
20-1

Last time

● Finish OTR

● Database Security

– Introduction to Databases

– Security Requirements

– Integrity

– Auditability, Access Control, and Availability

20-2

This time
● Database Security

– Data Inference

– Statistical Inference

– Controls against Inference

● Multilevel Security Databases

– Separation

– Integrity Locks

– Designs of MLS Databases

20-3

Security vs. Precision
● Security: Forbid any queries that access sensitive data, even if

(aggregated) result is no longer sensitive

● Precision: Aggregated result should reveal as much non-
sensitive data as possible

20-4

Data Inference

● Derivation of sensitive data from non-sensitive data

● Direct attack

– Attacker issues query that directly yields sensitive data

– Might obfuscate query to make it less obvious
● SELECT salary FROM staff WHERE lastname =
'Adams' OR (sex != 'M' AND sex != 'F')

● Indirect attack

– Infer sensitive data from statistical results
● As released by governments or pollers

● Data inference is related to data aggregation

– Derivation of sensitive data from less sensitive data

20-5

Statistical Inference Attacks
● Sum

● Leaks sensitive data if sum covers only one record or if attacker can
control set of covered records
● SELECT SUM(salary)
● SELECT SUM(salary) WHERE lastname != 'Adams'

● Count

● Useful in attack above

● Mean

● sum = count * mean

● Median

● Intersecting medians might leak sensitive data

● See text for example

20-6

Tracker Attacks

● Focus on queries of type SUM or COUNT

● Assume that DBMS refuses to answer a query if
number of matching records is smaller than k or larger
than N-k (Why?)

– N: number of records in database

● A tracker T is a query whose result matches between
2k and N-2k records

– DBMS will answer T (and not T)

● Assume that there is a query C that DBMS refuses to
answer since it matches fewer than k or more than N-k
records

20-7

Tracker Attacks (cont.)

● Let q() be the result of a query and S the set of all
records

● Using Venn diagrams, we can show that

– q(C) = q(C or T) + q(C or not T) – q(S)

– Use right-hand side for computing q(C) if q(C) matches
fewer than k records

– q(C) = 2 * q(S) - q(not C or T) - q(not C or not T)

– Use right-hand side for computing q(C) if q(C) matches
more than n-k records

● In general, simple logic or linear algebra might allow
an attacker to convert a forbidden query into multiple,
allowed queries

20-8

Controls for Statistical Inference Attacks

● Apply control to query or to data items

– As seen, former is difficult

● Suppression and concealing are two controls applied
to data items

● Suppression

– Suppress sensitive data from result

● Concealing

– Answer is close to actual value, but not exactly

20-9

Controls (cont.)

● n-item k-percent rule

– If there are n records and they represent over k percent
of reported result, omit these records from result

– However, omission itself might leak information or
omitted value could be derived with other means

● Combined results

– Report set or range of possible values

● Random sample

– Compute result on random sample of database

– Need to use same sample for equivalent queries

20-10

Controls (cont.)

● Random data perturbation

– Add or subtract small random error to/from each value
before computing result

– Expectation is that statistical properties are maintained

● Query analysis

– Maintain history of user’s queries and observe possible
inferences

– Costly, fails for colluding users

20-11

Aggregation

● Building sensitive results from less sensitive inputs,
typically from different sources (e.g., people)

● Aggregation can take place outside of a DBMS, which
makes it difficult to control

– People talking to each other

● Closely related to data mining (see later), where
information from different databases is combined

20-12

Multilevel Security (MLS) Databases

● Support classification/compartmentalization of
information according to its confidentiality/integrity

– Two levels (sensitive and not sensitive) might not be
sufficient

● At element level if necessary

– Salary might be sensitive only for some employees

– Other information in employee’s record might not be
sensitive

● In an MLS database, each object has a classification
and maybe a compartment

– Object can be element, aggregate, column, or row

20-13

*-Property

● Implementing the *-property in an MLS database is
difficult

– User doing a write-up though user cannot read data at
higher level (Blind writes)

– Write-downs need a sanitization mechanism

– Trusted processes that can do anything

● DBMS must have read and write access at all levels to
answer user queries, perform back-ups, optimize
database,…

– Must trust DBMS

20-14

Confidentiality

● Depending on a user’s level, he/she might get different
answers for a query

– Less precision for low-level users

● Existence of a record itself could be confidential

● Keeping existence hidden can lead to having multiple
records with the same primary key (polyinstantiation)

– Admin notices that there is no record for Bob Hill and
creates one

– However, Bob Hill is a secret agent, so there already is a
record, which admin cannot see

– DBMS must allow admin’s request, else admin would get
suspicious

20-15

Partitioning

● Have separate database for each classification level

● Simple, often used in practice

● Might lead to data stored redundantly in multiple
databases

● Doesn’t address the problem of a high-level user
needing access to low-level data combined with high-
level data

20-16

Encryption

● Separate data by encrypting it with a key unique to its
classification level

● Must be careful to use encryption scheme in the right
way

– E.g., encrypting the same value in different record with
the same key should lead to different ciphertexts

● Processing of a query becomes expensive, many
records might have to be decrypted

– Doing the processing directly on the encrypted data is an
active research area

20-17

Integrity Lock

● Provides both integrity and access control

● Each data item consists of

– The actual data item

– A sensitivity label (maybe concealed)

– A cryptographic signature (or MAC) covering the above
plus the item’s attribute name and its record number

● Signature protects against attacks on the above fields,
such as attacks trying to modify the sensitivity label,
and attacks trying to move/copy the item in the
database

● This scheme does not protect against replay attacks

20-18

Integrity Lock (cont.)

● Any (untrusted) database can be used to store data
items and their integrity locks
– Locks can consume lots of space (maybe multiple locks

per record)
● (Trusted) procedure handles access control and

manages integrity locks
– E.g., updates sensitivity level to enforce *-property or re-

computes signature after a write access
– Expensive

● Have to encrypt items and locks if there are other
ways to get access to data in database
– Makes query processing even more expensive

20-19

Trusted Front End

● Front end authenticates a user and forwards user
query to old-style DBMS

● Front end gets result from DBMS and removes data
items that user is not allowed to see

● Allows use of existing DBMS and databases

● Inefficient if DBMS returns lots of items and most of
them are being dropped by front end

20-20

Commutative Filters

● Front end re-writes user query according to a user’s
classification

– Remove attributes that user is not allowed to see

– Add constraint expressing user’s classification

● Benefits from DBMS’ superior query processing
capabilities and discards forbidden data items early on

● Front end might still have to do some post processing

20-21

Distributed/Federated Databases

● Based on partitioning

● Front end forwards user query only to databases that
user can access based on classification

● Front end might have to combine the results from
multiple databases

– Complex process, front end essentially becomes a
DBMS

● Doesn’t scale to lots of classification levels

20-22

Views
● Many DBMS support views

● A view is logical database that represents a subset of some other
database

– CREATE VIEW foo AS SELECT * FROM bar WHERE…

● Element in view can correspond to an element in underlying
database or be a combination of multiple elements

– E.g., their sum

● Views can be used for access control

– A user’s view of a database consists of only the data that the user
is allowed to access

– Hide attribute/row unless user is allowed to access at least one
element, set to UNDEFINED any elements that user can’t access

20-23

Truman vs. Non-Truman semantics

● Truman semantics: the DBMS
pretends that the data the user is
allowed to access is all the data
there is

– Like “The Truman Show”

– All queries will succeed, even if they
return imprecise results

● Non-Truman semantics: the DBMS
can reject queries that ask for data
the user is not allowed to access

– Any queries that succeed will
produce precise answers

– Some queries will fail

20-24

Recap
● Database Security

– Data Inference

– Statistical Inference

– Controls against Inference
● Multilevel Security Databases

– Separation

– Integrity Locks

– Designs of MLS Databases

20-25

Next time
● Data Mining

– Integrity and Availability

– Privacy and Data Mining

– Privacy-Preserving Data Mining

