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Traffic Analysis

71%
Of malware installed through phishing 

is hiding in encryption.

-F5 Labs Threat Intelligence

Nearly 90% of all Internet traffic is encrypted
Great for privacy and confidentiality, 

BUT
This creates a serious blind-spot for security.



CS489 Spring 2024 

How attacker use Encryption
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Easy attack surface:

● Mallory has access to one of the many hops traffic takes on the internet

Alice
Bob

regional ISP

mail server mail server
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Communication media (WiFi)

● WiFi
○ Can be easily intercepted by anyone with a WiFi-capable (mobile) device

➢ Don’t need additional hardware, which would cause suspicion

➢ ISP can do it to “improve” quality of network

● Maybe from kilometers away using a directed antenna 
○ Record was: 180km Nevada – Las Vegas

● WiFi also raises other security problems
○ Physical barriers (walls) help against random devices being connected to a wired network, but 

are (nearly) useless in case of wireless network

9
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Communication media

● Copper cable
○ Inductance allows a physically close attacker to eavesdrop without making physical contact

○ Cutting cable and splicing in secondary cable is another option

10

Vampire tapMeasure RF
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Communication media

● Optical fiber
○ No inductance, and signal loss by splicing is likely detectable

○ Post 9/11, the US modified submarine Jimmy Carter to do this to undersea fiber

➢ Possible to detect changes in attenuation, photon ``scattering pattern'' observed by receiver

11
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Communication media

● Microwave/satellite communication
○ Signal path at receiver tends to be wide, so attacker close to receiver can eavesdrop

○ Microwave transmissions can be eavesdropped (line of sight).

○ We don’t need to attack the crypto to determine which devices area in an area. 

➢ This is the approach taken by IMSI-catchers like Stingray

12

http://en.wikipedia.org/wiki/IMSI-catcher
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Communication media

● All these attacks are feasible in practice, but require 

physical expenses/effort

13
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Traffic Analysis

● TCP/IP has each packet include unique addresses for the packet’s 

sender and receiver end nodes, which makes traffic analysis easy

● The attacker simply needs to sniff packets to determine what is 

going where and when.
○ Can be sensitive info such as two CEOs talking or a whistle blower.

● tcpdump is a text-based traffic analysis tool

14
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Tcpdump (1 of 3)

● 14:47:26.566195 the timestamp of the received packet

● IP is the network layer protocol (IPv4)

● 192.168.2.2.22 is the source IP address and port

● 192.168.1.1 is the destination IP address and port

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options 

[nop,nop,TS val 117964079 ecr 816509256], length 372

15
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Tcpdump (2 of 3)

● TCP Flag (Flags [P.]) fields include:

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options 

[nop,nop,TS val 117964079 ecr 816509256], length 372

Value Flag Type Description

S SYN Start Connection

F FIN End (Finish) 

Connection

P PUSH Push data

R RST Reset connection

. ACK Acknowledgement

16
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Tcpdump (3of 3)

● seq 196:568 is the sequence number of the data contained in the packet (196 bytes to 568 bytes)

● ack 1 is the ack number, which is 1 (sender) or the next expected byte (receiver)

● win 309 is the number of bytes available in the receiving buffer

● options [nop,nop,TS val 117964079 ecr 816509256], are the TCP options

○ TS: The current timestamp from the sender’s clock

○ ecr (Echo Reply): the timestamp value from the last received TCP packet from the remote host 

○ NOP (No Operation): a placeholder or padding to ensure proper alignment of the TCP options

● length 372 is the length, in bytes, of the payload data (the difference between the first and last byte in the 

sequence number)

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options 

[nop,nop,TS val 117964079 ecr 816509256], length 372

17
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Encryption reduces visibility over network traffic

● TLS and other PETs significantly improved security and 

privacy for Internet users
○ Plaintext is no longer visible

○ Traffic monitoring capabilities are significantly reduced

● But one should not assume that traffic encryption 

provides absolute protection
○ e.g., against behavioural analysis

● There are strong incentives to “see” beyond encryption
○ Both for network adversaries and network administrators

19
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Encrypted traffic analysis (ETA)

● Let’s look at an encrypted tunnel between Alice and Bob:

20
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Network flows and metadata

● What is a network flow?
○ A flow is typically represented by a five-tuple

○ <Src. IP, Dest. IP, Src. port, Dest. port, Protocol>

● One can extract additional metadata tied to a flow:
○ Flow duration

○ Amount of packets exchanged 

○ Packet sizes

○ Packet inter-arrival times

○ Payload byte entropy And more...

● What is this good for?

21
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Encrypted traffic analysis (ETA) as a side channel

● Think of ETA as a sort of network side channel!

● ETA can be used to infer information about encrypted traffic

● We’ll look at three particular ETA applications for: 
○ Network Analytics

○ Network Security 

○ Privacy Breaches 

● We’ll also discuss potential countermeasures

22



Network Analytics
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Network Analytics

● Traffic Engineering
○ Prioritize application traffic (e.g., WhatsApp, Skype)

➢ e.g.,  Improved network performance, reduced downtime, better user experience

○ Throttle selected protocols (e.g. BitTorrent)

➢ e.g., for “traffic management” purposes

24
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Network Analytics

● Quality-of-Service
○ Derive quality metrics from encrypted flows

➢ e.g. Videoconferencing and video streaming Quality of Experience

➢ e.g. Websites’ page load time, speed index

25
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Use case: Identification of mobile applications

● Mobile applications’ traffic leaves a fingerprint
○ Network observers can understand which apps you are using

● Build a classifier based on summary statistics from each flow
○ Look at the packet size/timing distributions

➢ Minimum, maximum, mean, standard deviation, variance, skew, kurtosis, percentiles, etc.

● May need to separate traffic bursts
○ Network packets occurring together within a threshold of time 

○ Traffic bursts may encompass multiple flows

26
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Let’s classify some apps!

27
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Use case: Identification of mobile applications

● Taylor et al., IEEE TIFS ’17
28

Burst may contain 

one or more flows

Ad third-party 

libraries
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Use case: Measuring video QoE

29

● Majority of video traffic is delivered over adaptive bitrate
○ A video is encoded in multiple resolutions and split into chunks of variable length

○ Clients continuously fill a buffer of chunks, where ensuing chunks are based on network conditions

● Deep packet inspection (DPI) solutions can no longer be 

used to extract meaningful QoE metrics
○ e.g., initial delays, playback stalls frequency, resolution switch
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Use case: Measuring video QoE (cont)

● Features extracted from encrypted traffic guide the models 

to detect quality impairments
○ Able to detect stalls, average quality, and video quality adjustments

30

• Dimopoulos et al., IMC ’16



Network Security
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Malware Detection

32

● Traditional network-based malware detection relies on 

unencrypted data
○ Heavy use of deep packet inspection

○ e.g., for signature-based detection over packet payloads

● No longer useful to detect viruses or data exfiltration

● Encrypted traffic analysis helps us to identify:
○ Malware communications towards Command & Control servers 

○ Unusual network traffic patterns in the network
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Malware Detection

33

● Malware classification:
○ Build a model out of legitimate / malicious network activity 

○ Leverage “fingerprints” of legitimate / malicious behaviour

○ What if a new malware stream emerges?

➢ Feedback Loop, Dynamic Analysis(Sandbox Testing), Incremental Learning, Integrate Threat 

Feeds.

● Anomaly detection:
○ Build a model for legitimate traffic and flag strange behavior 

○ Via one-class learning or clustering

○ What if legitimate behavior changes over time?
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Use case: P2P botnet detection

34

A peer-to-peer botnet is a decentralized group of malware-compromised machines working together 

for an attacker's purpose without their owners' knowledge.

➢ Can we pinpoint interactions between bots and C&Cs?

Tend to be low-volume and long-standing 
vs. 

benign P2P apps
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Use case: P2P botnet detection

35

● Flows
○ P2P applications (including botnets) randomize port numbers

○ The usual flow definition leads to the generation of multiple flows out of what can be a continued 

interaction between two peers

● Super-flows
○ Aggregate multiple flows between two IPs into a super-flow

➢ What if two IPs have benign and malicious flows between them?

Narang et al., IEEE SPW ’14
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Use case: P2P botnet detection

36

● Conversations
○ Start by clustering flows:

➢ Protocol, packets per second, avg. payload size

○ Create conversations from flows placed within the same clusters 

○ Finally, classify conversations as malicious or benign based on:

➢ Duration of the conversation 

➢ Number of packets exchanged 

➢ Volume of data exchanged

➢ Median of packet inter-arrival times

● This approach was also shown effective for detecting 

previously unseen botnets!
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Stepping stones

37

● An attacker can hide its identity by using other machines as 

intermediaries (i.e., stepping-stones)
○ e.g., by hopping through compromised machines or by using Tor
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Traffic Correlation

38

● Detection of stepping-stones
○ Attempt to match (roughly) the same sequence of packets at different network vantage points
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Difficulties in Performing Traffic Correlation

39

● In practice, flow observations will not be an exact match 
○ Due to network imperfections

➢ Packet delays, jitter, loss

● Due to countermeasures
○ Delay injection at intermediate nodes, and padding

● So, Traffic correlation algorithms must account for small 

differences between each flow observation

Staniford-Chen and Heberlein, IEEE S&P ’95



Privacy Breaches

40
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● One would assume that encryption is all that is needed to 

securely communicate over the Internet

● Unfortunately, encryption does not hide traffic patterns

● Traffic analysis can be weaponized to breach users’ 

privacy

Nefarious uses of encrypted traffic analysis

41
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Metadata is not your data. Or is it?

42

(Dr. Evil making you think metadata is useless)
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Website fingerprinting over VPNs

● VPNs are advertised as the “holy-grail” of Internet security 
○ Passive adversaries can uncover which website is being visited

By building traffic fingerprints and using a classifier

● The attack can be launched in two settings:
○ Closed-world or Open-world

43
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Website fingerprinting over Tor

● The Tor network can be seen as one “big VPN node”
○ Tor exchanges data in fixed-size cells

○ But packet direction and timing still leaks information

44
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Website fingerprinting over Tor

● Features based on different traffic representations have 

been used to launch website fingerprinting attacks on Tor
○ Directional representation - Rimmer et al., NDSS ’18

○ Directional + timing representation - Saidur Rahman et al., PoPETs ’20

45
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IoT device fingerprinting

46

● Passive network observers can potentially analyze IoT 

network traffic to infer sensitive details about users
○ Does this user have a blood monitor? A security camera? Smart thermostat?

● DNS queries associated with each encrypted flow often 

contain the device manufacturer name
○ We can even pinpoint the exact device
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Distinguishing devices through traffic volume

● Simple volumetric features allow us to identify IoT devices 
(Apthorpe et al., ConPro ’17)

○ Once a device is identified, one can also infer its state

47
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Motion sensor - Nest indoor security camera

48

● Easy to discern when the camera picks up movement 
○ Easy to discern when nobody’s home?
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Sleep tracker example - Sense sleep monitor

49

● Easy to discern when a user goes to bed and wakes-up 
○ Easy to discern if a burglar should leave the crime scene?
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Practical attacks against IM applications

50

● IM applications are extensively used to exchange potentially 

sensitive content securely
○ Remember OTR and Signal

○ Oftentimes used to exchange politically and socially sensitive content

○ Governments and corporations may be interested in identifying participants of IM conversations

■ e.g., target whistleblowers or dissidents
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Adversary aims to uncover group membership

51

• How can the adversary set up the attack?

Bahramali et al., NDSS ’20
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Looking for messaging events

52

● Messaging events have different fingerprints
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Matching messaging events fingerprints

● Extract meaningful events and compare similarity

● Attack succeeded against Signal, Telegram, and WhatsApp!

53
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VoIP eavesdropping

● Encrypted packet patterns resemble VBR codec bitrates 
○ Can we infer meaningful semantics from the transmission of encrypted audio frames?

54

Wright et al., USENIX SEC ’07
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Noticeable (coarse-grained) differences

● Maybe we can identify the language being spoken?
○ Languages have different bitrate frequencies

55
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How to distinguish different languages?

56

● Compute distance between probability distributions
○ Samples from same language have similar distribution 

○ Compute packet size n-grams for even better results

➢ Given sequence 10, 20, 30, 15 –> {(10, 20), (20, 30), (30, 15)}
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Noticeable (fine-grained) differences

● Can we segment packet size sequences into phonems? 
○ If so, we can recover approximated transcripts

57
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Video re-identification

● At this point, you’ve probably guessed it, traffic analysis can 

also be used to uncover which videos you are streaming
○ The bitrate of VBR video sequences also leaks some information

58
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Re-identification of Netflix video streaming

● Burst sizes of a streamed scene of “Reservoir Dogs”
○ Very similar, even when watched over different networks

59

Schuster et al., USENIX SEC ’17
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Countermeasures to traffic analysis

● Introduce padding 

● Add chaff (fake) traffic

● Shape traffic (look like something)

● Aggregate traffic (e.g, multiplex over single connection) 

● Split a single connection across multiple networks

● Main trade-off to consider is overhead
○ Achievable throughput 

○ Spent bandwidth

60

Schuster et al., USENIX SEC ’17
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