Last time

* Internet Application Security and Privacy

* Link-layer security: WEP, WPA, WPA2
* Network-layer security: VPN, IPSec

17-1



This time

* Internet Application Security and Privacy

* Transport-layer security and privacy: TLS / SSL, Tor
e The Nymity Slider
* Application-layer security and privacy: ssh

17-2



Transport-layer security and privacy

Network-layer security mechanisms arrange to send
individual IP packets securely from one network to
another

Transport-layer security mechanisms transform
arbitrary TCP connections to add security

* And similarly for “privacy” instead of “security”

The main transport-layer security mechanism:

* TLS (formerly known as SSL)
The main transport-layer privacy mechanism:

e Tor

17-3



TLS / SSL

* |n the mid-1990s, Netscape invented a protocol called
Secure Sockets Later (SSL) meant for protecting
HTTP (web) connections

* The protocol, however, was general, and could be used
to protect any TCP-based connection

e HTTP + SSL = HTTPS

* Historical note: there was a competing protocol called
S-HTTP. But Netscape and Microsoft both chose
HTTPS, so that's the protocol everyone else followed

* SSL went through a few revisions, and was eventually
standardized into the protocol known as TLS
(Transport Layer Security, imaginatively enough)

17-4



TLS at a high level

Client connects to server, indicates it wants to speak
TLS, and which ciphersuites it knows

Server sends its certificate to client, which contains:

* |ts host name

* |ts public key

* Some other administrative information
* A signature from a Certificate Authority

Server also chooses which ciphersuite to use

Client sends symmetric encryption key K, encrypted
with server's public key

Communication now proceeds using K and the chosen
ciphersuite

17-5



The success of TLS

* TLS (including SSL) is the single most successful
Privacy Enhancing Technology (PET) ever

e Why?
* |t comes with your computer

* Which encouraged web server operators to bother paying
$$ for their certificates

* |t just works, without you having to configure anything

* Most of the time, it even protects the privacy of your
communications

17-6



Privacy Enhancing Technologies

So far, we've only used encryption to protect the
contents of messages

But there are other things we might want to protect as
well!

We may want to protect the metadata

* Who is sending the message to whom?

* |f you're seen sending encrypted message to Human
Rights Watch, bad things may happen

We may want to hide the existence of the message

* |f you're seen sending encrypted messages at all, bad
things may happen

17-7



Tor

Tor is another successful privacy enhancing
technology that works at the transport layer

e Hundreds of thousands of users

Normally, any TCP connection you make on the
Internet automatically reveals your IP address

* Why?

Tor allows you to make TCP connections without
revealing your IP address

It's most commonly used for HT TP (web) connections

17-8



How Tor works

e Scattered around the Internet are about 1000 Tor
nodes, also called Onion Routers

e Alice wants to connect to a web server without
revealing her |P address

17-9



How Tor works

* Alice picks one of the Tor nodes (n1) and uses public-
key cryptography to establish an encrypted
communication channel to it (much like TLS)

17-10



How Tor works

* Alice tells n1 to contact a second node (n2), and
establishes a new encrypted communication channel
to n2, tunnelled within the previous one to n1

?

=T

\ 7

’
NS g

17-11



How Tor works

* Alice tells n2 to contact a third node (n3), and
establishes a new encrypted communication channel
to n3, tunnelled within the previous one to n2

\d il

17-12



How Tor works

* And so on, for as many steps as she likes (usually 3)

* Alice tells the last node (within the layers of tunnels) to
connect to the website

17-13



Sending messages with Tor

Alice now shares three symmetric keys:

e K71 with n1
e K2 with n2
e K3 with n3

When Alice wants to send a message M, she actually
sends E,_(E, (E,.(M)))

Node n1 uses K17 to decrypt the outer layer, and
passes the result E,_(E, _(M)) to n2

Node n2 uses K2 to decrypt the next layer, and
passes the result E,_(M) to n3

Node n3 uses K3 to decrypt the final layer, and sends
M to the website

17-14



Replies in Tor

When the website replies with message R, it will send
it to node n3

e Why?
Node n3 will encrypt R with K3 and send E,_ (R) to n2

Node n2 will encrypt that with K2 and send E, (E, (R))
to n1

Node n1 will encrypt that with K1 and send

E. (E (E,.(R))) to Alice

Alice will use K71, K2, and K3 to decrypt the layers of
the reply and recover R

17-15



Who knows what?

Notice that node n1 knows that Alice is using Tor, and
that her next node is n2, but does not know which
website Alice is visiting

Node n3 knows some Tor user (with previous node
n2) is using a particular website, but doesn't know who

The website itself only knows that it got a connection
from Tor node n3

Note: the connection between n3 and the website is
not encrypted! If you want encryption as well as the
benefits of Tor, you should use encryption in addition

* Like HTTPS

17-16



Anonymity vs. pseudonymity

* Tor provides for anonymity in TCP connections over
the Internet, both unlinkably (long-term) and linkably
(short-term)

 \What does this mean?

* There's no long-term identifier for a Tor user

* |f a web server gets a connection from Tor today, and
another one tomorrow, it won't be able to tell whether
those are from the same person

* But two connections in quick succession from the same
Tor node are more likely to in fact be from the same
person

17-17



The Nymity Slider

* We can place transactions (both online and offline) on

a continuum according to the level of nymity they
represent:

* Verinymity
* Government ID, SIN, credit card #, address
* Persistent pseudonymity

* Noms de plume, many blogs
* Linkable anonymity

* Prepaid phone cards, loyalty cards
* Unlinkable anonymity

e Cash payments, Tor

17-18



The Nymity Slider

* |f you build a system at a certain level of nymity, it's
easy to modify it to have a higher level of nymity, but
hard to modify it to have a lower level.

* For example:

* |t's easy to add a loyalty card to a cash payment, or a
credit card to a loyalty card.

* |t's hard to remove identity information if you're paying by
credit card.

* The lesson: design systems with a low level of nymity
fundamentally; adding more is easy.

17-19



Application-layer security and privacy

* TLS can provide for encryption at the TCP socket level

* “End-to-end” in the sense of a network connection

* |s this good enough? Consider SMTPS (SMTP/email
over TLS)

* Many applications would like true end-to-end security

e Human-to-human would be best, but those last 50 cm
are really hard!

* We usually content ourselves with desktop-to-desktop

* We'll look at three particular applications:
* Remote login, email, instant messaging

17-20



Secure remote login (ssh)

* You're already familiar with this tool for securely
logging in to a remote machine
* Usual usage (simplified):
* Client connects to server

* Server sends its public key
* The client should verify that this is the correct key

* Client picks a random session key, encrypts it with
server's public key, sends to server

* All communication from here on in is encrypted and MACd
with the session key

e Client authenticates to server

* Server accepts authentication, login proceeds (under
encryption and MAC)

17-21



Authentication with ssh

* There are two main ways to authenticate with ssh:

* Send a password over the encrypted channel
* The server needs to know (a hash of) your password

* Sign a challenge with your private signature key
* The server needs to know your public key

 Which is better? Why?

17-22



Recap

* Internet Application Security and Privacy

* Transport-layer security and privacy: TLS / SSL, Tor
e The Nymity Slider
* Application-layer security and privacy: ssh

17-23



Next time

* Internet Application Security and Privacy

* Application-layer security and privacy: remalilers,
PGP/gpg, OTR

17-24



