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Intended Learning Outcomes 

By the end of this lecture, you should be able to:

- Describe the different properties of differential privacy such as composition and post 

processing.

- Apply the Laplace mechanism to simple statistics problems. 

- Use randomized response to collect and analyze binary data.

- Discuss how the exponential mechanism can be applied to discrete problems.
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Recall: Differential privacy

Differential Privacy

A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 

holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 

datasets 𝐷,𝐷′ ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷′ ∈ 𝑅 𝑒𝜖
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Differential Privacy Settings
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Central DP vs. Local DP

● Depending on who runs the mechanism, there are two broad 

models for differential privacy.

5

Central Differential Privacy: there is a 

centralized (trusted) aggregator

Local Differential Privacy: each user runs the 

mechanism themselves and reports the result 

to the adversary/analyst

𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥𝐴)

Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)
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Central DP vs. Local DP
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𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥𝐴)

Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)

(Central) Differential Privacy

A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-

DP) if the following holds for all possible sets of 

outputs 𝑅 ⊂ ℛ and all pairs of neighboring datasets 

𝐷,𝐷′ ∈ 𝒟:
Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷′ ∈ 𝑅 𝑒𝜖

(Local) Differential Privacy

A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-

DP) if the following holds for all possible sets of 

outputs 𝑅 ⊂ ℛ and all pairs of neighboring inputs 

𝑥, 𝑥′ ∈ 𝒟:
Pr 𝑀 𝑥 ∈ 𝑅 ≤ Pr 𝑀 𝑥′ ∈ 𝑅 𝑒𝜖

• They are “the same definition”, it’s just that the inputs to the mechanism and what we define as 

“neighbouring” inputs/datasets is usually different.
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Central DP vs. Local DP

● Central DP
○ Best accuracy, aggregation allows to hide in the crowd before we add noise.

○ Need to trust the data collector.

○ Hard to verify if noise was added.

● Local DP
○ Accuracy not as good. Each user adds noise which can compound in the final result.

○ User doesn’t need to trust anybody and knows they added noise.

● Shuffle Model of DP
○ Hybrid where users add less noise on the understanding a semi-trusted party aggregates and 

shuffles the results before they are made public.
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Bounded DP vs. Unbounded DP
● There are two “main” definitions for how we define neighboring datasets in the central model.

8

Bounded DP: 𝐷 and 𝐷’ have the same 

number of entries but differ in the value of 

one.

Unbounded DP: 𝐷 and 𝐷’ are such that you 

get one by deleting an entry from the other 

one.
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Other notions of DP

● Many possible neighbouring definitions. 
● For example, in location privacy:

● These are all DP and have their uses. It is important to understand, 
for each system/application, which notion of DP it provides.
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Depending on how we define neighboring datasets 𝐷 and 

𝐷′, we get a different DP guarantee:

• User-level DP: we replace a user trajectory for another 

user’s trajectory

• Event-level DP: we replace the location of a user for 
another location

• w-event DP: we replace a window of w consecutive 

locations of a user for another



DP Mechanisms
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DP Mechanisms

● We are going to see different mechanisms that provide Differential 
Privacy and that can be applied to various systems.

● You need to understand why they provide DP, when you can use 
them, how to compute the 𝜖 level they provide, etc.

● We will see:
1. The Laplace Mechanism (DP, continuous outputs)

2. The Randomized Response Mechanism (DP, binary inputs/outputs)

3. The Exponential Mechanism (DP, discrete outputs)

4. The Gaussian Mechanism (approximate DP, continuous)

5. General Discrete Mechanisms
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Why do we need DP mechanisms?

● Many cases where sensitive information can be of great 

benefit to society 
○ Analysis of healthcare records

○ Statistics computed from the census

● Without proper protection we have learnt there are many 

inference attacks.

● DP mechanisms allow us to tune the privacy utility trade-

off to still benefit from the sensitive data while providing 

privacy guarantees.
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Example DP mechanism

● The dataset contains health data from 𝑛 users, and the data analyst wants to 

know how many patients have tested positive for a virus

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● Consider an analyst wants to report the count σ𝑖=1
𝑛 𝑥𝑖

M(D)

Data collector

𝐷 Data analyst

13

Q: How could we make this private?
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Example: the Laplacian mechanism
● Let 𝑌 ∼ 𝐿𝑎𝑝(𝑏, 𝜇)

○ A Laplace distribution!

● With PDF: pY 𝑦 =
1

2𝑏
𝑒−

𝑦−𝜇

𝑏

● Consider the mechanism that reports the true count of positive results 
plus Laplacian noise, i.e., 
○ 𝑀 𝐷 = σ𝑖=1

𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 
0 and scale 𝑏.
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Example: the Laplacian mechanism

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

15

Q: What do the worst-case distributions of 𝑀 𝐷 vs 

𝑀(𝐷′) look like?
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A:

Example: the Laplacian mechanism

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

16

Q: What do the worst-case distributions of 𝑀 𝐷 vs 

𝑀(𝐷′) look like?

Q: What is the maximum ratio between the distributions?

c
c+1
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A:

Example: the Laplacian mechanism

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

17

Q: What do the worst-case distributions of 𝑀 𝐷 vs 

𝑀(𝐷′) look like?

Q: What is the maximum ratio between the distributions?

c
c+1

A: exp(1/b)…
Let 𝑏 = 1/𝜖 and we have DP! 
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Approximate DP

● Differential privacy is very strict. In the slide before, if we replace the 

Laplacian noise with a Laplace 𝑦 ∼ 𝐿𝑎𝑝(1) truncated at 𝑦 > 1000, the 

mechanism is basically “the same”:

○ Pr 𝑦 > 1000 𝑦 ∼ 𝐿𝑎𝑝 1 =
1

2
exp −1000 ≈ 10−435.

● However, if we truncate the Laplacian noise, the mechanism goes from 𝜖 = 1

(good privacy) to 𝜖 = ∞ (no privacy).

No matter where we 

do zoom, we’ll 
always see this!
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Approximate DP

● The following is a relaxation of the DP definition, that allows some tolerance:

● When 𝛿 = 0, this is the same as 𝜖-DP (called pure DP).

● What does this mean?

(Approximate) Differential Privacy

A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 

for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷′ ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷′ ∈ 𝑆 𝑒𝜖 + 𝛿

We have two distributions

𝑓(𝑅|𝐷) vs 𝑓(𝑅|𝐷′)

We multiply one 

(e.g., blue) by 𝑒𝜖
The area of the green one not covered by 

the blue one now will be ≤ 𝛿

19
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Approximate DP: interpretation

● A mechanism 𝑀:𝒟 → ℛ that provides 𝜖-DP except for certain ”bad” outcomes 

𝐵 ⊂ ℛ, where Pr 𝑀 𝐷 ∈ 𝐵 ≤ 𝛿 (for any 𝐷 ∈ 𝒟) also provides 𝜖, 𝛿 -DP.

● Proof is not as simple as it seems, but it can be proven

(Approximate) Differential Privacy

A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 

for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷′ ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷′ ∈ 𝑆 𝑒𝜖 + 𝛿

20
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The Laplace Mechanism – Sensitivity 

● We already saw an example of this. Now, we will make it more formal.

● First, we need to bound the maximum change in the non-private function we 

want to compute.

● Given a function 𝑓:𝒟 → ℝ𝑘 , and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷′ ∈ 𝒟, 

the ℓ𝟏-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 

cause in the output:

● Can generalize to other norms (such as ℓ𝟐 which we will see later)

21

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
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The Laplace Mechanism

● Given a function 𝑓:𝒟 → ℝ𝑘 , and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷′ ∈ 𝒟, 

the ℓ1-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 

cause in the output:

● Given any function 𝑓 and it’s ℓ1 sensitivity, we can turn it into a DP mechanism 

if we add Laplacian noise to its output:

22

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1

Given a function 𝑓:𝒟 → ℝ𝑘 with ℓ1-sensitivity Δ1, the Laplace 

mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌2, … , 𝑌𝑘) where each 𝑌𝑖

is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
.
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The Laplace Mechanism

● We already saw an example of this. Now, we will make it more formal.

● Given a function 𝑓:𝒟 → ℝ𝑘 , and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷′ ∈ 𝒟, 

the ℓ1-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 

cause in the output:

● Given any function 𝑓 and it’s ℓ1 sensitivity, we can turn it into a DP mechanism 

if we add Laplacian noise to its output:

23

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1

Given a function 𝑓:𝒟 → ℝ𝑘 with ℓ1-sensitivity Δ1, the Laplace 

mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌2, … , 𝑌𝑘) where each 𝑌𝑖

is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
.
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Recall, our example

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

24

Q: What is the sensitivity?
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Recall, our example

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

25

Q: What is the sensitivity? A: 1
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Recall, our example

● Let 𝑥𝑖 be the test result for user 𝑖 (𝑥𝑖 = 0 for negative, 𝑥𝑖 = 1 for positive)

● Let 𝐷 be the dataset where 𝑥1 = 𝑥𝐴 is Alice, and 𝐷′ is the dataset where 𝑥1 =

𝑥𝐵 is Bob. Assume that 𝑥𝐴 =1 and 𝑥𝐵 = 0.

● 𝑀 𝐷 = σ𝑖=1
𝑛 𝑥𝑖 + 𝑌, where 𝑌 is noise from a Laplace distribution with mean 0

and scale 𝑏.

● You can write c = σ𝑖=2
𝑛 𝑥𝑖.

26

Q: What is the sensitivity?

Q: What is the maximum ratio between the distributions? A: exp(1/b)…
Let 𝑏 = 1/𝜖 and we have DP! 

A: 1

Remember this?
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The Laplace Mechanism – checkpoint!

27

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: what does smaller 𝜖 mean?
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The Laplace Mechanism – checkpoint!

28

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: what does smaller 𝜖 mean?

A: more privacy
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The Laplace Mechanism – checkpoint!

29

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if we want more privacy, would 

we need to add more or less noise?
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The Laplace Mechanism – checkpoint!

30

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if we want more privacy, would 

we need to add more or less noise?

A: more noise. That’s 

why 𝑏 ∝
1

𝜖
.
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The Laplace Mechanism – checkpoint!

31

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 

change in 𝑓 ⋅ , is that a large or small 

sensitivity?
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The Laplace Mechanism – checkpoint!

32

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 

change in 𝑓 ⋅ , is that a large or small 

sensitivity?

A: large sensitivity
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The Laplace Mechanism – checkpoint!

33

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 

impact in 𝑓, do we need a lot or a little 

noise to hide this impact?
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The Laplace Mechanism – checkpoint!

34

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
Δ1

𝜖
provides 𝜖-DP

The variance is 2𝑏2; higher 

𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 

impact in 𝑓, do we need a lot or a little 

noise to hide this impact?

A: a lot of noise. 

That’s why 𝑏 ∝ Δ1
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Laplace Mechanism: examples

35

𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 1: 𝐷 contains the test results for virus X of a 

set of users. We want to release the total number of 

users that tested positive. How do we make this 𝜖-DP?

• Under unbounded DP

• Under bounded DP
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Laplace Mechanism: examples

36

𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 1: 𝐷 contains the test results for virus X of a 

set of users. We want to release the total number of 

users that tested positive. How do we make this 𝜖-DP?

• Under unbounded DP

• Under bounded DP

A: sensitivity is 1 in both cases

Add 𝑌 ∼ 𝐿𝑎𝑝
1

𝜖
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Laplace Mechanism: examples

37

𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 2: 𝐷 contains the salaries of a set of users. 

The salaries range from 20k to 200k. We want to 

release the total salary of the users. How do we make 

this 𝜖-DP?

• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

38

𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 2: 𝐷 contains the salaries of a set of users. 

The salaries range from 20k to 200k. We want to 

release the total salary of the users. How do we make 

this 𝜖-DP?

• Under unbounded DP
• Under bounded DP

A: sensitivity is bounded by 

180k in the bounded and 200k 

in the unbounded

Add 𝑌 ∼ 𝐿𝑎𝑝
180𝑘

𝜖
or 

𝑌 ∼ 𝐿𝑎𝑝
200𝑘

𝜖
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Laplace Mechanism: examples

39

𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 

public knowledge). The salaries range from 20k to 200k. 

We want to release the average salary of users. How 

do we make this 𝜖-DP?

• Under bounded DP
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 

public knowledge). The salaries range from 20k to 200k. 

We want to release the average salary of users. How 

do we make this 𝜖-DP?

• Under bounded DP

A: sensitivity is bounded by 180k/n

Add 𝑌 ∼ 𝐿𝑎𝑝
180𝑘

𝑛𝜖
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 4: 𝐷 contains the age of a set of users. We 

want to release the histogram of ages [0-10), [10-

20)…[100,110). How do we make this 𝜖-DP?

• Under unbounded DP

• Under bounded DP
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 4: 𝐷 contains the age of a set of users. We 

want to release the histogram of ages [0-10), [10-

20)…[100,110). How do we make this 𝜖-DP?

• Under unbounded DP

• Under bounded DP

A: sensitivity is 1 in unbounded 2 in 

bounded

Add 𝑌 ∼ 𝐿𝑎𝑝
1

𝜖
or 𝑌 ∼ 𝐿𝑎𝑝

2

𝜖
to 

each bucket in the histogram (drawn 

fresh for each bucket)



CS459 Fall 2024 

Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝑥𝐴)
Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 5: Alice wishes to report her annual salary xA
in a differentially private way. The salaries at her 

company range from 20k to 200k (and this is public 

information). What mechanism can she follow so that 

she gets 𝜖-DP?
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝑥𝐴)
Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 5: Alice wishes to report her annual salary xA
in a differentially private way. The salaries at her 

company range from 20k to 200k (and this is public 

information). What mechanism can she follow so that 

she gets 𝜖-DP?

A: sensitivity is bounded by 180k 

Add 𝑌 ∼ 𝐿𝑎𝑝
180𝑘

𝜖
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝑥𝐴)
Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 6: Alice wishes to report her age xA in a 

differentially private way. It is public information that she 

is between 18 and 100 years old. She adds Laplacian 

noise with 𝑏 = 3 to her age, and reports the resulting 

value. What is the level of DP that she gets?
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if

𝑌 ∼ 𝐿𝑎𝑝
Δ1
𝜖

𝑀(𝑥𝐴)
Data analyst

𝑀(𝑥𝐵)

𝑀(𝑥𝐶)

𝑀(𝑥𝐷)

Δ1 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ | 1
Example 6: Alice wishes to report her age xA in a 

differentially private way. It is public information that she 

is between 18 and 100 years old. She adds Laplacian 

noise with 𝑏 = 3 to her age, and reports the resulting 

value. What is the level of DP that she gets?

A: sensitivity is bounded by 82

𝑏 =
82

𝜖
= 3

𝜖 = 82/3



Properties of DP

47
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𝐹 ∘ 𝑀
𝜖, 𝛿 -DP

Post-processing

48

Robustness to post-processing: Let 𝑀:𝒟 → 𝒴 be an (𝜖, 𝛿)-DP mechanism, 

and let 𝐹:𝒴 → 𝒵 be a (possibly randomized) mapping. Then, 𝐹 ∘ 𝑀 is (𝜖, 𝛿)-
DP.

𝑀 𝐷
(𝜖, 𝛿)-DP

𝐷

𝑌 F(𝑌) 𝑍𝐷

• In layman terms, once you get a “privatized output” (𝑌) you cannot “unprivatize it” by running 

another mechanism.

• This makes a lot of sense: otherwise, the adversary could simply design an 𝐹 that could 

“unprivatize” 𝑀!!

It is very important that 

𝐹 does not depend on 𝐷
(other than through 𝑌) at 

all! Otherwise, this will not 

hold!
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Sequential Composition

● This means that running 𝑘 mechanisms on the same sensitive 

dataset, and publishing all 𝑘 results, the 𝜖s and 𝛿s add up (privacy 

decrease as we publish more results).

● Recall, the attacks we saw in lecture 16… 
○ More queries meant more leakage… this captures that.

49

Naïve composition: Let 𝑀 = 𝑀1, 𝑀2, … ,𝑀𝑘 be a sequence of mechanisms, 

where 𝑀𝑖 is (𝜖𝑖 , 𝛿𝑖)-DP. Then 𝑀 is (σ𝑖=1
𝑘 𝜖𝑖 ,σ𝑖=1

𝑘 𝛿𝑖)-DP
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Sequential Composition

● However, if we allow the overall 𝛿 to be slightly larger, we can get a 

much smaller 𝜖:

● Note that the overall 𝜖 only grows on the order of 𝑘 now (loosely 

speaking), and that if we allow higher 𝛿′ then we can get a smaller 

overall 𝜖.

Advanced composition: Let 𝑀 = 𝑀1, 𝑀2, … ,𝑀𝑘 be a sequence of mechanisms, 

where 𝑀𝑖 is (𝜖, 𝛿)-DP. 

Then 𝑀 is 𝜖 2𝑘 ⋅ ln
1

𝛿′
+

𝑘𝜖 𝑒𝜖−1

𝑒𝜖+1
, 𝑘𝛿 + 𝛿′ -DP
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Parallel Composition

51

Parallel Composition: Let 𝑀 = (𝑀1, 𝑀2, … ,𝑀𝑘) be sequence of mechanisms, 

where 𝑀𝑖 is 𝜖𝑖-DP. Let 𝐷1, 𝐷2, … , 𝐷𝑘 let a deterministic partition of 𝐷. 

Publishing 𝑀1 𝐷1 , 𝑀2 𝐷2 , … ,𝑀𝑘(𝐷𝑘) satisfies ( max
𝑖∈ 1,…,𝑘

𝜖𝑖)-DP.

𝐷

𝐷1

𝐷2

𝐷3

𝑀1 𝐷1
𝜖1-DP

𝑀2 𝐷2
𝜖2-DP

𝑀3 𝐷3
𝜖3-DP

Overall: max(𝜖1, 𝜖2, 𝜖3)-DP

• It is crucial that the partition of 
𝐷 must be deterministic!

• (and no overlap)



More Mechanisms

52
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Randomized Response (RR)

● Now we consider a mechanism with binary inputs and 
outputs, i.e., 𝑀: 0,1 → {0,1}. This makes more sense in the 
local setting, where 𝑥 ∈ {0,1} and the outputs is 𝑦 ∈ 0,1 .

● For example, 𝑥 can be the answer to a yes/no question:
○ Have you voted for party X?

○ Have you tested positive for virus Y?

○ Have cheated in any assignment this term?

● Instead of reporting 𝑥, Alice follows the following process:

53

𝑀(𝑥)

𝑥 𝑦

𝑦 = 0

𝑦 = 1

𝑦 = 𝑥

𝑥
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RR - Question

● Instead of reporting 𝑥, Alice follows the following process:

54

𝑀(𝑥)

𝑥 𝑦

𝑦 = 0

𝑦 = 1

𝑦 = 𝑥

𝑥

Q: compute these probabilities with an unbiased coin:

Pr 𝑦 = 0 𝑥 = 0
Pr 𝑦 = 1 𝑥 = 0
Pr 𝑦 = 0 𝑥 = 1
Pr 𝑦 = 1 𝑥 = 1
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RR - Question

● Instead of reporting 𝑥, Alice follows the following process:

55

𝑀(𝑥)

𝑥 𝑦

𝑦 = 0

𝑦 = 1

𝑦 = 𝑥

𝑥

Q: compute these probabilities with an unbiased coin:

Pr 𝑦 = 0 𝑥 = 0
Pr 𝑦 = 1 𝑥 = 0
Pr 𝑦 = 0 𝑥 = 1
Pr 𝑦 = 1 𝑥 = 1

A:

Pr 𝑦 = 0 𝑥 = 0 = 0.75
Pr 𝑦 = 1 𝑥 = 0 = 0.25
Pr 𝑦 = 0 𝑥 = 1 = 0.25
Pr 𝑦 = 1 𝑥 = 1 = 0.75
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Randomized Response (RR)

56

Differential Privacy (local model, discrete outputs)

A mechanism 𝑀:𝒳 → 𝒴 is 𝜖-differentially private (𝜖-DP) if the following holds for all possible outputs 

y ∈ 𝒴 and all pairs of neighboring datasets 𝑥, 𝑥′ ∈ 𝒳:

Pr 𝑀 𝑥 = 𝑦 ≤ Pr 𝑀 𝑥′ = 𝑦 𝑒𝜖

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

0.75

0.75

0.25

0.25

Q: what is the level of DP that RR provides?
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Randomized Response (RR)

57

Differential Privacy (local model, discrete outputs)

A mechanism 𝑀:𝒳 → 𝒴 is 𝜖-differentially private (𝜖-DP) if the following holds for all possible outputs 

y ∈ 𝒴 and all pairs of neighboring datasets 𝑥, 𝑥′ ∈ 𝒳:

Pr 𝑀 𝑥 = 𝑦 ≤ Pr 𝑀 𝑥′ = 𝑦 𝑒𝜖

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

0.75

0.75

0.25

0.25

Q: what is the level of DP that RR provides?

A:
Pr 𝑦 = 0 𝑥 = 0

Pr 𝑦 = 0 𝑥 = 1
= 3

Pr 𝑦 = 0 𝑥 = 1

Pr 𝑦 = 0 𝑥 = 0
=
1

3

The maximum ratio is 3. So 𝜖 = log 3 ≈ 1.10.
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Randomized Response (RR): Statistical Analyses

● More generally, we can have any probabilities 𝑝 and 1 − 𝑝.

58

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

Q: what is the 𝜖 in this case?
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Randomized Response (RR): Statistical Analyses

● More generally, we can have any probabilities 𝑝 and 1 − 𝑝.

59

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

Q: what is the 𝜖 in this case?

A:

𝜖 = log(max
𝑝

1 − 𝑝
,
1 − 𝑝

𝑝
)Q: When 𝑝 → 0.5, 𝜖 → 0, does 

this make sense?
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Randomized Response (RR): Statistical Analyses

● Even though it is hard to guess the 𝑥 given 𝑦 (unless 𝑝 → 1 or 0), 

when multiple users report outputs we can get an estimate of the 

percentage of users that had 𝑥 = 1.

● Assume there are 𝑛 users reporting values, and a fraction 𝑝0 have 

𝑥 = 0, while a fraction 𝑝1 = 1 − 𝑝0 have 𝑥 = 1.

60

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

Q: How many answers 𝑦 = 1 should we get, on average?
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Randomized Response (RR): Statistical Analyses

● Even though it is hard to guess the 𝑥 given 𝑦 (unless 𝑝 → 1 or 0), 

when multiple users report outputs we can get an estimate of the 

percentage of users that had 𝑥 = 1.

● Assume there are 𝑛 users reporting values, and a fraction 𝑝0 have 

𝑥 = 0, while a fraction 𝑝1 = 1 − 𝑝0 have 𝑥 = 1.

61

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

Q: How many answers 𝑦 = 1 should we get, on average?

A: 𝐸 𝑦 = 𝑝0 ⋅ 1 − 𝑝 + 1 − 𝑝0 ⋅ 𝑝
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Randomized Response (RR): Statistical Analyses

● You can also see this using the law of total probability: 

𝐸 𝑦 = Pr 𝑦 = 1 = Pr 𝑦 = 1 𝑥 = 0 Pr 𝑥 = 0 + Pr 𝑦 = 1 𝑥 = 1 Pr(𝑥 = 1)

● Therefore, the analyst can estimate 𝐸{𝑦} empirically using the reported values (let this be ത𝑦), 

and then compute 𝑝0 by solving ത𝑦 = 𝑝0 ⋅ 1 − 𝑝 + 1 − 𝑝0 ⋅ 𝑝.

● This gives us an estimator for 𝑝0:

Ƹ𝑝0 =
ത𝑦 − 𝑝

1 − 2𝑝

62

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

A: 𝐸 𝑦 = 𝑝0 ⋅ 1 − 𝑝 + 1 − 𝑝0 ⋅ 𝑝

Q: Can this gives us a negative estimate? Why?
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Randomized Response (RR): Statistical Analyses

● You can also see this using the law of total probability: 

𝐸 𝑦 = Pr 𝑦 = 1 = Pr 𝑦 = 1 𝑥 = 0 Pr 𝑥 = 0 + Pr 𝑦 = 1 𝑥 = 1 Pr(𝑥 = 1)

● Therefore, the analyst can estimate 𝐸{𝑦} empirically using the reported values (let this be ത𝑦), 

and then compute 𝑝0 by solving ത𝑦 = 𝑝0 ⋅ 1 − 𝑝 + 1 − 𝑝0 ⋅ 𝑝.

● This gives us an estimator for 𝑝0:

Ƹ𝑝0 =
ത𝑦 − 𝑝

1 − 2𝑝

63

𝑦 = 0

𝑦 = 1𝑥 = 1

𝑥 = 0

𝑝

1 − 𝑝

1 − 𝑝

𝑝

A: 𝐸 𝑦 = 𝑝0 ⋅ 1 − 𝑝 + 1 − 𝑝0 ⋅ 𝑝

Q: Can this gives us a negative estimate? Why?

A: It can happen, this will only approach the true percentage as 𝑛 → ∞.
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Statistical analysis with RR: exercise

● Disclaimer: you have 𝜖 = 1.1 (high-ish privacy); no matter what you report in 

this exercise, you can always claim it was not your true answer (plausible 

deniability).

● Let’s learn how many of you cheated in an exam/assignment before/after 

covid times.

64
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Statistical analysis with RR: exercise

● 𝑥 = 1 means “I have cheated”. Flip two coins, run randomized response:

65

𝑦 = 0

𝑦 = 1

𝑦 = 𝑥

𝑥

During 

covid

After covid

Number of participants

Number of 𝑦 = 1

Empirical avg: ത𝑦

Estimate of non-cheaters: Ƹ𝑝0 = 1.5 − 2ത𝑦

Estimate of cheaters: Ƹ𝑝1 = 2ത𝑦 − 0.5
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Exponential Mechanism

● Sometimes, adding Laplacian noise could destroy the utility of a 

mechanism. 
○ What if we want noise that is not symmetrical?

● Sometimes, we do not want to make numerical answers private, but 

we want to be able to report objects/classes/categories. 
○ How do we do this privately?

● The exponential mechanism can be used to provide DP in many 

settings. 

● The idea is that we will report an output privately, but with a 

probability proportional to its utility.

66
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Private Auction: noise is not great for DP!

67

• A set of users wants to buy an item, and each 

has a private amount they are willing to pay: 

𝑣𝑖.
• The retailer sees the 𝑣𝑖 ’s and could choose the 

largest price 𝑝 that maximizes the revenue 

(number of clients with 𝑣𝑖 ≥ 𝑝, times 𝑝).

• However, the 𝑝 chosen this way would reveal 

information about the users’ valuations 𝑣𝑖, 
which can be privacy-sensitive. 

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01
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Private Auction: noise is not great for DP!

68

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

Issue here: the revenue (utility) is very sensitive 

to the choice of 𝑝:

- If 𝑝 = 1, then the revenue is $3

- If 𝑝 = 1.01, then the revenue drops to $1.01

- If 𝑝 = 3.01, then the revenue is $3.01

- But at 𝑝 = 3.02, the revenue drops to $0

Adding noise to 𝑝 before making it public can 

destroy the utility (revenue)
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The Exponential Mechanism

69

Here, Δ is the sensitivity of the score function, defined as

Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |
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The Exponential Mechanism

70

• In order to compute the actual probability Pr(𝑀𝐸 𝐷 = ℎ), we need to 

compute the values of the score function for every ℎ ∈ ℋ. This can 

sometimes be very expensive.

• The exponential mechanism chooses items proportional to the score function

• The epsilon smooths this distribution

• The set of outputs is public knowledge, the choice is sensitive

Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ
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The Exponential Mechanism – an example

71

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

• Q: how can we use the exponential mechanism 

in this scenario?
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The Exponential Mechanism – an example

72

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

• Q: how can we use the exponential mechanism 

in this scenario?

A: we can discretize the set of possible outputs, 

e.g., ℋ = {0.1, 0.2, …10} (assuming the maximum 

price of the item is $10). This is the set of possible 

values 𝑝. Compute the probability of each and 

sample with that probability.
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The Exponential Mechanism – an example

73

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

Q: what will be the sensitivity? 

• Then, the retailer computes 𝑠(𝐷, ℎ) for each 

possible output ℎ. Note that 𝐷 is simply 

{𝑣1, 𝑣2, 𝑣3} in this case.
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The Exponential Mechanism – an example

74

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

Q: what will be the sensitivity? 

A: the maximum effect that an item can have in 

the revenue is $10, assuming the maximum price 

of the item is $10).

• Then, the retailer computes 𝑠(𝐷, ℎ) for each 

possible output ℎ. Note that 𝐷 is simply 

{𝑣1, 𝑣2, 𝑣3} in this case.
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The Exponential Mechanism – an example
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Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

• Q: Assume ℋ = {1, 2 , 3, 4} compute the 

probability of selecting each output, when 𝜖 = 1.
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Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

𝑝

𝑣1=$1

𝑣2=$1

𝑣3=$3.01

• Q: Assume ℋ = {1, 2 , 3, 4} compute the 

probability of selecting each output, when 𝜖 = 1.

A: sensitivity would be 4

• Scores would be {3,2,3,0}

• Pr 𝑀𝐸 𝐷 = 1 = exp
3

8
/Σℎexp(

𝑠 𝐷,ℎ

8
)

• Pr 𝑀𝐸 𝐷 = 2 = exp
2

8
/Σℎexp(

𝑠 𝐷,ℎ

8
)

• Pr 𝑀𝐸 𝐷 = 3 = exp
3

8
/Σℎexp(

𝑠 𝐷,ℎ

8
)

• Pr 𝑀𝐸 𝐷 = 4 = 1 /Σℎexp(
𝑠 𝐷,ℎ

8
)

• Σℎexp(
𝑠 𝐷,ℎ

8
) = 2exp

3

8
+ exp

2

8
+ 1
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The Exponential Mechanism – an example

● Assume we want to make a small decision tree for classifying heart attacks 

based on cholesterol

● Given the following dataset we want to choose a threshold h that maximizes 

accuracy of the classifier f(c):

● Let 𝑠 𝐷, ℎ =
1

𝑛
σ𝑖(𝑓ℎ 𝑐𝑖 == 𝑦𝑖)

77

Cholesterol 

(c) 

Heart Attack 

(y)

216 0

501 1

100 0

535 1

214 1

Chol (c)

10

c >= hc < h

Classifier 𝑓ℎ(𝑐)
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𝑠 𝐷, ℎ =
1

𝑛
σ𝑖(𝑓ℎ 𝑐𝑖 == 𝑦𝑖)

78

Cholesterol 

(c) 

Heart Attack 

(y)

216 0

501 1

100 0

535 1

214 1

Chol (c)

10

c >= hc < h

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Δ = max
ℎ

max
𝐷,𝐷′

|𝑠 𝐷, ℎ − 𝑠 𝐷′, ℎ |

• Q: Assume ℋ = {100, 200, 300, 400, 500}
compute the probability of selecting each 

output, when 𝜖 = 1.25.

Act.

Classifier 𝑓ℎ(𝑐)
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Just checking…

79

Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Q: What is the runtime 

complexity of the 

exponential mechanism in 

relation to ℋ
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Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Q: What is the runtime 

complexity of the 

exponential mechanism in 

relation to ℋ

A: 𝑂( ℋ )
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Just checking…

81

Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Q: What is the effect of 

reducing epsilon on the 

probability of each item?
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Just checking…
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Given a database 𝐷 ∈ 𝒟, a set of outputs ℋ and a score function  𝑠:𝒟 ×ℋ → ℝ, 

the exponential mechanism 𝑀𝐸 chooses an output ℎ ∈ ℋ with probability 

proportional to:

Pr 𝑀𝐸 𝐷 = ℎ ∝ exp
𝜖 ⋅ 𝑠(𝐷, ℎ)

2Δ

Q: What is the effect of 

reducing epsilon on the 

probability of each item?

A: The probabilities become 

more similar. As epsilon 

tends to 0, probabilities tend 

to 
1

|ℋ|
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The Exponential Mechanism is Generic!

83

Q: What is the probability of selection when 

the score function is s D, h =– |𝑓(𝐷) – ℎ|
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The Exponential Mechanism is Generic!

84

Q: What is the probability of selection when 

the score function is s D, h =– |𝑓(𝐷) – ℎ|

A: ∝ exp −
𝜖|𝑓(𝐷) –ℎ|

2Δ

Q: What distribution is this?
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The Exponential Mechanism is Generic!

85

Q: What is the probability of selection when 

the score function is s D, h =– |𝑓(𝐷) – ℎ|

A: ∝ exp −
𝜖|𝑓(𝐷) –ℎ|

2Δ

Q: What distribution is this?

A: Even the Laplace mechanism is 

an instantiation of  the exponential 

mechanism!



Bonus Content

86
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The Gaussian Mechanism

● So far, we have seen mechanisms for pure DP. Let’s see one for 

approximate DP.

● First, given a function 𝑓:𝒟 → ℝ𝑘 , we define the ℓ2-sensitivity as:

87

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2



CS459 Fall 2024 

The Gaussian Mechanism

● Given a function 𝑓:𝒟 → ℝ𝑘 , we define the ℓ2-sensitivity as:

● The Gaussian mechanism simply adds Gaussian noise to the 

output of the function:

88

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2

Given a function 𝑓:𝒟 → ℝ𝑘 with ℓ2-sensitivity Δ2, the Gaussian mechanism 

is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌2, … , 𝑌𝑘) where each 𝑌𝑖 is independently 

distributed as   Yi ∼ 𝑁(0, 𝜎2) with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 .
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The Gaussian Mechanism

● Given a function 𝑓:𝒟 → ℝ𝑘 , we define the ℓ2-sensitivity as:

● The Gaussian mechanism simply adds Gaussian noise to the 

output of the function:

89

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2

Given a function 𝑓:𝒟 → ℝ𝑘 with ℓ2-sensitivity Δ2, the Gaussian mechanism 

is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌2, … , 𝑌𝑘) where each 𝑌𝑖 is independently 

distributed as   Yi ∼ 𝑁(0, 𝜎2) with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 .
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Let’s think about this

90

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎2)

with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 provides (𝜖, 𝛿)-DP.

Q: does the relationship between the privacy parameter 𝜖
and the noise variance 𝜎2 make sense?
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Let’s think about this

91

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎2)

with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 provides (𝜖, 𝛿)-DP.

Q: does the relationship between the privacy parameter 𝜖
and the noise variance 𝜎2 make sense?

A: yes, to provide more privacy 

(lower 𝜖) we need more noise 

(higher 𝜎2).
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Let’s think about this

92

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎2)

with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 provides (𝜖, 𝛿)-DP.

Q: if we fix the noise level (𝜎), what is the relationship 

between 𝜖 and 𝛿, and why?
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Let’s think about this

93

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎2)

with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 provides (𝜖, 𝛿)-DP.

Q: if we fix the noise level (𝜎), what is the relationship 

between 𝜖 and 𝛿, and why?
A: for a fixed noise, 𝜖 and 𝛿 will be inversely 

proportional: if we want allow for a higher 𝛿
then that level of noise can provide lower 𝜖’s.
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Let’s think about this

This is not just for the Gaussian mechanism, but all 𝜖, 𝛿-DP mechanisms:

94

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎2)

with 𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2 provides (𝜖, 𝛿)-DP.

Smaller 𝜖, larger 𝛿
Higher 𝜖, smaller 𝛿

Q: if we fix the noise level (𝜎), what is the relationship 

between 𝜖 and 𝛿, and why?
A: for a fixed noise, 𝜖 and 𝛿 will be inversely 

proportional: if we want allow for a higher 𝛿
then that level of noise can provide lower 𝜖’s.



CS459 Fall 2024 

Gaussian Mechanism: examples

95

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2

𝑀(𝐷)

Data collector

𝐷 Data analyst

Example 1: 𝐷 contains the salaries of a set of n users. 

The salaries range from 10k to 200k. We want to 

release the total salary of the users. What is the 𝜎2 of 

the gaussian mechanism under bounded DP assuming 

𝛿 = 1/𝑛2

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2
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Gaussian Mechanism: examples

96

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2

𝑀(𝐷)

Data collector

𝐷 Data analyst

Example 1: 𝐷 contains the salaries of a set of n users. 

The salaries range from 10k to 200k. We want to 

release the total salary of the users. What is the 𝜎2 of 

the gaussian mechanism under bounded DP assuming 

𝛿 = 1/𝑛2

A: sensitivity is 190k

𝜎2 = 2 ln 1.25 𝑛2 (190𝑘)2/𝜖2

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2
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Gaussian Mechanism: examples

97

𝑀(𝐷)

Data collector

𝐷 Data analyst

Example 2: 𝐷 contains the age of a set of users. We 

want to release the histogram of ages [0-10), [10-

20)…[100,110). What is the 𝜎2 of the gaussian 

mechanism under bounded DP assuming 𝛿 = 1/𝑛2

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2



CS459 Fall 2024 

Gaussian Mechanism: examples

98

𝑀(𝐷)

Data collector

𝐷 Data analyst

Example 2: 𝐷 contains the age of a set of users. We 

want to release the histogram of ages [0-10), [10-

20)…[100,110). What is the 𝜎2 of the gaussian 

mechanism under bounded DP assuming 𝛿 = 1/𝑛2

A: sensitivity √2 in bounded DP

𝜎2 = 4 ln 1.25 𝑛2 /𝜖2

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2
2/𝜖2

Δ2 ≐ max
𝐷,𝐷′

| 𝑓 𝐷 − 𝑓 𝐷′ |2
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General Discrete Mechanisms

● A general mechanism that takes inputs and outputs from discrete sets can be 

written in matrix form by listing its inputs as rows, and its outputs as columns 
○ this is similar to how we wrote mechanism when we talked about statistical inference 

attacks

99

𝑦1

𝑦2𝑥2

𝑥1

𝑥𝑛

𝑦𝑚

𝒚𝟏 𝒚𝟐 … 𝒚𝒎

𝒙𝟏 … … … …

𝒙𝟐 … Pr(𝑦2|𝑥2) … …

… … … … …

𝒙𝒏 … … … …

you get the idea…
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General Discrete Mechanisms

● Computing 𝜖 for a mechanism in matrix form 
is very easy!

1. For every column (output), take the largest 
value and divide it by the smallest

○ This is computing max
𝑥,𝑥′

Pr 𝑦 𝑥 / Pr 𝑦 𝑥′ for a given 𝑦.

2. Take the largest one of those ratios
○ This value is ≤ than any Pr 𝑦 𝑥 / Pr 𝑦 𝑥′

3. Compute the natural logarithm of this, and this 
will give you 𝜖.

○ Since 𝜖 is the value such that

Pr(𝑦|𝑥)

Pr(𝑦|𝑥′)
≤ 𝑒𝜖

100

𝒚𝟏 𝒚𝟐 … 𝒚𝒎

𝒙𝟏 … … … …

𝒙𝟐 … … … …

… … … … …

𝒙𝒏 … … … …

max /min max /min( )

max log 𝜖
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General Discrete Mechanism: example

101

Q: Alice uses the generalized randomized response to report a differentially private version of 

her location to a location-based service provider. Her possible locations are points of interest 

𝑥1, 𝑥2, … , 𝑥𝑛 . The mechanism reports her real location with probability 𝑝 and any other location 

with probability 𝑞.

• What is the 𝜖-DP level this provides? (note that it will be dependent on 𝑝 and 𝑛). 

• You can assume 𝑝 > 1/𝑛. 

• You should check that, when setting 𝑛 = 2, you get the same formula for 𝜖 as for the RR 

mechanism.
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General Discrete Mechanism: example

102

Q: Alice uses the generalized randomized response to report a differentially private version of 

her location to a location-based service provider. Her possible locations are points of interest 

𝑥1, 𝑥2, … , 𝑥𝑛 . The mechanism reports her real location with probability 𝑝 and any other location 

with probability 𝑞.

• What is the 𝜖-DP level this provides? (note that it will be dependent on 𝑝 and 𝑛). 

• You can assume 𝑝 > 1/𝑛. 

• You should check that, when setting 𝑛 = 2, you get the same formula for 𝜖 as for the RR 

mechanism.

A: 𝑞 =
1−𝑝

𝑛−1
. Since 𝑝 >

1

𝑛
, then 𝑝 > 𝑞, and the maximum ratio for any output will be 

𝑝

𝑞
=
𝑝(𝑛 − 1)

1 − 𝑝
→ 𝜖 = log

𝑝 𝑛 − 1

1 − 𝑝

When 𝑛 = 2, we are back to randomized response!
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