Last time

- Security in Networks
 - Network Security Controls
 - Firewalls
 - Honeypots
 - Intrusion Detection Systems

This time

- Internet Application Security and Privacy
 - Basics of cryptography
 - Symmetric-key encryption

Cryptography

- What is cryptography?
- Related fields:
 - Cryptography ("secret writing"): Making secret messages
 - Turning plaintext (an ordinary readable message) into ciphertext (secret messages that are "hard" to read)
 - Cryptanalysis: Breaking secret messages
 - Recovering the plaintext from the ciphertext
- Cryptology is the science which studies these both
- The point of cryptography is to send secure messages over an insecure medium (like the Internet).

The scope of these lectures

- The goal of the cryptography unit in this course is to show you what cryptographic tools exist, and information about *using* these tools in a secure manner
- We won't be showing you details of how the tools *work*.
 - For that, see C&O 487, or chapter 12 of the text

Dramatis Personae

When talking about cryptography, we often use a standard cast of characters

- Alice, Bob, Carol, Dave
 - People (usually honest) who wish to communicate
- Eve
 - A passive eavesdropper, who can listen to any transmitted messages
- Mallory
 - An active Man-In-The-Middle, who can listen to, and modify, insert, or delete, transmitted messages
- Trent
 - A Trusted Third Party

Building blocks

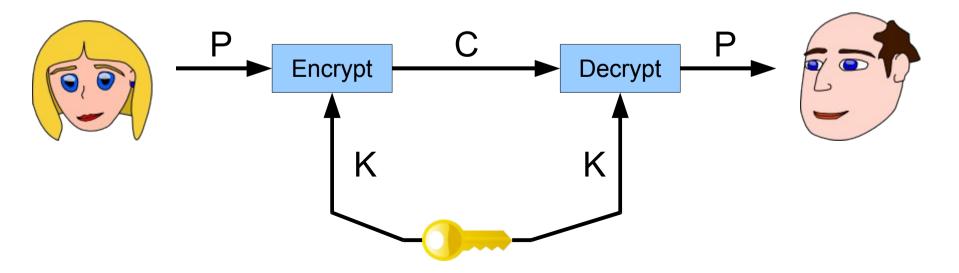
- Cryptography contains three major types of components
 - Secrecy components
 - Preventing Eve from reading Alice's messages
 - Integrity components
 - Preventing Mallory from modifying Alice's messages
 - Authenticity components
 - Preventing Mallory from impersonating Alice

Kerckhoffs' Principle (19th c.)

The security of a cryptosystem should not rely on a secret that's hard (or expensive) to change.

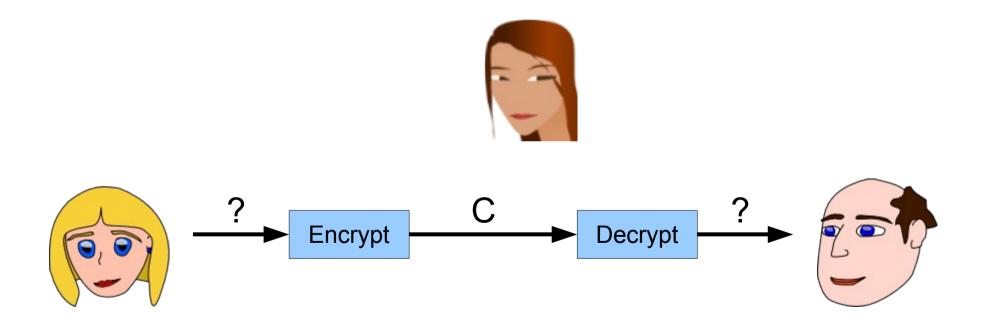
- So don't have secret encryption methods.
 - Then what do we do?
 - Have a large class of encryption methods, instead.
 - Hopefully, they're all equally strong.
 - Make the class public information
 - Use a secret key to specify which one you're using
 - It's easy to change the key; it's usually just a smallish number.

Kerckhoffs' Principle (19th c.)


- This has a number of implications:
 - The system is at most as secure as the number of keys
 - Eve can just try them all, until she finds the right one
 - A strong cryptosystem is one where that's the best Eve can do
 - With weaker systems, there are shortcuts to finding the key
 - Example: newspaper cryptogram has 403,291,461,126,605,635,584,000,000 possible keys
 - But you don't try them all; it's way easier than that!

Strong cryptosystems

- What information do we assume the attacker (Eve) has when she's trying to break our system?
- She may:
 - Know the algorithm (the public class of encryption methods)
 - Know some part of the plaintext
 - Know a number (maybe a large number) of corresponding plaintext/ciphertext pairs
 - Have access to an encryption and/or decryption oracle
- And we still want to prevent Eve from learning the key!


Symmetric encryption

- Symmetric encryption is the simplest form of cryptography
- Used for thousands of years
- The key Alice uses to encrypt the message is the same as the key Bob uses to decrypt it

Symmetric encryption

• Eve, not knowing the key, should not be able to recover the plaintext

Perfect symmetric encryption

- Is it possible to make a completely unbreakable cryptosystem?
- Yes: the One-Time Pad
- It's also very simple:
 - The key is a truly random bitstring of the same length as the message
 - The "Encrypt" and "Decrypt" functions are each just XOR

One-time pad

- But! It's very hard to use correctly
 - The key must be truly random, not pseudorandom
 - The key must never be used more than once!
 - A "two-time pad" is insecure!
- Used in the Washington / Moscow hotline for many years
- Q: Why does "try every key" not work here?
- Q: How do you share that much secret key?

Computational security

- In contrast to OTP's "perfect" or "information-theoretic" security, most cryptosystems have "computational" security
 - This means that it's certain they can be broken, given enough work by Eve
- How much is "enough"?
- At worst, Eve tries every key
 - How long that takes depends on how long the keys are
 - But it only takes this long if there are no "shortcuts"!

Some data points

- One computer can try about 17 million keys per second.
- A medium-sized corporate or research lab may have 100 computers.
- The BOINC project has 2 million computers.

Berkeley Open Infrastructure for Network Computing

 Remember that most computers are idle most of the time (they're waiting for you to type something); getting them to crack keys in their spare time doesn't actually cost anything extra.

40-bit crypto

This was the US legal export limit for a long time $2^{40} = 1,099,511,627,776$ possible keys

- One computer: 18 hours
- One lab: 11 minutes
- BOINC: 30 ms

56-bit crypto

This was the US government standard (DES) for a long time

2⁵⁶ = 72,057,594,037,927,936 possible keys

- One computer: 134 years
- One lab: 16 months
- BOINC: 36 minutes

128-bit crypto

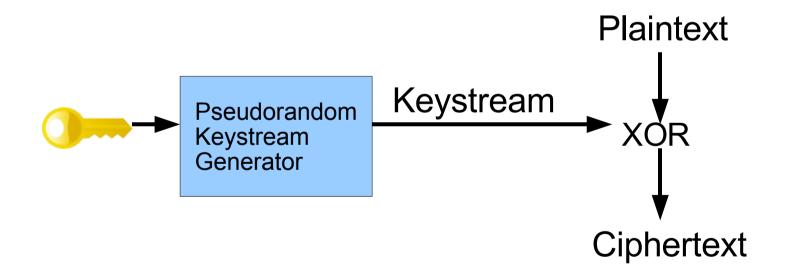
This is the modern standard

- $2^{128} = 340,282,366,920,938,463,463,374,607,$ 431,768,211,456 possible keys
- One computer: 635 thousand million million million years
- One lab: 6 thousand million million million years
- BOINC: 300 thousand million million years

Well, we cheated a bit

- This isn't really true, since computers get faster over time
 - A better strategy for breaking 128-bit crypto is just to wait until computers get 2⁸⁸ times faster, then break it on one computer in 18 hours.
 - How long do we wait? Moore's law says 132 years.
 - If we believe Moore's law will keep on working, we'll be able to break 128-bit crypto in 132 years (and 18 hours) :-)
 - Q: Do we believe this?

An even better strategy


- Don't break the crypto at all!
- There are always weaker parts of the system to attack
 - Remember the Principle of Easiest Penetration
- The point of cryptography is to make sure the information transfer is not the weakest link

Types of symmetric ciphers

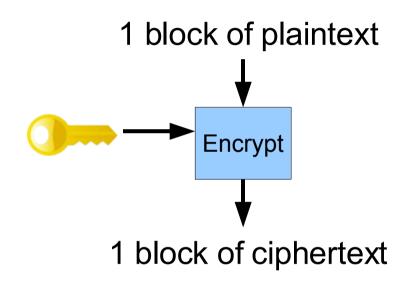
- Symmetric ciphers come in two major classes
 - Stream ciphers
 - Block ciphers

Stream ciphers

 A stream cipher is what you get if you take the One-Time Pad, but use a pseudorandom keystream instead of a truly random one

 RC4 is the most commonly used stream cipher on the Internet today

Stream ciphers

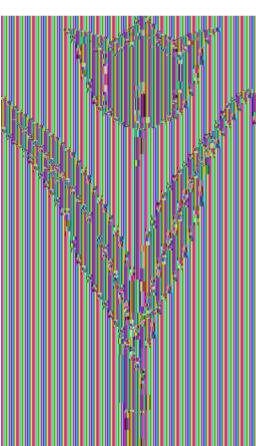

- Stream ciphers can be very fast
 - This is useful if you need to send a lot of data securely
- But they can be tricky to use correctly!
 - What happens if you use the same key to encrypt two different messages?
 - How would you solve this problem without requiring a new shared secret key for each message? Where have we seen this technique before?
- WEP, PPTP are great examples of how not to use stream ciphers

Block ciphers

- Notice what happens in a stream cipher if you change just one bit of the plaintext
 - This is because stream ciphers operate on the message one bit at a time
- We can also use block ciphers
 - Block ciphers operate on the message one block at a time
 - Blocks are usually 64 or 128 bits long
- AES is the block cipher everyone should use today
 - Unless you have a really, really good reason

Modes of operation

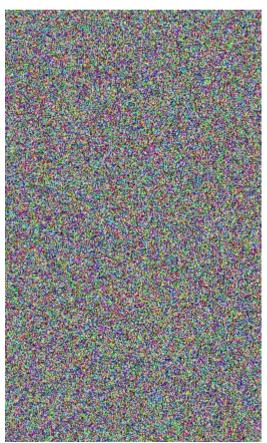

• Block ciphers work like this:



- But what happens when the plaintext is larger than one block?
 - The choice of what to do with multiple blocks is called the mode of operation of the block cipher

Modes of operation

- The simplest thing to do is just to encrypt each successive block separately.
 - This is called Electronic Code Book (ECB) mode
- But if there are repeated blocks in the plaintext, you'll see the same repeating patterns in the ciphertext:



Modes of operation

- There are much better modes of operation to choose from
 - Common ones include Cipher Block Chaining (CBC) and Counter (CTR) modes
- Patterns in the plaintext are no longer exposed
- But you need an IV (Initial Value), which acts much like a salt

Recap

- Internet Application Security and Privacy
 - Basics of cryptography
 - Symmetric-key encryption

Next time

- Internet Application Security and Privacy
 - Public-key encryption
 - Integrity
 - Authentication