Last time

* Internet Application Security and Privacy

- Transport-layer security and privacy: TLS / SSL, Tor
* The Nymity Slider
- Application-layer security and privacy: ssh

18-1



This time

* Internet Application Security and Privacy

— Application-layer security and privacy: remailers,
PGP/gpg, OTR

18-2



Anonymity for email: remailers

* Tor allows you to anonymously communicate over the
Internet in real time

* What about (non-interactive) email?

* This is actually an easier problem, and was implemented
much earlier than Tor

* Anonymous remailers allow you to send email without
revealing your own email address

* Of course, it's hard to have a conversation that way

* Pseudonymity is useful in the context of emaill
* Nymity Slider



Type 0 remailers

* In the 1990s, there were very simple (“type 0”)
remailing services, the best known being anon.penet.fi

* How it worked:

* Send email to anon.penet.fi
* |tis forwarded to your intended recipient

* Your “From” address is changed to
anon43567@anon.penet.fi (but your original address is
stored in a table)

* Replies to the anon address get mapped back to your
real address and delivered to you



anon.penet.fi

* This works, as long as:

* No one's watching the net connections to or from
anon.penet.fi

* The operator of anon.penet.fi and the machine itself
remain trustworthy and uncompromised

* The mapping of anon addresses to real addresses is
kept secret

* Unfortunately, a lawsuit forced Julf (the operator) to
turn over parts of the list, and he shut down the whole
thing, since he could no longer legally protect it



Type | remallers

Cypherpunk (type |) remailers removed the central
point of trust

Messages are now sent through a “chain” of several
remailers, with dozens to choose from

Each step in the chain is encrypted to avoid observers
following the messages through the chain; remailers
also delay and reorder messages

Support for pseudonymity is dropped: no replies!



Type Il remailers

Mixmaster (type |lI) remailers appeared in the late
1990s

Constant-length messages to avoid an observer
watching “that big file” travel through the network

Protections against replay attacks
Improved message reordering

But! Requires a special email client to construct the
message fragments

* premail (a drop-in wrapper for sendmail) makes it easy



Nym servers

* Recovering pseudonymity: “nym servers” mapped
pseudonyms to “reply blocks” that contained a nested
encrypted chain of type | remailers. Attaching your
message to the end of one of these reply blocks would
cause it to be sent through the chain, eventually being
delivered to the nym owner

 But remember that there were significant privacy
Issues with the type | remailer system

* Easier recipient anonymity: alt.anonymous.messages



Type lll remailers

* Type Il remailers were the state of the art until recently

* Mixminion (type lll) remailer

* Native (and much improved) support for pseudonymity

* No longer reliant on type | reply blocks

* Improved protection against replay and key compromise
attacks

* Butit's not very well deployed or mature
* “You shouldn't trust Mixminion with your anonymity yet”



Pretty Good Privacy

* The first popular implementation of public-key
cryptography.
* Originally made by Phil Zimmerman in 1991

- He got in a lot of trouble for it, since cryptography was
highly controlled at the time.

- But that's a whole 'nother story. :-)

* Today, there are many (more-or-less) compatible
programs

- GNU Privacy Guard (gpg), Hushmail, etc.

18-10



Pretty Good Privacy

* \What does it do?

- Its primary use is to protect the contents of email
messages

* How does it work?
- Uses public-key cryptography to provide:
* Encryption of email messages
* Digital signatures on email messages

18-11



Recall

* In order to use public-key encryption and digital
signatures, Alice and Bob must each have:

- A public encryption key
- A private decryption key
- A private signature key
- A public verification key

18-12



Sending a message

* To send a message to Bob, Alice will:

- Write a message
- Sign it with her own signature key

- Encrypt both the message and the signature with Bob's
public encryption key

* Bob receives this, and:

— Decrypts it using his private decryption key to yield the
message and the signature

- Uses Alice's verification key to check the signature

18-13



Back to PGP

* PGP's main functions:

- Create these four kinds of keys
* encryption, decryption, signature, verification
- Encrypt messages using someone else's encryption key

- Decrypt messages using your own decryption key

- Sign messages using your own signature key

- Verify signatures using someone else's verification key
- Sign other people's keys using your own signature key

18-14



Obtaining keys

* Earlier, we said that Alice needs to get a copy of Bob's
public key in order to send him an encrypted message.

e How does she do this?

- In a secure way?

* Bob could put a copy of his public key on his
webpage, but this isn't good enough to be really
secure!

- Why?

18-15



Verifying public keys

* |f Alice knows Bob personally, she could:

- Download the key from Bob's web page

- Phone up Bob, and verify she's got the right key
- Problem: keys are big and unwieldy!

mQGiBDi5gEURBADitpDzvvzW+91]/2zYgK78G3D76hvvvIT6gpTI1lwg6WIJINLKJat
01yNpMIYNvpwi7EUd/1SN16tl/A022p7s7bDbE4T5NIda0I0AgWe0Z/plIJC4+02
tD2RNuSkwDQcxzm8KUNZOJ1ladLvgRkm/oUubxyeY5omus 7hcfNrBOwjClwCg4dJnt
m7s3eNfMu72Cv+6FzBgFog8EAN1rkNdAC1Q80SMDihWjlogiWbBz4s6HMxzAagNf/
rCJ9qoK5SLFeoB/r5ksRWty9QKVAVAhhCIyl1U2B9tSTIEPYXJHQPZ3mwCxUnJpGD
8UgFM5UuKXaEq2pwpArTm367k0tTpMQgXAN2HWi1Zv//ahQXH40v30kBBRVLSVEXMUL
UJ+yA/4r5HLTpP2Sbbgt PWdeW7uDwhe2dTgf fAGUf0kuCpHWCTAHr831ivXzT/70M

18-16



Fingerprints

Luckily, there's a better way!
A fingerprint is a cryptographic hash of a key.

This, of course, is much shorter:
- B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

Remember: there's no (known) way to make

two different keys that have the same
fingerprint.

18-17



Fingerprints
* S0 now we can try this:

- Alice downloads Bob's key from his webpage
— Alice's software calculates the fingerprint

— Alice phones up Bob, and asks him to read his key's actual
fingerprint to her

- If they match, Alice knows she's got an authentic copy of
Bob's key

* That's great for Alice, but what about Carol, who doesn't
know Bob

- At least not well enough to phone him

18-18



Signing keys

* Once Alice has verified Bob's key, she uses her
signature key to sign Bob's key.

* This is effectively the same as Alice signing a
message which says “| have verified that the key with
fingerprint B117 2656 DFF9 83C3 042B C699 EB5A
896A 2898 8BF5 really belongs to Bob.”

* Bob can attach Alice's signature to the key on his
webpage.

18-19



Web of Trust

e Now Alice can act as an introducer for Bob.

e |f Carol doesn't know Bob, but does know Alice (and
has already verified Alice's key, and trusts her to
iIntroduce other people):

- she downloads Bob's key from his website
- she sees Alice's signature on it

- she is able to use Bob's key without having to check
with Bob personally

* This is called the Web of Trust, and the PGP
software handles it mostly automatically.

18-20



So, great!

* So if Alice and Bob want to have a private
conversation by email:

— They each create their sets of keys

- They exchange public encryption keys and verification
keys

- They send signed and encrypted messages back and
forth

* Pretty Good, no?

18-21



Plot Twist

* Bob's computer is stolen by “bad guys”

- Criminals
- Competitors
- Subpoenaed by the RCMP

* Or just broken into

- Virus, trojan, spyware

* All of Bob's key material is discovered
- Oh, no!

18-22



The Bad Guys Can...

Decrypt past messages
Learn their content
Learn that Alice sent them

And have a mathematical proof they can show to
anyone else!

How private is that?

18-23



What went wrong”?

* Bob's computer got stolen?

* How many of you have never...

- Left your laptop unattended?
- Not installed the latest patches?
- Run software with a remotely exploitable bug?

* \What about your friends?

18-24



What Really Went Wrong

* PGP creates lots of incriminating records:

- Key material that decrypts data sent over the public
Internet

- Signatures with proofs of who said what

* Alice had better watch what she says!

— Her privacy depends on Bob's actions

18-25



Casual Conversations

Alice and Bob talk in a room
No one else can hear
— Unless being recorded
No one else knows what they say
— Unless Alice or Bob tells them
No one can prove what was said
— Not even Alice or Bob
These conversations are “off-the-record”

18-26



We Like Off-the-Record Conversations

* Legal support for having them

- lllegal to record conversations without notification

* We can have them over the phone

- lllegal to tap phone lines

e But what about over the Internet?

18-27



Crypto Tools

* \We have the tools to do this

- We've just been using the wrong ones
- (when we've been using crypto at all)

* We want perfect forward secrecy

e \We want deniable authentication

18-28



Perfect Forward Secrecy

Future key compromises should not reveal past
communication

Use a short-lived encryption key
Discard it after use

- Securely erase it from memory

Use long-term keys to help distribute and authenticate
the short-lived key

Q: Why do these new long-term keys not have the
very same forward secrecy problem?

18-29



Recap

* Internet Application Security and Privacy

— Application-layer security and privacy: remailers,
PGP/gpg, OTR

18-30



Next time

* Finish OTR
 Database Security

- Introduction to Databases

- Security Requirements

- Integrity

— Auditability, Access Control, and Availability
- Data Inference

- Statistical Inference

- Controls against Inference

18-31



