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● What does chaining mean here?
○ Linked list? Some cryptographic construct?

● What goes into these blocks?
○ Anything? A fixed format? What makes a block valid?

● Who can put up a block?
○ A single entity? A group of people? Anyone with Internet access?

● How to ensure a same view of the chain?
○ Centralized? Distributed? How to resolve a dispute?



CS459 Fall 2024 
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● Each block contains a cryptographic hash of the previous block

● Each block depends on the previous one
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● Each block is split into two parts:

○ A header that contains at least two critical values:

■ A cryptographic hash of the previous block header

■ A cryptographic hash of the current block payload

○ A payload that contains application-specific information
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A basic chaining scheme
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● Each block is split into two parts:

○ A header that contains at least two critical values:

■ A cryptographic hash of the previous block header

■ A cryptographic hash of the current block payload

○ A payload that contains application-specific information

A: State is append only
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● Anything! Depending on how you plan to use this blockchain.

○ Bitcoin blockchain: ledger

○ Ethereum blockchain: state machine
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Q: Why would this 
occur?

A: Hardware failure, packet drops, slow 
network, clock skews, etc
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● Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has 
the following payment options:
○ Cash, debit card, credit card, e-transfer (e.g., Interac®)

○ An entry in the blockchain-based ledger



CS459 Fall 2024 

The power of consensus

25

● Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has 
the following payment options:
○ Cash, debit card, credit card, e-transfer (e.g., Interac®)

○ An entry in the blockchain-based ledger

● To the best of Bob’s knowledge:

○ It is hard for Alice to produce such a chain of blocks



CS459 Fall 2024 

The power of consensus

26

● Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has 
the following payment options:
○ Cash, debit card, credit card, e-transfer (e.g., Interac®)

○ An entry in the blockchain-based ledger

● To the best of Bob’s knowledge:

○ It is hard for Alice to produce such a chain of blocks

○ There does not exist a better chain of blocks as of now



CS459 Fall 2024 

The power of consensus

27

● Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has 
the following payment options:
○ Cash, debit card, credit card, e-transfer (e.g., Interac®)

○ An entry in the blockchain-based ledger

● To the best of Bob’s everyone’s knowledge:

○ It is hard for Alice to produce such a chain of blocks (e.g., 51% Attack)

○ There does not exist a better chain of blocks as of now (e.g., Forks)



Consensus: Proof-of-work
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● This is the chain Alice shows Bob w.r.t her payment to Bob.
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● It is not hard at all for Alice to revert this payment to Bob!
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● Bob decides to make it harder for Alice to alter her payment by adding a Nonce
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Q: What is the chance of finding a 

valid Nonce assuming an m-bit hash?
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Q: What is the chance of finding a 

valid Nonce assuming an m-bit hash?

A: 
2𝑚−𝑘

2𝑚
, a larger 𝑘 → a higher difficulty of finding N

Expect 2k hash operations to find a valid N
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How does mining deter alteration? – Case 1

● Surgical change: Alice re-mines block N and finds a new Nonce such that the 

block header hash remains unchanged
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block header hash remains unchanged
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● Deterrent: This is extremely hard for a cryptographic hash function that has 

preimage resistance and second-preimage resistance.
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How does mining deter alteration? – Case 2

● Change-and-cut: Alice re-mines the Nonce for block N and stops
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How does mining deter alteration? – Case 2

● Change-and-cut: Alice re-mines the Nonce for block N and stops
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● Deterrent: Longer chains are preferred over shorter chains.



CS459 Fall 2024 

How does mining deter alteration? – Case 3

● Partial chain re-mining: Alice re-mines all the Nonces since block N
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How does mining deter alteration? – Case 3

● Partial chain re-mining: Alice re-mines all the Nonces since block N

40

● Deterrent: If there are L blocks between block N (included)and the chain head, 

Alice is expected to perform L × 2k hash operations to build-up an equally 

competitive chain assuming the difficulty level k does not change.
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○ Alice needs to mine slower than the rest of the participants combined
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○ Alice needs to mine slower than the rest of the participants combined

To avoid detection and to maintain the integrity of her attack strategy

→ The public chain needs to grow faster than Alice’s chain
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The 51% attack

● There is a catch in the deterrent:
○ Alice needs to mine slower than the rest of the participants combined

To avoid detection and to maintain the integrity of her attack strategy

→ The public chain needs to grow faster than Alice’s chain

→ If Alice mines too quickly, the network would notice an increase in hashing power and adjust 

the difficulty upward → harder for her to continue the attack (re-write history).

44
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Confirmation level

● Recall that when we show a proof of payment, we need a few extra 

blocks after the block that hosts the ledger entry.
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Q: Why do we need these extra blocks, even when:
1. Alice does not control over 50% computational power?

2. Everyone else is honest and cooperative?
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Confirmation level

● Recall that when we show a proof of payment, we need a few extra 

blocks after the block that hosts the ledger entry.

46

A: Extra blocks act as a safety net, enhancing the security, 

trustworthiness, and overall stability of the blockchain
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Reducing the risk of Forks
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Confirmation blocks help ensure that a single chain becomes dominant, reducing the risk of 

issues caused by competing chains
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Reducing the risk of Forks
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● To trigger a fork, Alice could:
○ Send two transactions in a short time window

○ Send two transactions to separate halves of the network

○ Pre-mine one block and only reveal it after the first transaction is sent to the network

Confirmation blocks help ensure that a single chain becomes dominant, reducing the risk of 

issues caused by competing chains
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Drawbacks of Proof-of-work consensus
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https://dci.mit.edu/51-attacks

● Speed of confirmation
○ A single Bitcoin block can hold around 1000 to 2000 transactions(≈ 10𝑚𝑖𝑛 )

○ It's common for users to wait for 6 confirmations to consider a Bitcoin transaction secure

● Vulnerable to 51% attacks
○ In 2014, mining pool Ghash.io obtained 51% hash rate in Bitcoin

○ Bitcoin Gold was hit by such attacks twice in 2018 and 2020 (https://dci.mit.edu/51-attacks)

● Energy consumption (As much as Argentina in 2022)*

○ Hashing itself is not useful (Provide incentive by offering a transaction fee)

○ These operations are repeated across the fleet of nodes
*https://ccaf.io/cbeci/index

https://dci.mit.edu/51-attacks
https://ccaf.io/cbeci/index


Consensus: Proof-of-stake
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● In a proof-of-work scheme:

○ The chance of which node is elected to propose a new block is proportional to its hashing power

○ Collisions are allowed and are resolved by the longest chain rule
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● In a proof-of-stake scheme:

○ The chance of which node is elected to propose a new block is proportional to its staked value

○ Collisions are not allowed by design, only the leader creates a block
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Transaction lifecycle in PoS

53



CS459 Fall 2024 

Transaction lifecycle in PoS

54



CS459 Fall 2024 

Transaction lifecycle in PoS

55



CS459 Fall 2024 

Transaction lifecycle in PoS

56



CS459 Fall 2024 

Transaction lifecycle in PoS

57



CS459 Fall 2024 

Transaction lifecycle in PoS

58



CS459 Fall 2024 

Transaction lifecycle in PoS
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“Burn their stack”
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Catching lies

● If a validator node gets caught lying, its stake is burned!

● Other nodes may catch a fraudulent block by comparing it 

with the transaction that Alice intended to perform
○ e.g., by checking Ethereum’s “mempool”

● This works as long as the attacker does not control a majority 

of stake in the system

60
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The 51% attack on PoS

● Q: What if the attacker controls ≥ 50% of staked resources?

61

● A: The attacker can prove fraudulent transactions.

● Q: Is the 51% attack less likely in PoS compared with PoW?

● A: Yes, because in PoS, the attacker loses the weapon to future attacks, 

i.e., all the stake are gone, and is not easily recoverable!.
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Hard fork as a recovery of a 51% attack
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● To recover from a 51% attack, the only solution is to hard fork the blockchain 

in order to invalidate the fraudulent transactions added by the attackers.
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Hard fork as a recovery of a 51% attack
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● To recover from a 51% attack, the only solution is to hard fork the blockchain 

in order to invalidate the fraudulent transactions added by the attackers.

● NOTE: The forked chain can be shorter than the previous chain!

○ A higher level of social coordination is required
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Hard fork as a recovery of a 51% attack

● In PoS, we do a hard fork to invalidate fraudulent transactions AND

wipe out the attacker who controls ≥ 50% of the staked resources.

● In PoW, the hard fork can only invalidate transaction WHILE the 

attacker is still in control of ≤ 50% of the computational power.

64
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Chain validation
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● If Alice shows Bob, the Pizzeria owner, the following blockchain, 

why would Bob accept it? Why would Bob believe that:

○ It is hard for Alice to produce such a chain of blocks

○ There does not exist a better chain of blocks as of now

● With PoS, forging a blockchain would be easy! (Bcs. Validators chosen based on their stack)
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● This turns out to be an extremely complicated problem!

● S - Signature of the proposer of this block

● E - Election packet that records how this proposer is elected
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Chain validation

67

● This turns out to be an extremely complicated problem!

Q: What are the issues with this scheme?

● S - Signature of the proposer of this block

● E - Election packet that records how this proposer is elected
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The Nothing-at-Stake problem
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● Alice has some small stake (e.g., 1%) and can be elected as a block proposer:

● In one of her turns as a block proposer, Alice triggers a fork in the chain with 

an attempt to double-spend.
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The Nothing-at-Stake problem
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● Alice has some small stake (e.g., 1%) and can be elected as a block proposer:

● The next block proposer, even honest, has no incentive to select which chain to 
converge on. The proposer has no idea which chain will survive in the future, the 
logical thing to do is to mine on both
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● Alice has some small stake (e.g., 1%) and can be elected as a block proposer:

● When its Alice’s turn again, she only append a block to the chain that is more 
favorable to her. The other chain dies as a result.

● This is sometimes called the 1% attack.
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The Nothing-at-Stake problem

● Solution? There is no common solution. Different PoS chains 

adopt different mechanisms.

● The Slash protocol (Ethereum PoS candidate) has two rules:

○ Penalize those who “equivocated” on a given block, i.e., voted on two different versions of it.

○ Penalize those who voted on the wrong block, regardless of whether they double-voted.

72
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Long-range attacks (The bootstraping problem)

● A validator node could forge an entire chain by itself

● If Bob, a new user, joins the network, which chain should he accept?
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Q: Why is this not a problem in PoW?
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● A validator node could forge an entire chain by itself

● If Bob, a new user, joins the network, which chain should he accept?
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Q: Why is this not a problem in PoW?

A: Because it is computationally expensive to create a counterfeit

chain in PoW. But it is easy (almost no cost) in the PoS case
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Long-range attacks (The bootstraping problem)

● Solution? In short, there are no simple solutions.

○ Casper (Ethereum’s PoS protocol) depends on trusted nodes to broadcast the 

correct block hash.

○ Peercoin, broadcasts the hash of the “legitimate” chain on a daily basis.

○ Extremely complicated solutions have been proposed e.g., Ouroboros Genesis.

76
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