
18-1

Last time

● Internet Application Security and Privacy

– Transport-layer security and privacy: TLS / SSL, Tor
● The Nymity Slider

– Application-layer security and privacy: ssh

18-2

This time

● Internet Application Security and Privacy

– Application-layer security and privacy: remailers,
PGP/gpg, OTR

Anonymity for email: remailers

● Tor allows you to anonymously communicate over the
Internet in real time
● What about (non-interactive) email?
● This is actually an easier problem, and was implemented

much earlier than Tor

● Anonymous remailers allow you to send email without
revealing your own email address
● Of course, it's hard to have a conversation that way
● Pseudonymity is useful in the context of email

● Nymity Slider

Type 0 remailers

● In the 1990s, there were very simple (“type 0”)
remailing services, the best known being anon.penet.fi

● How it worked:
● Send email to anon.penet.fi
● It is forwarded to your intended recipient
● Your “From” address is changed to

anon43567@anon.penet.fi (but your original address is
stored in a table)

● Replies to the anon address get mapped back to your
real address and delivered to you

anon.penet.fi

● This works, as long as:
● No one's watching the net connections to or from

anon.penet.fi
● The operator of anon.penet.fi and the machine itself

remain trustworthy and uncompromised
● The mapping of anon addresses to real addresses is

kept secret

● Unfortunately, a lawsuit forced Julf (the operator) to
turn over parts of the list, and he shut down the whole
thing, since he could no longer legally protect it

Type I remailers

● Cypherpunk (type I) remailers removed the central
point of trust

● Messages are now sent through a “chain” of several
remailers, with dozens to choose from

● Each step in the chain is encrypted to avoid observers
following the messages through the chain; remailers
also delay and reorder messages

● Support for pseudonymity is dropped: no replies!

Type II remailers

● Mixmaster (type II) remailers appeared in the late
1990s

● Constant-length messages to avoid an observer
watching “that big file” travel through the network

● Protections against replay attacks

● Improved message reordering

● But! Requires a special email client to construct the
message fragments
● premail (a drop-in wrapper for sendmail) makes it easy

Nym servers

● Recovering pseudonymity: “nym servers” mapped
pseudonyms to “reply blocks” that contained a nested
encrypted chain of type I remailers. Attaching your
message to the end of one of these reply blocks would
cause it to be sent through the chain, eventually being
delivered to the nym owner

● But remember that there were significant privacy
issues with the type I remailer system

● Easier recipient anonymity: alt.anonymous.messages

Type III remailers

● Type II remailers were the state of the art until recently

● Mixminion (type III) remailer
● Native (and much improved) support for pseudonymity

● No longer reliant on type I reply blocks
● Improved protection against replay and key compromise

attacks

● But it's not very well deployed or mature
● “You shouldn't trust Mixminion with your anonymity yet”

18-10

Pretty Good Privacy

● The first popular implementation of public-key
cryptography.

● Originally made by Phil Zimmerman in 1991

– He got in a lot of trouble for it, since cryptography was
highly controlled at the time.

– But that's a whole 'nother story. :-)
● Today, there are many (more-or-less) compatible

programs

– GNU Privacy Guard (gpg), Hushmail, etc.

18-11

Pretty Good Privacy

● What does it do?

– Its primary use is to protect the contents of email
messages

● How does it work?

– Uses public-key cryptography to provide:
● Encryption of email messages
● Digital signatures on email messages

18-12

Recall
● In order to use public-key encryption and digital

signatures, Alice and Bob must each have:

– A public encryption key

– A private decryption key

– A private signature key

– A public verification key

18-13

Sending a message
● To send a message to Bob, Alice will:

– Write a message

– Sign it with her own signature key

– Encrypt both the message and the signature with Bob's
public encryption key

● Bob receives this, and:

– Decrypts it using his private decryption key to yield the
message and the signature

– Uses Alice's verification key to check the signature

18-14

Back to PGP
● PGP's main functions:

– Create these four kinds of keys
● encryption, decryption, signature, verification

– Encrypt messages using someone else's encryption key

– Decrypt messages using your own decryption key

– Sign messages using your own signature key

– Verify signatures using someone else's verification key

– Sign other people's keys using your own signature key

18-15

Obtaining keys

● Earlier, we said that Alice needs to get a copy of Bob's
public key in order to send him an encrypted message.

● How does she do this?

– In a secure way?

● Bob could put a copy of his public key on his
webpage, but this isn't good enough to be really
secure!

– Why?

18-16

Verifying public keys

● If Alice knows Bob personally, she could:

– Download the key from Bob's web page

– Phone up Bob, and verify she's got the right key

– Problem: keys are big and unwieldy!

mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat
01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2
tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt
m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/
rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD
8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL
UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM

18-17

Fingerprints
● Luckily, there's a better way!

● A fingerprint is a cryptographic hash of a key.

● This, of course, is much shorter:
– B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

● Remember: there's no (known) way to make
two different keys that have the same
fingerprint.

18-18

Fingerprints
● So now we can try this:

– Alice downloads Bob's key from his webpage

– Alice's software calculates the fingerprint

– Alice phones up Bob, and asks him to read his key's actual
fingerprint to her

– If they match, Alice knows she's got an authentic copy of
Bob's key

● That's great for Alice, but what about Carol, who doesn't
know Bob

– At least not well enough to phone him

18-19

Signing keys

● Once Alice has verified Bob's key, she uses her
signature key to sign Bob's key.

● This is effectively the same as Alice signing a
message which says “I have verified that the key with
fingerprint B117 2656 DFF9 83C3 042B C699 EB5A
896A 2898 8BF5 really belongs to Bob.”

● Bob can attach Alice's signature to the key on his
webpage.

18-20

Web of Trust
● Now Alice can act as an introducer for Bob.

● If Carol doesn't know Bob, but does know Alice (and
has already verified Alice's key, and trusts her to
introduce other people):

– she downloads Bob's key from his website

– she sees Alice's signature on it

– she is able to use Bob's key without having to check
with Bob personally

● This is called the Web of Trust, and the PGP
software handles it mostly automatically.

18-21

So, great!

● So if Alice and Bob want to have a private
conversation by email:

– They each create their sets of keys

– They exchange public encryption keys and verification
keys

– They send signed and encrypted messages back and
forth

● Pretty Good, no?

18-22

Plot Twist
● Bob's computer is stolen by “bad guys”

– Criminals

– Competitors

– Subpoenaed by the RCMP

● Or just broken into

– Virus, trojan, spyware

● All of Bob's key material is discovered

– Oh, no!

18-23

The Bad Guys Can...

● Decrypt past messages

● Learn their content

● Learn that Alice sent them

● And have a mathematical proof they can show to
anyone else!

● How private is that?

18-24

What went wrong?

● Bob's computer got stolen?

● How many of you have never...

– Left your laptop unattended?

– Not installed the latest patches?

– Run software with a remotely exploitable bug?

● What about your friends?

18-25

What Really Went Wrong

● PGP creates lots of incriminating records:

– Key material that decrypts data sent over the public
Internet

– Signatures with proofs of who said what

● Alice had better watch what she says!

– Her privacy depends on Bob's actions

18-26

Casual Conversations

● Alice and Bob talk in a room

● No one else can hear

– Unless being recorded

● No one else knows what they say

– Unless Alice or Bob tells them
● No one can prove what was said

– Not even Alice or Bob
● These conversations are “off-the-record”

18-27

We Like Off-the-Record Conversations

● Legal support for having them

– Illegal to record conversations without notification

● We can have them over the phone

– Illegal to tap phone lines

● But what about over the Internet?

18-28

Crypto Tools

● We have the tools to do this

– We've just been using the wrong ones

– (when we've been using crypto at all)

● We want perfect forward secrecy

● We want deniable authentication

18-29

Perfect Forward Secrecy

● Future key compromises should not reveal past
communication

● Use a short-lived encryption key

● Discard it after use

– Securely erase it from memory

● Use long-term keys to help distribute and authenticate
the short-lived key

● Q: Why do these new long-term keys not have the
very same forward secrecy problem?

18-30

Recap

● Internet Application Security and Privacy

– Application-layer security and privacy: remailers,
PGP/gpg, OTR

18-31

Next time

● Finish OTR

● Database Security

– Introduction to Databases

– Security Requirements

– Integrity

– Auditability, Access Control, and Availability

– Data Inference

– Statistical Inference

– Controls against Inference

