Last time

* Internet Application Security and Privacy
* Public-key encryption
* |ntegrity

15-1



This time

* Internet Application Security and Privacy

* Authentication
e Security controls using cryptography
* Link-layer security: WEP, WPA, WPA2

15-2



Using hashes for integrity

* Remember that hash functions can only guarantee
integrity if the hash itself can be sent over a secure

channel
e Why?

* What if there's no external channel to be had?
* For example, you're using the Internet to communicate

15-3



Message Authentication Codes

We do the same trick as for encryption: have a large
class of hash functions, and use a shared secret to pick
the right one.

Only those who know the secret can generate, or even
check, the hash values.

These “keyed hashes” are usually called Message
Authentication Codes, or MACs.

Common examples:
e SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

15-4



Message Authentication Codes

M
.
—p MAC .
A T =7 &
—p MAC —P
A —_—
K

15-5



Message Authentication Codes

* Suppose Alice and Bob share a MAC key, and Bob
receives a message with a correct MAC using that key.

e Then Bob can be assured that Alice is the one who sent

that message, and that it hasn't been modified since she
sent it!

* This is like a “signature” on the message.
* But it's not quite the same!

* Bob can't show that signature to Carol to prove Alice sent
the message.

15-6



Message Authentication Codes

Alice can just claim that Bob made up the message,
and calculated the MAC himself.

This is called repudiation; and we sometimes want to
avoid It.

Some interactions should be repudiable

* Private conversations

Some interactions should be non-repudiable
* Electronic commerce

15-7



Digital signatures

* For non-repudiation, what we want is a true digital
signature, with the following properties:

* |f Bob receives a message with Alice's digital signature
on it, then:

* Alice, and not an impersonator, sent the message,
* the message has not been altered since it was sent, and

* Bob can prove these facts to a third party.
* How do we arrange this?
* Use similar techniques to public-key cryptography.

15-8



Making digital signatures

* Remember public-key crypto:

* Separate keys for locking and unlocking

* Give everyone a copy of the locking key

* Keep the unlocking key secret
* To make a digital signature:

* Alice locks the message with her secret signature key.
* To verify Alice's signature:

* Bob unlocks the message with his copy of Alice's
verification key.

* |f it unlocks correctly, the signature is valid.

15-9



Making digital signatures

* Note that (Encryption, Decryption) key pairs for public-
key encryption are not the same thing as (Signature,
Verification) key pairs for digital signatures!

>

15-10



Hybrid signatures

* Just like public-key crypto, signing large messages is
slow.

* We can also hybridize signatures to make them faster:

* Alice sends the (unsigned) message, and also a signature
on a hash of the message.

* The hash is much smaller than the message, and so faster
to sign and verify.

* Remember that authenticity and secrecy are separate; if
you want both, you need to do both.

15-11



The Key Management Problem

* One of the hardest problems of public-key cryptography
Is that of key management.

* |f Alice wants to send an encrypted message to Bob,
how does she find out Bob's public key?

* She can know it personally (manual keying)
* SSH does this

* She can trust a friend to tell her (web of trust)
* PGP does this

* She can trust some third party to tell her (CA's)
* SSL does this

15-12



Certificate authorities

* A CAs a trusted third party who keeps a
directory of people's (and organizations') public
keys

* Bob generates a public and private key pair, and sends the
public part, as well as a bunch of personal info, to the CA.

* The CA generates a certificate consisting of Bob's personal
information, as well as his public key. The entire certificate
is signed with the CA's signature key.

* Everyone is assumed to have a copy of the CA's
signature key, so they can verify the signature on the
certificate.

15-13



Putting it all together

We have all these blocks; now what?
Put them together into protocols.
This is HARD. Just because your pieces all work,

doesn't mean what you build out of them will; you have to

use the pieces correctly.
Common mistakes include:

* Using the same stream cipher key for two messages
* Assuming encryption also provides integrity

* Falling for replay attacks or reaction attacks

* LOTS more!

15-14



Security controls using cryptography

* |In what situations might it be appropriate to use
cryptography as a security control?

* Remember that there needs to be some separation,
since any secrets (like the key) need to be available to
the legitimate users but not the adversaries

* |n some situations, this may make symmetric-key
crypto problematic

* |If your web browser can decrypt its file containing your
saved passwords, then an adversary who can read
your web browser probably can, too

* How is this solved in practice?

15-15



Program and OS security

* Using symmetric-key crypto can be problematic for the
above reason

* But public-key is OK, if the local machine only needs
access to the public part of the key

* So only encryption and signature verification; no
decryption or signing

* Common example: programs allow upgrades only if
digitally signed

* OS may allow execution of programs only if signed

15-16



Encrypted code

There is research into processors which will only
execute encrypted code

The processor will decrypt instructions before
executing them

The encryption key is processor-dependent

Malware won't be able to spread without knowing the
processor key

Downsides?

15-17



OS authentication

e Authentication mechanisms sometimes use
cryptography

* Unfortunately, people are bad at doing cryptography in
their heads, so some hardware token is needed

Photo from http://itc.ua/

15-18



Network security and privacy

* The primary use for cryptography

* “Separating the security of the medium from the security
of the message”

* Entities you can only communicate with over a
network are inherently less trustworthy

* They may not be who they claim to be

15-19



Network security and privacy

* Network cryptography is used at every layer of the
network stack for both security and privacy
applications:

e Link
 WEP, WPA, WPA2
e Network

* VPN, IPSec
* Transport
e TLS/SSL, Tor
* Application
e ssh, PGP, OTR, Mixminion

15-20



Link-layer security controls

Intended to protect local area networks

Most common example today: WEP (Wired Equivalent
Privacy)

WEP was intended to enforce three security goals:

* Confidentiality

* Prevent an adversary from learning the contents of your
wireless traffic

e Access Control

* Prevent an adversary from using your wireless
infrastructure

* Data Integrity
Unfortunately, none of these is actually enforced!

15-21



WEP description

Brief description:
* The sender and receiver share a secret k

* The secret k is either 40 or 104 bits long
* In order to transmit a message M:

* Compute a checksum c(M)

* this does not depend on k

* Pick an IV (a random number) v and generate a
keystream RC4(v,k)

e XOR <M,c(M)> with the keystream to get the
ciphertext

* Transmit v and the ciphertext over the radio link

15-22



WEP description

* Upon receipt of v and the ciphertext:

* Use the received v and the shared k to generate the
keystream RC4(v,k)

* XOR the ciphertext with RC4(v,k) to get <M’,c’>
* Checktoseeifc’=c(M)
* |fitis, accept M’ as the message transmitted

* Problem number 1: v is 24 bits long
* Why is this a problem?

15-23



Recap

* Internet Application Security and Privacy

* Authentication
e Security controls using cryptography
* Link-layer security: WEP

15-24



Next time

* Internet Application Security and Privacy

* Link-layer security: WEP, WPA, WPA2
* Network-layer security: VPN, IPSec
* Transport-layer security and privacy: TLS / SSL, Tor

15-25



