
14-1

Last time

● Internet Application Security and Privacy
● Basics of cryptography
● Symmetric-key encryption

14-2

This time

● Internet Application Security and Privacy
● Public-key encryption
● Integrity

14-3

Key exchange

● The hard part of symmetric ciphers is:
● How do Alice and Bob share the secret key?

● Meet in person; diplomatic courier

● In general this is very hard

● Or, we invent new technology...

14-4

Public-key cryptography

● Invented (in public) in the 1970's.
● Allows Alice to send a secret message to Bob without any

prearranged shared secret!
● In symmetric crypto, the same key “locks” the message as

“unlocks” it.
● In asymmetric (or “public-key”) crypto, there's one key for

locking, and a different key for unlocking!
● Some common examples:

● RSA, ElGamal, ECC

14-5

Public-key cryptography

● How does it work?
● Bob gives everyone a copy of his public locking key. Alice

uses it to lock (encrypt) a message, and sends the locked
message to Bob.

● Bob uses his private unlocking key to unlock (decrypt) the
message.

● Eve can't unlock it; she only has the locking key.
● Neither can Alice!

● So with this, Alice just needs to know Bob's public key in
order to send him secret messages

● These public keys can be published in a directory somewhere

14-6

Public-key cryptography

Encrypt Decrypt
P C

D
P

E
E

14-7

Public Key Sizes

● Recall that if there are no shortcuts, Eve would have to
try 2128 things in order to read a message encrypted
with a 128-bit key.

● Unfortunately, all of the public-key methods we know
do have shortcuts
● Eve could read a message encrypted with a 128-bit RSA

key with just 233 work, which is easy!
● If we want Eve to have to do 2128 work, we need to use a

much longer public key.

14-8

Public Key Sizes

Comparison of key sizes for roughly equal strength

AES

80
116
128
160
256

RSA

1024
2048
2600
4500

14000

14-9

Hybrid Cryptography

● In addition to having longer keys, public-key crypto takes
a long time to calculate (as compared to symmetric-key
crypto)
● Using public-key to encrypt large messages would be too

slow, so we take a hybrid approach:
● Pick a random 128-bit key for a symmetric-key cryptosystem
● Encrypt the large message with that symmetric key (AES)
● Encrypt the 128-bit key with a public-key cryptosystem
● Send the symmetric-encrypted message and the public-

encrypted key to Bob.
● This hybrid approach is used for almost every cryptography

application on the Internet today.

14-10

Is that all there is?

● It seems we've got this “sending secret messages” thing
down pat. What else is there to do?
● Even if we're safe from Eve reading our messages, there's

still the matter of Mallory.
● It turns out that even if our messages are encrypted,

Mallory can sometimes modify them in transit!
● Mallory won't necessarily know what the message says, but

can still change it in an undetectable way.
● e.g. bit-flipping attack on stream ciphers

● This is counterintuitive, and often forgotten
● The textbook even gets this wrong!

● How do we make sure that Bob gets the same message
Alice sent?

14-11

Integrity components

● How do we tell if a message has changed in transit?
● Simplest answer: use a checksum.

● For example, add up all the bytes of a message
● The last digits of serial numbers (credit card, ISBN, etc.) are

usually checksums.
● Alice computes the checksum of the message, and sticks it

at the end before encrypting it to Bob. When Bob receives
the message and checksum, he verifies that the checksum
is correct.

14-12

This doesn't work!
● With most checksum methods, Mallory can easily

change the message in such a way that the checksum
stays the same.

● We need a “cryptographic” checksum
● It should be hard for Mallory to find a second message

with the same checksum as any given one.

14-13

Cryptographic Hash Functions

● These cryptographic checksums are called hash
functions.
● Common examples: MD5, SHA-1, SHA-256

● Hash functions generally have two properties:
● One-way:

● Given a hash value, it's hard to find a message which hashes
to that value (a “preimage”).

● Collision-resistant:
● It's hard to find two messages which hash to the same value

(a “collision”).

14-14

What is “hard”?

● For SHA-1, for example, it takes 2160 work to find a
preimage, and 280 work to find a collision.
● Well, that's what we thought until last year.
● It turns out finding collisions in SHA-1 may be easier than

we thought.

● The difference is due to the well-known birthday
paradox.

14-15

Cryptographic Hash Functions

● Hash functions are only useful when there is a secure
way of sending the hash value.
● For example, Bob can publish a hash of his public key on

his business card.
● Putting the whole key on there would be too big.
● But Alice can download Bob's key from the Internet, hash it

herself, and verify that the hash matches the one on Bob's
card.

14-16

Cryptographic Hash Functions

● You can't just send an unencrypted message and
hash to get integrity assurance
● Even if you don't care about secrecy!

● Mallory can just change the message, and just
compute the new hash value himself.

14-17

Recap

● Internet Application Security and Privacy
● Public-key encryption
● Integrity

14-18

Next time

● Internet Application Security and Privacy
● Authentication
● Security controls using cryptography
● Link-layer security: WEP, WPA, WPA2

