CS459/698
Privacy, Cryptography,
Network and Data Security

Secure Messaging

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Today

e Secure Messaging Goals
e PGP

- PGP Keys

- Problems with PGP
e OTR
e Signal

Secure Messaging Goals

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

———————

CS459 Fall 2024

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

aw ‘ws

CS459 Fall 2024

- Non-repudiation?

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

What's / /\NeIN
that

your f
g BOb' \password’b ~ doesn't

seem

/ /\r\ight.././ /

CS459 Fall 2024 6

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation? o P VT s
~ Lookwhat - OMGshe
. Alice said reallyr)soalld
\ about you' that

Carol is h

CS459 Fall 2024

/ Carolis |

@ an Inoying.

Pretty Good Privacy

PGP

e Public-key (actually hybrid) encryption tool
e Used for encrypted email (and other uses)
e Originally made by Phil Zimmermann in 1991

- He got in a lot of trouble for it, since cryptography was highly
controlled at the time

~https://www.philzimmermann.com/EN/essays/WhylWrotePGP.html|

CS459 Fall 2024

https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

PGP

e PGP: Pretty Good Privacy (original program)

e OpenPGP: Open standard (RFC 4880)

e GPG/GnuPG: GNU Privacy Guard (a popular OpenPGP program)
e Many people just say “PGP” for all of the above

e Today, there are many programs which implement OpenPGP

— GNU Privacy Guard (gpg), Thunderbird, Evolution, Mailvelope,
OpenKeychain, PGPro, Delta Chat, Proton Mail, ...

CS459 Fall 2024

10

PGP

PGP

:

Message

\

Message

hash(|

sign(. @)

CS459 Fall 2024

13

' b

. = secret key (random)

PGP
3

. = secret key (random)

onc(= (. B

(symmetric encryption)

PGP

&
enc(_~ (I @)

(symmetric encryption)

PGP

@ -
enc([l @) = (=

(public key encryption)

PGP

PGP

PGP

I
dec(.,.'ll)=.

(public key crypto)

R
dec(., .'ll)=

(public key crypto)

PGP

E B8
dec([e D)

(symmetric encryption)

PGP
e @
dec AN . D)

(symmetric encryption)

Sig

PGP

Sig

PGP

Encrypted Messaging Goals and PGP

e Confidentiality
e Integrity
e Authentication

-Non-repudiation?

Encrypted Messaging Goals and PGP

e Confidentiality

e a
eIntegrity

e Authentication

-Non-repudiability?

Encrypted Messaging Goals and PGP

e Confidentiality

e a
eIntegrity

e Authentication

-Non-repudiability?

Encrypted Messaging Goals and PGP

e Confidentiality

eIntegrity
e Authentication
sig

-Non-repudiation?

Encrypted Messaging Goals and PGP

e Confidentiality

eIntegrity
e Authentication
sig
-Non-repudiation?

PGP Keys

PGP Keys

Each person has at least 2 keypairs:

e One for signatures e One for encryption

-Public key used to verify

~Private key used to sign

~Public key used to encrypt
—Private key used to decrypt

rsad@96 2023-01-27 [SC] [explires: 2023-02-26]
EF22E516EA9C43B7A67E4FB41CD25603C14C0DAS
[ultimate] Alice <alice@example.com>

rsad4@96 2023-01-27 [E] [explires: 2023-02-26]

CS459 Fall 2024 36

Obtaining Keys
e How does Alice get Bob’s public key?

-Download from Bob’s website
-Download from a keyserver
-Bob sends it via email

-Other channel

e How does Alice know it's Bob’s authentic key?

CS459 Fall 2024

37

Verifying Public Keys

e Alice and Bob would rather not have to trust CAs

e They can compare keys (in-person, through a secure
channel, etc.)

e But keys are big and unwieldy!

CS459 Fall 2024

-—---BEGIN PGP PUBLICKEY BLOCK-

mQINBGPUBX4BEADa3JsMGX9GKriACgl1vvokxOc8ItbHSI7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNJ6mQuzgUBJ7T54ed8pEf 1rtM WL+70oM NRNa FX6v 0sT5
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmw wWV cVMBBGfrP3pRI93dKWbHET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPXEP8JoTCnOXA v4ugjM6VEExXxb/Cj151/5PsIhx
76LPgSsPUWRzKQ9stP8YjTX+0191+GNgL htdmy5yXPDIF/NO+hQVwvUZ00J544a
KeF DQ/G9IGKIf) 2T IhvQn9Bdk Zpff5Kjzun0+4HNkOmsBS5S 8BItdPpuc3gstrkL6W
aAnXUS9j7mB3Gf58fjJu+1g MP5dXG 16nduB/W 3SuH2/XSy mpjSm6PkuNcSMIOXEN
FCUH/aoRjZQV /Xi51aQHg+cbEt LRACdka AHNNjxG DXkzjbuYzjtv 3hPMv NiBF897
PvihCO2w4pXBQ7rpxzn60v UliawfrmdZQA 2tRZOSN 2 Cpti3K) 00zKzfGTOVFRaVq
NfEy26ZtEPAZjhgBJ Do8SLx) kshrM LhNnlobR/BLng 1v/xSrjPTAV E/sK032Gf gz
uynR6z0+rVcwAKz3g/akskknPG/Or4KdEhsmOKuPg ATSduGo96t299dRqQARAQAB
tBIBbGZSABYW xpY2VA ZXhhbXBsZS 5620+ QJXBBMBCABBFIEE 7y LIFugc Q7em
fk+OHNJ WA8FM DQU FAmP U Bx4CGWM FCQANnjQAFCw kIBwIClgIGF QoJCAsCBBYCAWEC
HgcCF4AA CgkQHNJWA 8F MD QV 3LQ/8CnyOARm +se Up4ShUo5xqlIE MP G 6F +V bBE 45G
XGiEr/PeM bdTJtkrO0Qzsx0/tVYKI GiLE5D9W/1TaqzAkmnsyvhFOw p3XZQGeqlt
U9mPpBQkzAfzw W2 1++3CK48WcCtb5mRh+09Z 7jwF 0aE YD OKx 020g6a9132kUp66n
CctBy +h6ucBVMM TZSOJF r5Y HF ZJKa /ly Q60D gk v+f IwfPZm 2N 93jHejldrKSVt zi
Yb5tXqGDwoljSIxhIV A6pX03 CtENKqrpD PSOtM70AdmVSmjQgn7AR3UtBIn4IM b
iC+/yKD2JIGLSIR5RKv ovJ1BBQHU 7 FAT crKF LASORQS05iaE te MsFLLbBM omrs23
oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4lhY/WpZG D AlayA 9v 9T W MU MzxDjMw mfeK+j
OlcJwj0BO6GbMBBNIr76ae+zW pleqZrjv7S7H+h0bOi8n0OPBKrTx bGLM7wg/r9ii
qEmM4pHT5P0iI6WBr3PYu/PoyEnPIKonxSv 9k OJXGy jDcdV6vjBA6c37mF FsOFfk8 A
5/x3V85+0YK34RbDVDgm5+V 42Lo5DP49KdBV1dp+007nWRIDsOroFarbM cPCCW i)
i0p4+r9nU9Hx8k6mjusty jZBgplmDhBnCo5hA aAy tuOLTU3wKwmhqg8ONCIhKYRXo
+88+0P65Ag0EYIQHH g EQAOFF 4x8GKiSCjk5jUxL87s0nk mIOGxtpx8L4dm9rFtu
u6cP7Xc0JOngxF 4HufcL6VNfPMF 5knU6ezXUgMvOse FVT30VC6uF390rqO26va/
LcCYzKalWF LKyuBvtL DuPUdANhplQhH 7s4F Qv TPU O+sa CAgJDJtOsq/F/n+Gttz
DxNdPbsTC50ES kg fhyednT9gZ pCsxc9Gd3mDyD DkM Gy WaEf4bW jdjX2NEj6TuezY

ijy qtY BHKf9e NSmPY9SE bV 9HIMLg Za/R4mrtZ+ AMy a2 I TuyBXi6oo+oElS 71ce fD
BFajeOKHOMHtPKQvkagyetl6l5Ta+6Ek oy 50c90s85UdUIZZkCaZ5zA8vrkhLNh
KvJ90Uf5 N uoe+CibwpvZZQhplumX+eRM SX1U4hBahB5z+fLe3YUCn5r DWEFmMSG2
EAMRDF5QG7L5dDMS 6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghl Lim79D1
09MSYRAOFPVIumqW liv8622XOr8dqwnIKB9uD WM HGnEk Ftlse COW rsbRaeM HD Fc
7A/bNCocDrA8x18GielkVTMhuFMc77WiN43rjYSLr17W2VOKgINONHY CSsGOhC4z
0aJcDDJLvdk t4AriXpmhSmMOW ZsvbIrT9i5voY 8G IEbItQ5xppOU GZ +3vf QUWER
ABEBAAGJAjWEGAEIA CYW IQTvIuUW6 pxDt6Z+T7QcOlY DwUw NBQU CY9QH HgIbDAUJ
ACeNAAAKCRACOIYD wUwNBRQJ EA CAJ8LSN8YInrKq/9Jqly6qkoLTrOr5Yvz7Fm/F
KRP7vDicOKGH3NwsrBE3+7UB8MW WjOrdtWL d7a5A aswE tTSXKHrpzSC/s8knim
POtR/vSallfb6qjXAQrkOZhW hoD4YsRBY 57Xe 9EhOupSy6eUeF bGMS80HVLrApju
IUVKINdpD+21U00hu16) KAulhy KFfpXVtjH3IxnagBI9UOILGOh4y9aM a4RwAmYO
Z4h9StZcQhMOoKel0OdovHoS5BvyD1a91TpennGhM+AeEI1VPdRfpaa104srGMUQX
kjtnHNdMVH EzMSy5vwy glE IXMBpkFqZ F/CCOhgv qM +RQghOsTATa6ix VRNym 241
PqMbZn7JYMZOfIbMPtD 2qd91T6r K XUzLt RQsw hXpcVi+8M gsb53) yKQlpigldu0
z+V0q70bHuw wPG10hJ8Q3S faKlynfhA Qv OIDr8189rZ3mVbTiLMv KKy KY EijpB/
idbN3QtUuPYInALIcN4883DwzMO57Q8CPc3/6y0QOUYtTUpNo143XcQ//OwC3Tmm
YsM nvZVhlY6M 0iQ7cXDJvWRUOTU4IG6gk wmbeE O7zatGHXv /agSx pRulzlhzHem
fl11i44Y112ZxW W Vr2vQ6 T9oE LTy Cjl Te Gxaot OthOx xQ3pdXav xuYd G 84zZyMd
i9%6dvg=

=t AW

----- END PGP PUBLICKEY BLOCK-—---

38

Fingerprints

e Hash the key to get the key fingerprint
e Instead compare the fingerprints
e Much shorter:

-EF22 E516 EA9C 43B7 A67E 4FB4 1CD2 5603 C14C 0D0S

e Remember: With a good hash function, no two key fingerprints
should collide

e (What if you only use part of the fingerprint?)

CS459 Fall 2024

39

Verifying Public Keys

e Alice and Bob have verified each other. Great!
e But verifying is hard

-Inconvenient if possible at all

-Bob and Carol may not know each other well

e What if Bob and Carol can't verify each other?
e (Would it help if Carol has verified Alice?)

CS459 Fall 2024

40

Signing Keys

e Once Alice has verified Bob's key, she uses her certification key
to sign Bob’s key

-(By default, certification key == signature key)

e This is effectively the same as Alice sighing a message saying ‘I
have verified that the key with [Bob'’s fingerprint] belongs to Bob”
e Bob can attach Alice’s signature to the key he has published
somewhere

e (Are there any issues with doing this?)

CS459 Fall 2024

41

Web of Trust

e Now Alice can act as an introducer for Bob
e If Carol can't verify Bob herself, but she has already verified
Alice (and she trusts Alice to introduce other people):

-She downloads Bob’s key
-She sees Alice’s signature on it

-Sheis able to use Bob's key without verifying it herself

e This is called the Web of Trust

CS459 Fall 2024

42

Awesomel

e If Alice and Bob want to have a private conversation:

-They create their keys
-They exchange their keys (possibly relying on the WoT)

-They send signed and encrypted messages back and forth

e Pretty Good, right?

Problems with PGP

Problem #1: U

sability

e Hard to use

e Low adoption

[Procesdings of e 82h USENIE Sscurty Symposars, Augat 1999, pp. 185-183 |

Why Johany Can't Encrypt: i
A Usability Evaluation of PGP 5.0 Why Johnny Still Can't Encrypt:
Evaluating the Uﬂhi‘lltr ni Email Encryption Software
e Coligwn Aliscn Koranda
Schoot of Computer Science o ot il Potey MHWEW n Alson K:
Carnegic Mellon Universiry Camegrs Melon Unwvsnsty Camege Melo® Linvesrphy Carrages Madion Linvensy
Pinsburgh, PA 15213 shengu@ornu edu ph@ece.omu ecu P
[BT P P
1.0 Typa' mmm...
EECS and SIMS h;:l:ﬂ
Univeraiy of Califormia Camngle ““"'l'm
Berdeley, CA STI0 Irfanaindres.omu
' - ABSTRACT [T T e p———— - —
- = -r-v-l-r-ﬂ}-hﬁ-rl s
et s e w5 2t 2 MAJOR FINDINGS
Why Johnny Still, Still Can't Encrypt: o T T s 1 erily Keys
E'“.thig the w“’l}' of a Modern PGP Client fipmamer. sl mvn & bk o I:-:::.u":- ::—ﬂ-l:‘::“:n:
S, Sensler v POV 3. weers ool shionity wolh wgeey ey

St Rustl, Jelf And Diasiel Tappala, Kent 5
" »
um-h—:-mhimxmjnm
AR TRAET e e |
Thas pagar that revlits of & laboratory sy mls ety whes wicmapind ks o]
o mrnliern PO e Wt iiegrakes iy i o . i sl

wih cusiisg bl Rt |8 oo el s brosgh Slabhgs Aoy
sty o st ety el sl B st ks s bliclre- ::-l-.-.-—n-----—
Arewmshiics Tt ooy g orf

el s o i ot Rt by s B
et o docsde amd @ half afier Wiy ooy Cam'? En
AP, -d-nﬂn—haul—llrﬁ l--—-.

k] 13 Jan 2016

B haad el s
R e BT
‘-I-*.--_“ b .
= Fubry JPUF e n-uu:-..-.p:.—u
PR p—— ora il b # e o Pl by o

dmdﬂ,ﬁdﬂ-—ﬁh—bﬁh-ﬁﬂ-ﬁ -l-l-i-

SoK: Why Johnny Can't Fix PGP Standardization

Harry Halpim
ety Pl s I
i

ey resled & parw g o—— e el "o 1y b
whidern e by g scstd iy sl ey e g el ssees T
flard sl iirecheres e gl gl doy red by s ol
et wrstarivmy s pr gk pradsieem o In 0 prrkioma e e
T sllirrered 7wy sy pretacol drsgra il Sl om B TF

ﬂ-ﬁ-ﬂ--_ﬂ-lm-_--

g
Ty o o ks e e sy cwtdeed ety sed coapl
wlbmay caed by e I e ryshem, Hew s, srampe - spdes
o CpenPL marlard barvey el o thet I TP amewpe ou acbilling
v

Virvangy Layer Seomriy (SIS A8y devcades of worh why qam
her el warsbiasd b el

Farm e ian w the biatany of sasdariuems of CpssCl
e W sl T PP [t el i 1 Bl
e 4 et ek o e ey e, e L
 lertbar e i desgpe sbos ey sl malis sear @ e

by rmarrpison Thare barvn bran wn oy m

e e e L e

Problem #1: Usability

e_https://moxie.org/2015/02/24/gpg-and-me.html

-“When | receive a GPG encrypted email from a stranger, though, |
immediately get the feeling that | don’t want to read it. [...] Eventually |
realized that when | receive a GPG encrypted email, it simply means that
the email was written by someone who would voluntarily use GPG.”

CS459 Fall 2024

HOW To USE PGP To VERIFY
THAT AN EMAIL 1S AUTHENTIC:

LOOK FORTHIS
TEXT AT THE TOR

(==---BEGIN PGP SIGNED MESSAGE——)

LDDeT nC oy TRl Chid Tri-n i Sase O]
IF ITS THERE, THE EMAIL 5 PROBABLY FINE.

P —]"7- = o= R

O e Ty Y|hRe]y

HASH: SHAZ56
HEY,

https://xkcd.com/1181/

46

https://moxie.org/2015/02/24/gpg-and-me.html
https://xkcd.com/1181/

Problem #1: Usability

e Usability is a security parameter

-If it's hard to use, people will not use it

-If it's hard to use properly, people will use it, but in insecure ways

Problem #2: Lack of Forward Secrecy

e Alice sends many encrypted messages to Bob

- Possibly over the course of months, years

e Suppose Eve saves all of them

- Not so unreasonable if Eve runs the email server

e What if Eve steals Bob's private key?

- She can decrypt all messages sent to him. Past, present, and future...

CS459 Fall 2024

48

Problem #3: Non-repudiation
e Why non-repudiation?

e Good for contracts, not private emails

Alice said you'’re
annoying.

e Casual conversations are “off-the-record”

- Alice and Bob talk in private
- No one else can hear
Oh yeah?

- No one else knows what they say Prove it!

- No one can prove what was said

. Not even Alice or Bob

CS459 Fall 2024 49

Off-The-Record (OTR) Messaging

OTR

e Messaging (XMPP) extension for encryption with:

- Forward secrecy

- Post-compromise security

- Deniability

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past
communication

e Post-compromise security Backward-secrecy Future-secrecy Self-healing: a key

compromise does not reveal future communication
e Repudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

Forward secrecy “ W

CS459 Fall 2024 52

Goals of Off-The-Record Messaging

o(Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-secrecy Future secrecy Self-healing: a

key compromise does not reveal future communication
eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

W “ Post-compromise security

a—0—a—0

CS459 Fall 2024 53

Goals of Off-The-Record Messaging

o(Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-secrecy Future-secrecy Self-healing: a key
compromise does not reveal future communication

eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

2—8

A iice said this!
Repudiation @

No proof!

CS459 Fall 2024 54

Goals of Off-The-Record Messaging

o(Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-secrecy Future-secrecy Self-healing: a key

compromise does not reveal future communication
eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

Forward secrecy ﬂ W “ Post-compromise security

a—0—-@—0-0—0—0—0

A iice said this!
Repudiation @

No proof!

CS459 Fall 2024 55

Forward Secrecy

e Key compromise doesn't reveal past messages
Q: How can we accomplish that?
Change the key!
Old keys must be securely deleted

CS459 Fall 2024

117

56

Forward Secrecy (one approach)

eRecall Diffie-Hellman...

F@!” \!@:ﬁ

\, J \, J
B Ba:

CS459 Fall 2024 57

Forward Secrecy (one approach)

e Alice and Bob have ephemeral (temporary) “sessions”
e Alice produces ephemeral DH keys (a, g?)

-She signs the public key with her long-term key A

e Bob produces ephemeral DH keys (b, g®)

-He signs the public key with his long-term key B

e Alice and Bob use shared secret g2°

e They make new keys later

CS459 Fall 2024

58

Forward Secrecy (one approach)

eAlice and Bob talk on Monday... eAlice and Bob talk on Tuesday...
N g
0w TOOw T O
\ 1 \ of \ / \
m—R R — BE—E A—A.=

. Monday . Tuesday

CS459 Fall 2024 59

Forward Secrecy (one approach)

e Eve can compromise a session but not everything
e Problems?

~Alice can't start a session unless Bob is online
-Eve can still compromise a whole session

-We'll see other ideas later

CS459 Fall 2024

. Tuesday

60

Forward Secrecy in OTR

e What if we make the sessions as short as possible?

e What if new sessions don't have to be negotiated interactively?

Forward Secrecy in OTR

?

CS459 Fall 2024

62

Forward Secrecy in OTR

?

CS459 Fall 2024

63

Forward Secrecy in OTR

L
- =7

CS459 Fall 2024

64

Forward Secrecy in OTR

e Alice and Bob automatically create new
sessions as they reply to each other

e Also provides post-compromise security
e Awesome! ;)

e This is a “ratchet”: You can't go
backwards

CS459 Fall 2024

g 2

P

1 Enc(@, Hi Alice!) w=@ =1
hash:

pil— 2 ow E B4

65

Forward Secrecy in OTR

e Alice and Bob automatically create new

sessions as they reply to each other

e Also provides post-compromise security

e Awesome! ;)

e This is a “ratchet”: You can't go
backwards

CS459 Fall 2024

Enc(@, Hi Alice!) : 1
» LAl F@ T@ (

hash:

i — & o= El——BH

66

Forward Secrecy in OTR

e One problem...

- Session keys only roll forward when sender changes
- What if Alice sends Bob many messages in a row?

- (We'll see Signal improve upon this later)

CS459 Fall 2024

, Hi Bob!)

=, Msg2)

>
Enc(@w, Msg3)

-
Enc(@w, Msga)

>
Enc(@w, Msg5)

67

Deniable Authentication in OTR

e PGP uses signatures for authentication...

e ...but they also provide non-repudiation

Q: How can we get authentication without non-repudiation?

CS459 Fall 2024

68

Deniable Authentication in OTR

e PGP uses signatures for authentication...

e ...but they also provide non-repudiation

Q: How can we get authentication without non-repudiation?
A: With a MAC!

- Alice and Bob similarly negotiate DH authentication key

CS459 Fall 2024

69

Recall...
e Why are MACs deniable?

- Only Alice and Bob know K

e Alice sends Bob a message MACed with K

e Bob knows it was Alice because;

- Only Alice or Bob could have produced this MAC

- Bob did not produce the MAC

eWhy doesn’t this argument work for Carol?

CS459 Fall 2024

70

Signal

Signal
e Mobile app with companion desktop (Electron) client

-OTR was less mobile-friendly

e Encryption protocol based on OTR

-Double Ratchet Algorithm builds on OTR DH ratchet

-Deniability ideas from OTR

e Protocol also used in other apps like WhatsApp, OMEMO
extension for XMPP, etc.

CS459 Fall 2024

72

Double Ratchet Algorithm

e Uses two ratchets:
- KDF chain

- Diffie-Hellman sessions (like OTR)

e Originally called Axolotl ratchet for its “self-healing”
property (frOm the DH ratChet) i [llustration: ArmandoArel

Photo: th1098

“Axolotl” is a Nahuatl word. (pronunciation) ,

CS459 Fall 2024 73

https://pixabay.com/vectors/axolotl-animal-axolote-amphibians-5199181/
https://upload.wikimedia.org/wikipedia/commons/5/58/Axolotl.ogg
https://en.wikipedia.org/wiki/File:AxolotlBE.jpg

Forward Secrecy (another approach)

e What if instead of session keys, we had a new key for each
message?
e We can do this deterministically
e Simplified ratchet:
Kns1 = H(Kn)
e What happens if Eve compromises a key?

CS459 Fall 2024

74

Forward Secrecy (another approach)

eWhat if instead of session keys, we
had a new key for each message?

e We can do this deterministically
e Simplified ratchet:

-Kn+1 = H(Kn)

eWhat happens if Eve compromises
a key?

CS459 Fall 2024

O

75

Forward Secrecy (another approach)

eWhat if instead of session keys, we

had a new key for each message? ﬁ
e We can do this deterministically 1 _ 2
e Simplified ratchet: H(.)= . T

-Kn+1 = H(Kn)

eWhat happens if Eve compromises
a key?

CS459 Fall 2024 76

Forward Secrecy (another approach)

eWhat if instead of session keys, we

had a new key for each message? ﬁ

e We can do this deterministically 1 _ 2

e Simplified ratchet: H(”)_h:g
H(@)-O-w

eWhat happens if Eve compromises
a key?

CS459 Fall 2024 77

KDF Ratchet

e KDF = Key Derivation Function

- (think hashing - it only goes one way)

e Outputs message key

- Used to encrypt a single message

e Outputs chain key

- Used to derive future keys

e Why separate chain & message keys?

- What if messages are out-of-order?

DH Ratchet

e Like OTR
e Outputs Receiving and Sending chain keys

-These are used for KDF ratchet (previous slide)

« Enc(@, Hi Alice!) &@ =
- G

»@ hash: @‘
1% Enc(@w, HiBob!) @
—B o B—

< <Enc(03-, How are you?) @@

?

Brace Yourselvesl!!!

e We're about to put the two ratchets together

e It's going to be complicated
e But it will be okay ©

Photo: ZeWrestler

Photo: David J. Stang

CS459 Fall 2024 82

https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_1zz.jpg
https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_at_Vancouver_Aquarium.jpg

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ BOD's DH pubkey
eAlice and Bob do DH and e e
get Alice’s sending
chain/Bob’s receiving chain

eAlice derives a key with Sending Chal @ ss m>
her sending chain (Symmetric Key Ratchet)
eAlice uses this MAO key to B0 10fe 54c3 f—
encrypt her message to Bob [Cl = ‘m] ’ ﬂ S dm] [Mi::hwmywmg? ?
LD Alloe:s DH pubKey (pubao) «s
[m 96b0 oeco '..;ueo's .

] , (privA0) N
[D e @ | I have the sacretdowmnts?
MA1 key Alice's DH pubKey (pubA0) wwall)

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ BOb's DH pubKey
eAlice and Bob do DH and e
get Alice’s sending
chain/Bob'’s receiving chain

eAlice derives a key with Sending Chain
her sending chain ISyl Koy ot
eAlice uses this MAO key to |EX 20re 543
encrypt her message to Bob [I:l = ms] @ [o e M] [An::hwmywmg? ;
MAD key Alice's DH pubKey (pubA0) sl
[m 96b0 oe«] =

Alice's DH privKey
] , (privAQ) N
l o R @ l I have the sacretdommenis*
MA1 key Alice's DH pubKey (pubA0) wwall)

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ BOb's DH pubKey
eAlice and Bob do DH and e
get Alice’s sending
chain/Bob'’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)

eAlice uses this MAO key to
encrypt her message to Bob [

Alice N
[Hi, how are you doing? *
Alice's DH pubKey (pubA0) sl

[) 23e5 43f6
MAD key

[m 96b0 oe«] (G

Alice's DH privKey
] , (privAQ) N
l o R @ l I have the sacretdommenis*
MA1 key Alice's DH pubKey (pubA0) wwall)

[96b0 oae.]

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ B0D's DH pubkey
(pubB0)

eAlice and Bob do DH and
get Alice’s sending
chain/Bob'’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)

eAlice uses this MAO key to
encrypt her message to Bob

Alice (A)
[Hi, how are you doing? .r
Alice's DH pubKey (pubAQ)

Alice's DH privKey

(privAQ) N
l I have the secret documents'r

Alice's DH pubKey (pubA0) «elf)

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ B0b'S DH pubkey
e No new DH until Bob [8 saec .,m] (pubB0)
replies

eAlice derives another key

with her sending chain Seckiing Chali @ ss |;:>

eAlice uses MA1 key to e e

encrypt her message to Bob Ead 10fe m-’*}'—

Alice N

== mE= P

MAO key Alice's DH pubKey (pubA0) sl

96b0 08 *
[m CO Alice's DH privKey

] , (privA0) N
[D e @ | I have the sacretdowmnts?
MA1 key Alice's DH pubKey (pubA0) wwall)

Double Ratchet Algorithm

eAlice -> Bob (again)
e No new DH until Bob

replies
eAlice derives another key
with her sending chain

eAlice uses MA1 key to
encrypt her message to Bob

Alice's point of view:

Sending Chain
(Symmetric Key Ratchet)

EE= 1—

MAO key

[m 96b0 oeco]

[Q 76bd 89a3

MA1 key

©

m 96b0 OBce

10fe 5«:3}‘—

Root shared secret S

(@ e)

SS

(e o)

’- Bob's DH pubKey

Y

Ghorr

Alice's DH privKey

(privAQ)

(pubB0)

Alice N
[Hi, how are you doing? ?
Alice's DH pubKey (pubA0) sl

(@]
l I have the secret dowrMMs?

Alice's DH pubKey (pubA0) wwall)

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ BOD's DH pubkey
e No new DH until Bob [D sasc m,,] i
replies
eAlice derives another key
with her sending chain Sending Chain @ ss n‘|>
eAlice uses MA1 key to e ,
encrypt her message to Bob £33 10fe s4c3fe—
Alice ﬁ
[Hi, how are you doing? f
Alice's DH pubKey (pubA0) sl
hA.lleo's DH privKey
(privA0)

n
l I have the secret dnmn\ents‘r

Alice's DH pubKey (pubA0)

Double Ratchet

eBob > Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob'’s
sending chain

eAlice derives a key with her

receiving chain
eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

(Symmetric Key Ratchet)

(Symmetric Key Ratchet)

[] asecb deds
MBO0 key

Sending Chain

E 34 10fe 54c3

E: 96b0 OBce

Receiving Chain sS A
KDF <—QH

[E: 5324 bbaal [E: ulnb oasa]

Bob's DH pubKe!
’. p Y

G

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubA0) ‘

N
]
| I have the secret documents J

Alice's DH pubKey (pubA0) «self)

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them aver! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob > Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob'’s
sending chain

eAlice derives a key with her

receiving chain
eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

Sending Chain
(Symmetric Key Ratchet)

E 34 10fe 54c3

Receiving Chain
(Symmetric Key Ratchet)

[] asecb deds
MBO0 key

[E: 5324 bbaal [E: ulnb oasa]

Bob's DH pubKe!
’. p Y

G

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubA0) ‘

N
]
| I have the secret documents J

Alice's DH pubKey (pubA0) «self)

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them aver! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob > Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob'’s
sending chain

eAlice derives a key with her

receiving chain
eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

Sending Chain
(Symmetric Key Ratchet)

E 34 10fe 54c3

Receiving Chain
(Symmetric Key Ratchet)

[] asecb deds
MBO0 key

[E: 5324 bbaal [E: ulnb oasa]

Bob's DH pubKe!
’. p Y

G

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubA0) ‘

N
]
| I have the secret documents J

Alice's DH pubKey (pubA0) «self)

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them aver! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob > Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob'’s
sending chain

eAlice derives a key with her

receiving chain
eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

MBO0 key

[] asecb deds A

Sending Chain
(Symmetric Key Ratchet)

E 34 10fe 54c3

Receiving Chain
(Symmetric Key Ratchet)

[E: 5324 bbaal [E: ulnb oasa]

Bob's DH pubKe!
’. p Y

G

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubA0) ‘

N
]
| I have the secret documents J

Alice's DH pubKey (pubA0) «self)

Send them over!

a's DH pubKey (pubB1)

Let’'s take a breath

e Here are some more pictures of axolotls

Photo: LoKiLeCh

Photo: LeDameBucolique Photo: uthlas

CS459 Fall 2024 94

https://en.wikipedia.org/wiki/File:Axolotl-2193331_1280.webp
https://en.wikipedia.org/wiki/File:Axolotl_ganz.jpg
https://pixabay.com/photos/axolotl-cute-weird-2412189/

Deniability in Signal

e Alice and Bob use MACs (like in OTR)
e But what if they can make it even more deniable?

Deniability in OTR
eDH(x,y) can only be created by Alice or Bob

-A: long-term (Alice)
-B: long-term (Bob) e
-x: ephemeral (Alice)
-y: ephemeral (Bob) Sign ﬂ Sign

<: Handshake :>

Deniability in Signal: 3DH

e DH(A)y) || DH(x,B) || DH(x,y) can be created by anyone
e But if Alice knows x, only Bob could know y

gAy g p

< ||: g” :: >
Handshake

https://signal.org/blog/simplifying-otr-deniability/

That's more theoretical

e Signal actually uses a more complicated eXtended Triple

Diffie-Hellman (X3DH) key agreement protocol which

involves some signatures

e X3DH is useful for enabling asynchronous communication
_ More mobile-friendly

eWe won't talk about it, but it's well-documented here:

https://signal.org/docs/specifications/x3dh/

CS459 Fall 2024

98

https://signal.org/docs/specifications/x3dh/

Quick Recap

e PGP
- No forward secrecy

- Non-repudiable (not off-the-record)

e OTR
- Forward secrecy through DH ratchet ©

- Deniable ©
e Signal
- DH ratchet provides forward secrecy and post-compromise security based on replies
- KDF ratchet provides only forward secrecy, but for every message
- Deniable ©

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: Today
	Slide 3: Secure Messaging Goals
	Slide 4: Secure Messaging Goals
	Slide 5: Secure Messaging Goals
	Slide 6: Secure Messaging Goals
	Slide 7: Secure Messaging Goals
	Slide 8: Pretty Good Privacy
	Slide 9: PGP
	Slide 10: PGP
	Slide 11: PGP
	Slide 12: PGP
	Slide 13: PGP
	Slide 14: PGP
	Slide 15: PGP
	Slide 16: PGP
	Slide 17: PGP
	Slide 18: PGP
	Slide 19: PGP
	Slide 20: PGP
	Slide 21: PGP
	Slide 22: PGP
	Slide 23: PGP
	Slide 24: PGP
	Slide 25: PGP
	Slide 26: PGP
	Slide 27: PGP
	Slide 28: PGP
	Slide 29: PGP
	Slide 30: Encrypted Messaging Goals and PGP
	Slide 31: Encrypted Messaging Goals and PGP
	Slide 32: Encrypted Messaging Goals and PGP
	Slide 33: Encrypted Messaging Goals and PGP
	Slide 34: Encrypted Messaging Goals and PGP
	Slide 35: PGP Keys
	Slide 36: PGP Keys
	Slide 37: Obtaining Keys
	Slide 38: Verifying Public Keys
	Slide 39: Fingerprints
	Slide 40: Verifying Public Keys
	Slide 41: Signing Keys
	Slide 42: Web of Trust
	Slide 43: Awesome!
	Slide 44: Problems with PGP
	Slide 45: Problem #1: Usability
	Slide 46: Problem #1: Usability
	Slide 47: Problem #1: Usability
	Slide 48: Problem #2: Lack of Forward Secrecy
	Slide 49: Problem #3: Non-repudiation
	Slide 50: Off-The-Record (OTR) Messaging
	Slide 51: OTR
	Slide 52: Goals of Off-The-Record Messaging
	Slide 53: Goals of Off-The-Record Messaging
	Slide 54: Goals of Off-The-Record Messaging
	Slide 55: Goals of Off-The-Record Messaging
	Slide 56: Forward Secrecy
	Slide 57: Forward Secrecy (one approach)
	Slide 58: Forward Secrecy (one approach)
	Slide 59: Forward Secrecy (one approach)
	Slide 60: Forward Secrecy (one approach)
	Slide 61: Forward Secrecy in OTR
	Slide 62: Forward Secrecy in OTR
	Slide 63: Forward Secrecy in OTR
	Slide 64: Forward Secrecy in OTR
	Slide 65: Forward Secrecy in OTR
	Slide 66: Forward Secrecy in OTR
	Slide 67: Forward Secrecy in OTR
	Slide 68: Deniable Authentication in OTR
	Slide 69: Deniable Authentication in OTR
	Slide 70: Recall...
	Slide 71: Signal
	Slide 72: Signal
	Slide 73: Double Ratchet Algorithm
	Slide 74: Forward Secrecy (another approach)
	Slide 75: Forward Secrecy (another approach)
	Slide 76: Forward Secrecy (another approach)
	Slide 77: Forward Secrecy (another approach)
	Slide 78: KDF Ratchet
	Slide 79: DH Ratchet
	Slide 80: DH Ratchet
	Slide 81: DH Ratchet
	Slide 82: Brace Yourselves!!!
	Slide 83: Double Ratchet Algorithm
	Slide 84: Double Ratchet Algorithm
	Slide 85: Double Ratchet Algorithm
	Slide 86: Double Ratchet Algorithm
	Slide 87: Double Ratchet Algorithm
	Slide 88: Double Ratchet Algorithm
	Slide 89: Double Ratchet Algorithm
	Slide 90: Double Ratchet Algorithm
	Slide 91: Double Ratchet Algorithm
	Slide 92: Double Ratchet Algorithm
	Slide 93: Double Ratchet Algorithm
	Slide 94: Let’s take a breath
	Slide 95: Deniability in Signal
	Slide 96: Deniability in OTR
	Slide 97: Deniability in Signal: 3DH
	Slide 98: That’s more theoretical
	Slide 99: Quick Recap

