
9-1

Last time

● User Authentication
● Beyond passwords
● Biometrics

● Security Policies and Models
● Trusted Operating Systems and Software
● Military and Commercial Security Policies

9-2

This time

● Security Policies and Models
● Bell La-Padula and Biba Security Models
● Information Flow Control

● Trusted Operating System Design
● Design Elements
● Security Features

9-3

Lattices

● Dominance relationship ≥ defined in military security
model is transitive and antisymmetric

● Therefore, it defines a lattice
● For two levels a and b, neither a ≥ b nor b ≥ a might

hold
● However, for every a and b, there is a lowest upper

bound u for which u ≥ a and u ≥ b and a greatest lower
bound l for which a ≥ l and b ≥ l

● There are also two elements U and L that
dominate/are dominated by all levels
● In example,

U = (“Top Secret”, {“Soviet Union”, “East Germany”})
L = (“Unclassified”, ∅)

9-4

Example Lattice

(“Top Secret”, {“Soviet Union”, “East Germany”}),

(“Unclassified”, ∅)

(“Top Secret”, {“Soviet Union”})

(“Secret”, {“Soviet Union”}) (“Secret”, {“East Germany”})

(“Secret”, {“Soviet Union”, “East Germany”})

9-5

Bell-La Padula Confidentially Model

● Regulates information flow in MLS policies, e.g.,
lattice-based ones

● Users should get information only according to their
clearance

● Should subject s with clearance C(s) have access to
object o with classification C(o)?

● ss-property (“no read up”): s should have read access
to o only if C(s) ≥ C(o)

● *-property (“no write down”): s should have write
access to o only if C(o) ≥ C(s)
● Comment: Version in textbook is a little bit less strict, but

this is how *-property is typically defined

9-6

Example
● No read up is straightforward
● No write down avoids the following information leak:

● James Bond reads top-secret document and summarizes it in a
confidential document

● Miss Moneypenny with clearance “confidential” now gets access to
top-secret information

● In practice, subjects are really programs (acting on behalf of
users)

● Else James Bond couldn’t even talk to Miss Moneypenny
● If program accesses top-secret information, OS ensures that it

won’t be allowed to write to confidential file later
● Even if program does not leak information to confidential file
● Might need explicit declassification operation for usability purposes

9-7

Biba Integrity Model

● Prevent inappropriate modification of data
● Dual of Bell-La Padula model
● Subjects and objects are ordered by an integrity

classification scheme, I(s) and I(o)
● Should subject s have access to object o?
● Write access: s can modify o only if I(s) ≥ I(o)

● Unreliable person cannot modify file containing high
integrity information

● Read access: s can read o only if I(o) ≥ I(s)
● Unreliable information cannot “contaminate” subject

9-8

Low Watermark Property

● Biba’s access rules are very restrictive, a subject
cannot ever view lower integrity object

● Can use dynamic integrity levels instead
● Subject Low Watermark Property:

If subject s reads object o, then I(s) = glb(I(s), I(o)),
where glb() = greatest lower bound

● Object Low Watermark Property:
If subject s modifies object o, then I(o) = glb(I(s), I(o))

● Integrity of subject/object can only go down,
information flows down

● What kind of property does Bell-La Padula imply?

9-9

Review of Bell-La Padula & Biba

● Very simple, which makes it possible to prove
properties about them
● E.g., can prove that if a system starts in a secure state,

the system will remain in a secure state
● Probably too simple for great practical benefit

● Need declassification
● Need both confidentially and integrity, not just one
● What about object creation?

● Information leaks might still be possible through covert
channels

9-10

Information Flow Control

● An information flow policy describes authorized paths
along which information can flow

● For example, Bell-La Padula describes a lattice-based
information flow policy

● In compiler-based information flow control, a compiler
checks whether the information flow in a program
could violate an information flow policy

● How does information flow from a variable x to a
variable y?

● Explicit flow: E.g., y:= x; or y:= x / z;

● Implicit flow: If x = 1 then y := 0; else y := 1

9-11

Information Flow Control (cont.)

● See text for other sample statements
● Input and output variables of program each have a

(lattice-based) security classification S() associated
with them

● For each program statement, compiler verifies whether
information flow is secure

● For example, x := y + z is secure only if
S(x) ≥ lub(S(y), S(z)), where lub() is lowest upper
bound

● Program is secure if each of its statements is secure

9-12

Trusted System Design Elements
● Design must address which objects are accessed how and which

subjects have access to what
● As defined in security policy and model

● Security must be part of design early on
● Hard to retrofit security, see Windows 95/98

● Design principles for security
● Least privilege

● Operate using fewest privileges possible
● Economy of mechanism

● Protection mechanism should be simple and straightforward
● Open design

● Avoid security by obscurity
● Rely on secret keys or passwords, but not on secret algorithms

9-13

Security Design Principles (cont.)

● Complete mediation
● Every access attempt must be checked

● Permission based
● Default should be denial of access

● Separation of privileges
● Two or more conditions must be met to get access

● Least common mechanism
● Every shared mechanism could potentially be used as a

covert channel
● Ease of use

● If protection mechanism is difficult to use, nobody will
use it or it will be used in the wrong way

9-14

Security Features of Trusted OS

● Identification and authentication
● See earlier

● Access control
● Object reuse protection
● Complete mediation
● Trusted path
● Accountability and audit
● Intrusion detection

9-15

Access Control

● Mandatory access control (MAC)
● Central authority establishes who can access what
● Good for military environments
● For implementing Chinese Wall, Bell-La Padula, Biba

● Discretionary access control (DAC)
● Owners of an object have (some) control over who can

access it
● You can grant others access to your home directory
● In UNIX, Windows,…

● RBAC is neither MAC nor DAC
● Possible to use combination of these mechanisms

9-16

Object Reuse Protection

● Alice allocates memory from OS and stores her
password in this memory

● After using password, she returns memory to OS
● By calling free() or simply by exiting procedure if memory

is allocated on stack
● Later, Bob happens to be allocated the same piece of

memory and he finds Alice’s password in it
● OS should erase returned memory before handing it

out to other users
● Defensive programming: Erase sensitive data yourself

before returning it to OS
● Similar problem exists for files, registers and storage

media

9-17

Hidden Data

● Hidden data is related to object reuse protection
● You think that you deleted some data, but it is still

hidden somewhere
● Deleting a file will not physically erase file on disk
● Deleting an email in GMail will not remove email from

Google’s backups
● Deleting text in MS Word might not remove text from

document
● Putting a black box over text in a PDF leaves text in PDF
● Shadow Copy feature of Windows Vista keeps file

snapshots to enable restores

9-18

Complete Mediation / Trusted Path

● Complete mediation
● All accesses must be checked
● Preventing access to OS memory is of little use if it is

possible to access the swap space on disk

● Trusted path
● Give assurance to user that her keystrokes and mouse

clicks are sent to legitimate receiver application
● Remember the fake login screen?
● Turns out to be quite difficult for existing desktop

environments, both Linux and Windows
● Don’t run sudo if you have an untrusted application

running on your desktop

9-19

Recap

● Security Policies and Models
● Bell La-Padula and Biba Security Models
● Information Flow Control

● Trusted Operating System Design
● Design Elements
● Security Features

9-20

Next time
● Trusted Operating System Design

● Security Features
● Trusted Computing Base
● Least Privilege in Popular OSs
● Assurance

● Security in Networks
● Network Concepts
● Threats in Networks
● Network Security Controls
● Firewalls
● Intrusion Detection Systems

