
15-1  

Last time

● Internet Application Security and Privacy
● Public-key encryption
● Integrity



15-2  

This time

● Internet Application Security and Privacy
● Authentication
● Security controls using cryptography
● Link-layer security: WEP, WPA, WPA2



15-3  

Using hashes for integrity

● Remember that hash functions can only guarantee 
integrity if the hash itself can be sent over a secure 
channel
● Why?

● What if there's no external channel to be had?
● For example, you're using the Internet to communicate



15-4  

Message Authentication Codes

● We do the same trick as for encryption: have a large 
class of hash functions, and use a shared secret to pick 
the right one.

● Only those who know the secret can generate, or even 
check, the hash values.

● These “keyed hashes” are usually called Message 
Authentication Codes, or MACs.

● Common examples:
● SHA-1-HMAC, SHA-256-HMAC, CBC-MAC



15-5  

Message Authentication Codes

MAC

MAC

M

T

K
K

=?



15-6  

Message Authentication Codes

● Suppose Alice and Bob share a MAC key, and Bob 
receives a message with a correct MAC using that key.
● Then Bob can be assured that Alice is the one who sent 

that message, and that it hasn't been modified since she 
sent it!

● This is like a “signature” on the message.
● But it's not quite the same!
● Bob can't show that signature to Carol to prove Alice sent 

the message.



15-7  

Message Authentication Codes

● Alice can just claim that Bob made up the message, 
and calculated the MAC himself.

● This is called repudiation; and we sometimes want to 
avoid it.

● Some interactions should be repudiable
● Private conversations

● Some interactions should be non-repudiable
● Electronic commerce



15-8  

Digital signatures

● For non-repudiation, what we want is a true digital 
signature, with the following properties:

● If Bob receives a message with Alice's digital signature 
on it, then:
● Alice, and not an impersonator, sent the message,
● the message has not been altered since it was sent, and
● Bob can prove these facts to a third party.

● How do we arrange this?
● Use similar techniques to public-key cryptography.



15-9  

Making digital signatures

● Remember public-key crypto:
● Separate keys for locking and unlocking
● Give everyone a copy of the locking key
● Keep the unlocking key secret

● To make a digital signature:
● Alice locks the message with her secret signature key.

● To verify Alice's signature:
● Bob unlocks the message with his copy of Alice's 

verification key.
● If it unlocks correctly, the signature is valid.



15-10  

Making digital signatures

Sign
Verify

M

Sig

VV

T/F

S

● Note that (Encryption, Decryption) key pairs for public-
key encryption are not the same thing as (Signature, 
Verification) key pairs for digital signatures!



15-11  

Hybrid signatures

● Just like public-key crypto, signing large messages is 
slow.

● We can also hybridize signatures to make them faster:
● Alice sends the (unsigned) message, and also a signature 

on a hash of the message.
● The hash is much smaller than the message, and so faster 

to sign and verify.
● Remember that authenticity and secrecy are separate; if 

you want both, you need to do both.



15-12  

The Key Management Problem

● One of the hardest problems of public-key cryptography 
is that of key management.

● If Alice wants to send an encrypted message to Bob, 
how does she find out Bob's public key?
● She can know it personally (manual keying)

● SSH does this
● She can trust a friend to tell her (web of trust)

● PGP does this
● She can trust some third party to tell her (CA's)

● SSL does this



15-13  

Certificate authorities

● A CA is a trusted third party who keeps a 
directory of people's (and organizations') public 
keys
● Bob generates a public and private key pair, and sends the 

public part, as well as a bunch of personal info, to the CA.
● The CA generates a certificate consisting of Bob's personal 

information, as well as his public key.  The entire certificate 
is signed with the CA's signature key.

● Everyone is assumed to have a copy of the CA's 
signature key, so they can verify the signature on the 
certificate.



15-14  

Putting it all together

● We have all these blocks; now what?
● Put them together into protocols.
● This is HARD.  Just because your pieces all work, 

doesn't mean what you build out of them will; you have to 
use the pieces correctly.

● Common mistakes include:
● Using the same stream cipher key for two messages
● Assuming encryption also provides integrity
● Falling for replay attacks or reaction attacks
● LOTS more!



15-15  

Security controls using cryptography

● In what situations might it be appropriate to use 
cryptography as a security control?

● Remember that there needs to be some separation, 
since any secrets (like the key) need to be available to 
the legitimate users but not the adversaries

● In some situations, this may make symmetric-key 
crypto problematic

● If your web browser can decrypt its file containing your 
saved passwords, then an adversary who can read 
your web browser probably can, too

● How is this solved in practice?



15-16  

Program and OS security

● Using symmetric-key crypto can be problematic for the 
above reason

● But public-key is OK, if the local machine only needs 
access to the public part of the key

● So only encryption and signature verification; no 
decryption or signing

● Common example: programs allow upgrades only if 
digitally signed

● OS may allow execution of programs only if signed



15-17  

Encrypted code

● There is research into processors which will only 
execute encrypted code

● The processor will decrypt instructions before 
executing them

● The encryption key is processor-dependent

● Malware won't be able to spread without knowing the 
processor key

● Downsides?



15-18  

OS authentication

● Authentication mechanisms sometimes use 
cryptography

● Unfortunately, people are bad at doing cryptography in 
their heads, so some hardware token is needed

Photo from http://itc.ua/



15-19  

Network security and privacy

● The primary use for cryptography

● “Separating the security of the medium from the security 
of the message”

● Entities you can only communicate with over a 
network are inherently less trustworthy

● They may not be who they claim to be



15-20  

Network security and privacy

● Network cryptography is used at every layer of the 
network stack for both security and privacy 
applications:
● Link

● WEP, WPA, WPA2
● Network

● VPN, IPSec
● Transport

● TLS / SSL, Tor
● Application

● ssh, PGP, OTR, Mixminion



15-21  

Link-layer security controls

● Intended to protect local area networks
● Most common example today: WEP (Wired Equivalent 

Privacy)
● WEP was intended to enforce three security goals:

● Confidentiality
● Prevent an adversary from learning the contents of your 

wireless traffic
● Access Control

● Prevent an adversary from using your wireless 
infrastructure

● Data Integrity
● Unfortunately, none of these is actually enforced!



15-22  

WEP description

Brief description:
● The sender and receiver share a secret k

● The secret k is either 40 or 104 bits long
● In order to transmit a message M:

● Compute a checksum c(M)
● this does not depend on k

● Pick an IV (a random number) v and generate a 
keystream RC4(v,k)

● XOR <M,c(M)> with the keystream to get the 
ciphertext

● Transmit v and the ciphertext over the radio link



15-23  

WEP description

● Upon receipt of v and the ciphertext:
● Use the received v and the shared k to generate the 

keystream RC4(v,k)
● XOR the ciphertext with RC4(v,k) to get <M’,c’>
● Check to see if c’ = c(M’)
● If it is, accept M’ as the message transmitted

● Problem number 1: v is 24 bits long
● Why is this a problem?



15-24  

Recap

● Internet Application Security and Privacy
● Authentication
● Security controls using cryptography
● Link-layer security: WEP



15-25  

Next time

● Internet Application Security and Privacy
● Link-layer security: WEP, WPA, WPA2
● Network-layer security: VPN, IPSec
● Transport-layer security and privacy: TLS / SSL, Tor


