.
- Targeted at Multilevel Security (MLS) policies, where subjects/objects have clearance/classification levels.
Lattices

- Dominance relationship \geq defined in military security model is transitive and antisymmetric.
- Therefore, it defines a lattice.
- For two levels a and b, neither $a \geq b$ nor $b \geq a$ might hold.
- However, for every a and b, there is a **lowest upper bound** u for which $u \geq a$ and $u \geq b$ and a **greatest lower bound** l for which $a \geq l$ and $b \geq l$.
- There are also two elements U and L that dominate/are dominated by all levels.
 - In example, $U = (\text{“Top Secret”}, \{\text{“Soviet Union”}, \text{“East Germany”}\})$
 - $L = (\text{“Unclassified”}, \emptyset)$
Example Lattice

(“Top Secret”, {“Soviet Union”, “East Germany”}),

(“Top Secret”, {“Soviet Union”})

(“Secret”, {“Soviet Union”, “East Germany”})

(“Secret”, {“Soviet Union”})

(“Secret”, {“East Germany”})

(“Unclassified”, ∅)
Recap

● User Authentication
 ● Beyond passwords
 ● Biometrics

● Security Policies and Models
 ● Trusted Operating Systems and Software
 ● Military and Commercial Security Policies
Security Policies and Models
• Bell La-Padula and Biba Security Models
• Information Flow Control

Trusted Operating System Design
• Design Elements
• Security Features
• Trusted Computing Base
• Least Privilege in Popular OSs
• Assurance