CS459/689
Privacy, Cryptography,
Network and Data Security

Differential Privacy



Intended Learning Outcomes

By the end of this lecture, you should be able to:

- Describe the different properties of differential privacy such as composition and post
processing.

- Apply the Laplace mechanism to simple statistics problems.

- Use randomized response to collect and analyze binary data.

- Discuss how the exponential mechanism can be applied to discrete problems.
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Recall: Differential privacy

Differential Privacy

holds for all possible
datasets D,D' € D:

A mechanism M:D — R Is e-differentially private (e-DP) if the following

sets of outputs R ¢ R and all pairs of neighboring

Pr(M(D) € R) < Pr(M(D") € R) e€
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Differential Privacy Settings




Central DP vs. Local DP

Depending on who runs the mechanism, there are two broad
models for differential privacy.

Local Differential Privacy: each user runs the
mechanism themselves and reports the result
to the adversary/analyst

Central Differential Privacy: there is a
centralized (trusted) aggregator
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Central DP vs. Local DP

(Central) Differential Privacy
A mechanism M:D — R is e-differentially private (e-
DP) if the following holds for all possible sets of
outputs R ¢ R and all pairs of neighboring datasets
D,D" € D:

Pr(M(D) € R) < Pr(M(D') € R) e€

(Local) Differential Privacy

A mechanism M:D — R is e-differentially private (e-
DP) if the following holds for all possible sets of
outputs R c R and all pairs of neighboring inputs
x,x €D:

Pr(M(x) € R) < Pr(M(x') € R) e€
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* They are “the same definition”, it's just that the inputs to the mechanism and what we define as
“neighbouring” inputs/datasets is usually different.
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Central DP vs. Local DP
o Central DP

o Best accuracy, aggregation allows to hide in the crowd before we add noise.
o Need to trust the data collector.
o Hard to verify if noise was added.

e Local DP

o Accuracy not as good. Each user adds noise which can compound in the final result.
o User doesn’t need to trust anybody and knows they added noise.

e Shuffle Model of DP

o Hybrid where users add less noise on the understanding a semi-trusted party aggregates and
shuffles the results before they are made public.
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Bounded DP vs. Unbounded DP

® There are two “main” definitions for how we define neighboring datasets in the central model.

Bounded DP: D and D’ have the same Unbounded DP: D and D’ are such that you
number of entries but differ in the value of get one by deleting an entry from the other
one. one.
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Other notions of DP

Many possible neighbouring definitions.
For example, in location privacy:

Depending on how we define neighboring datasets D and

D', we get a different DP guarantee:

« User-level DP: we replace a user trajectory for another
user’s trajectory

—> « Event-level DP: we replace the location of a user for

another location
_—» ¢ W-event DP: we replace a window of w consecutive
locations of a user for another

"hese are all DP and have their uses. It is important to understand,
for each system/application, which notion of DP it provides.
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DP Mechanisms




DP Mechanisms

e We are going to see different mechanisms that provide Differential
Privacy and that can be applied to various systems.

e You need to understand why they provide DP, when you can use
them, how to compute the € level they provide, etc.

o We will see:
1. The Laplace Mechanism (DP, continuous outputs)

2. The Randomized Response Mechanism (DP, binary inputs/outputs)
3. The Exponential Mechanism (DP, discrete outputs)

4. The Gaussian Mechanism (approximate DP, continuous)

5. General Discrete Mechanisms
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Why do we need DP mechanisms?

o Many cases where sensitive information can be of great
benefit to society

o Analysis of healthcare records
o  Statistics computed from the census

o Without proper protection we have learnt there are many
inference attacks.

o« DP mechanisms allow us to tune the privacy utility trade-
off to still benefit from the sensitive data while providing
privacy guarantees.
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Example DP mechanism

e The dataset contains health data from n users, and the data analyst wants to
know how many patients have tested positive for a virus

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)

e Let D bethe dataset where x; = x, is Alice, and D' is the dataset where x; =
xg is Bob. Assume that x, =1 and xz = 0.

e Consider an analyst wants to report the count )}~ ; x;

Data collector

Data analyst

M(D) I:>'
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[Q: How could we make this private? J




Example: the Laplacian mechanism

© LletY ~Lap(b,u) 05 " mo.be1 —
o A Laplace distribution! 0.4
ly—ul 0.3

® With PDF:py(y) = —e™

0.2

0.1

=SS
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a

e Consider the mechanism that reports the true count of positive results
plus Laplacian noise, i.e.,
o M(D) =Y., x; +Y,whereY is noise from a Laplace distribution with mean
0 and scale b.
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Example: the Laplacian mechanism

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)

e Let D be the dataset where x; = x, is Alice, and D' is the dataset where x; =
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0
and scale b.

e Youcanwritec=),x;.

Q: What do the worst-case distributions of M(D) vs
M(D") look like?

CS459 Fall 2024
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Example: the Laplacian mechanism

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)

e Let D be the dataset where x; = x, is Alice, and D' is the dataset where x; =
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0

and scale b. \
e Youcan write c = Yi_, x;. F:
Q: What do the worst-case distributions of M(D) vs

M(D") look like?

0.2 9

Q: What is the maximum ratio between the distributions?

\\ “ct+l /
C
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Example: the Laplacian mechanism

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)

e Let D be the dataset where x; = x, is Alice, and D' is the dataset where x; =
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0

and scale b. \
e Youcan write c = Yi_, x;. F:
Q: What do the worst-case distributions of M(D) vs

M(D") look like?

0.2 9

Q: What is the maximum ratio between the distributions?

A: exp(1/b)... o] = 1 1 S
[Let b = 1/€ and we have DP! } \\ o+l /
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Approximate DP

Differential privacy is very strict. In the slide before, if we replace the
Laplacian noise with a Laplace y ~ Lap(1) truncated at y > 1000, the
mechanism is basically “the same”:

o Pr(y > 1000y ~ Lap(1)) = 5 exp(—1000) ~ 107,
However, if we truncate the Laplacian noise, the mechanism goes frome =1
(good privacy) to € = o (no privacy).

No matter where we
do zoom, we'll

< always see this!
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Approximate DP

e The following is a relaxation of the DP definition, that allows some tolerance:

(Approximate) Differential Privacy

A mechanism M:D — R is (g, 6)-differentially private ((e, 6)-DP) if the following holds

for all sets of possible outputs S ¢ R and all pairs of neighboring datasets D, D’ € D:
Pr(M(D) € S) <Pr(M(D') € S)e€+6

e When § = 0, this is the same as ¢-DP (called pure DP).
e What does this mean?

We multiply one The area of the green one not covered by
We have two distributions (e.g., blue) by e€ the blue one now will be < 6

f(RID) vs f(RID") A
R R
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Approximate DP: interpretation

(Approximate) Differential Privacy

A mechanism M:D — R is (¢, §)-differentially private ((¢, 6)-DP) if the following holds

for all sets of possible outputs S ¢ R and all pairs of neighboring datasets D,D" € D:
Pr(M(D) € S) <Pr(M(D') € S)e€+6

e A mechanism M:D — R that provides e-DP except for certain "bad” outcomes
B c R,where Pr(M(D) € B) < 6 (forany D € D) also provides (¢, §)-DP.
e Proof is not as simple as it seems, but it can be proven

CS459 Fall 2024
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The Laplace Mechanism — Sensitivity

e We already saw an example of this. Now, we will make it more formal.
e First, we need to bound the maximum change in the non-private function we

want to compute.
e Given a function f: D — R¥, and two neighboring datasets D € D and D' € D,

the #4-sensitivity of f is the maximum change that replacing D for D’ can
cause in the output:

A = f33¥|| f(D) — f(DHIl4

e Can generalize to other norms (such as £, which we will see later)

CS459 Fall 2024
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The Laplace Mechanism

Given a function f: D —» R¥, and two neighboring datasets D € D and D' € D,
the ¢;-sensitivity of f is the maximum change that replacing D for D' can

cause in the output: ,
P 8y = maxll F) - £,

Given any function f and it's #; sensitivity, we can turn it into a DP mechanism
if we add Laplacian noise to its output:

Given a function f: D — R with #;-sensitivity A, the Laplace

mechanism is defined as M(D) = f(D) + (Y1,Y,, ..., Y,) where each Y;

IS iIndependently distributed following Y ~ Lap(b) with b = =1

€

CS459 Fall 2024
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The Laplace Mechanism

e We already saw an example of this. Now, we will make it more formal.
e Given a function f: D — R, and two neighboring datasets D € D and D’ € D,
the #,-sensitivity of f is the maximum change that replacing D for D' can

cause in the output: A, = %‘%’f” f(D) — F(D)]l4
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Recall, our example

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)
e Let D be the dataset where x; = x4 is Alice, and D' is the dataset where x;
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0

and scale b.
e Youcanwritec=),x;.

{Q: What is the sensitivity? J
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Recall, our example

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)
e Let D be the dataset where x; = x4 is Alice, and D' is the dataset where x;
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0

and scale b.
e Youcanwritec=),x;.

Q: What is the sensitivity? [A: 1 }
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Recall, our example

e Let x; be the test result for useri (x; = 0 for negative, x; = 1 for positive)

e Let D be the dataset where x; = x, is Alice, and D' is the dataset where x; =
xg is Bob. Assume that x, =1 and x;z = 0.

e M(D)=X",x;+Y, whereY is noise from a Laplace distribution with mean 0
and scale b.

e Youcanwritec=),x;.

Q: What is the sensitivity? [A: 1 }

Remember this?

Q: What is the maximum ratio between the distributions? A: exp(1/b)...
Let b = 1/e and we have DP!
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: what does smaller e mean?

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: what does smaller e mean?

[A: more privacy }

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: iIf we want more privacy, would
we need to add more or less noise?

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: iIf we want more privacy, would
we need to add more or less noise?

A: more noise. That's
why b %

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: if changing D for D' can cause a huge
change in f(-), is that a large or small
sensitivity?

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: if changing D for D' can cause a huge
change in f(-), is that a large or small
sensitivity?

[A: large sensitivity}

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: if changing D for D' can have a huge
Impact in f, do we need a lot or a little
noise to hide this impact?

CS459 Fall 2024
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The Laplace Mechanism — checkpoint!

The Laplace Mechanism: M(D) = f(D) + Y where Y ~ Lap(b) with b =
Aq :
~ provides e-DP /

The variance is 2b?; higher(/
b means more noise!

Q: if changing D for D' can have a huge
Impact in f, do we need a lot or a little
noise to hide this impact?

A: a lot of noise.
That's why b o« A4

CS459 Fall 2024
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Laplace Mechanism: examples

Example 1. D contains the test results for virus X of a
set of users. We want to release the total number of
users that tested positive. How do we make this e-DP?
 Under unbounded DP

 Under bounded DP

CS459 Fall 2024
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A = 11‘51,33,(” f(D) — f(D)l;

f(D) +Y is e-DP if

A1
Y ~ Lap

Data collector
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Laplace Mechanism: examples

A = 11‘51,15)15,(” f(D) — f(D)l;

Example 1. D contains the test results for virus X of a

set of users. We want to release the total number of

users that tested positive. How do we make this e-DP? : .
« Under unbounded DP f(D)+Yise-DPif
» Under bounded DP Ay

Y ~ LClp (?>

A: sensitivity is 1 in both cases
Add Y ~ Lap (2)

Data collector

@@ ) @ peta analys
g g-rm=¢
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Laplace Mechanism: examples

Example 2: D contains the salaries of a set of users.
The salaries range from 20k to 200k. We want to
release the total salary of the users. How do we make
this e-DP?

» Under unbounded DP

* Under bounded DP

CS459 Fall 2024
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A = 11‘5135,(” f(D) — f(D)l;

f(D) +Y is e-DP if

A1
Y ~ Lap
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Laplace Mechanism: examples

Example 2: D contains the salaries of a set of users.
The salaries range from 20k to 200k. We want to
release the total salary of the users. How do we make
this e-DP?

» Under unbounded DP

* Under bounded DP

KA: sensitivity is bounded by \
180k in the bounded and 200k

In the unbounded

AddY ~ Lap (&:k) or

- Y~ Lap (2060k) y

CS459 Fall 2024
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f(D) +Y is e-DP if
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Laplace Mechanism: examples

A = 11‘51,33,(” f(D) — f(D)l;

Example 3: D contains the salaries of n users (n is
public knowledge). The salaries range from 20k to 200Kk.

We want to release the average salary of users. How - -
do we make this e-DP? f(D)+Yis EADP If
) 1
Under bounded DP Vo~ Lap ( )
Data collector

?
©
®—
o
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Laplace Mechanism: examples

Example 3: D contains the salaries of n users (n is
public knowledge). The salaries range from 20k to 200Kk.
We want to release the average salary of users. How
do we make this e-DP?

* Under bounded DP

A: sensitivity is bounded by 180k/n

Add Y ~ Lap (%zk)
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A = 11‘51,15)15,(” f(D) — f(D)l;

f(D) +Y is e-DP if

2)
Y ~ Lap =
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Laplace Mechanism: examples

Example 4: D contains the age of a set of users. We
want to release the histogram of ages [0-10), [10-
20)...[100,110). How do we make this e-DP?

* Under unbounded DP

* Under bounded DP

CS459 Fall 2024
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A = 11‘51,33,(” f(D) — f(D)l;

f(D) +Y is e-DP if

A1
Y ~ Lap

Data collector

@ Data analyst

=

41




Laplace Mechanism: examples

Example 4: D contains the age of a set of users. We
want to release the histogram of ages [0-10), [10-
20)...[100,110). How do we make this e-DP?

* Under unbounded DP

* Under bounded DP

/"A: sensitivity is 1 in unbounded 2 in
bounded

Add Y ~ Lap e) orY ~ Lap (E) to
each bucket in the histogram (drawn
\fresh for each bucket) 4
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f(D) +Y is e-DP if

2)
Y ~ Lap =
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Laplace Mechanism: examples

Example 5: Alice wishes to report her annual salary x,
In a differentially private way. The salaries at her
company range from 20k to 200k (and this is public
information). What mechanism can she follow so that
she gets e-DP?

CS459 Fall 2024
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Laplace Mechanism: examples

Example 5: Alice wishes to report her annual salary x,
In a differentially private way. The salaries at her
company range from 20k to 200k (and this is public
information). What mechanism can she follow so that
she gets e-DP?

A: sensitivity is bounded by 180k

Add Y ~ Lap ()

CS459 Fall 2024

A = rgg¥|| f(D) = F(DIl4

f(D) +Y is e-DP if

2)
Y ~ Lap ~

@ :> MCxa) % Data analyst
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Laplace Mechanism: examples

Example 6: Alice wishes to report her age x, in a
differentially private way. It is public information that she
Is between 18 and 100 years old. She adds Laplacian
noise with b = 3 to her age, and reports the resulting
value. What is the level of DP that she gets?

CS459 Fall 2024

A = rgg¥|| f(D) = F(DIl4

f(D) +Y is e-DP if

2)
Y ~ Lap ~
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Laplace Mechanism: examples

Example 6: Alice wishes to report her age x, in a
differentially private way. It is public information that she
Is between 18 and 100 years old. She adds Laplacian
noise with b = 3 to her age, and reports the resulting
value. What is the level of DP that she gets?

/A: sensitivity is bounded by 82 N

=—=
€ = 82/3
L /
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f(D) +Y is e-DP if
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Properties of DP




Post-processing

DP.

Robustness to post-processing: Let M:D — Y be an (¢,5)-DP mechanism,
and let F: Y — Z be a (possibly randomized) mapping. Then, F e M IS (g, 6)-

* In layman terms, once you get a “privatized output” (Y') you cannot “unprivatize it” by running

another mechanism.

« This makes a lot of sense: otherwise, the adversary could simply design an F that could

“‘unprivatize” M!

8

F(Y)

FoM
(¢,6)-DP

@ D
@%i g | |5
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It is very important that
F does not depend on D
(other than through Y) at
alll Otherwise, this will not
hold!
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Sequential Composition

Naive composition: Let M = (M, M,, ..., M;,) be a sequence of mechanisms,
where M; IS (Ei, 51)'DP Then M is (Zé{:l €; ,Zi-;l 61)'DP

e This means that running k mechanisms on the same sensitive
dataset, and publishing all k results, the es and §s add up (privacy
decrease as we publish more results).

e Recall, the attacks we saw in lecture 16...
- More queries meant more leakage... this captures that.

CS459 Fall 2024
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Sequential Composition

e However, if we allow the overall 6§ to be slightly larger, we can get a
much smaller e:

Advanced composition: Let M = (M, M,, ..., M;) be a sequence of mechanisms,
where M; is (e, 6)-DP.

Then M is <e \[Zk In ( 1) 4 kel hs o 6’>-DP

5! e€+1

e Note that the overall € only grows on the order of vk now (loosely

speaking), and that if we allow higher §' then we can get a smaller
overall €.
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Parallel Composition

Parallel Composition: Let M = (M, M,, ..., M;,) be sequence of mechanisms,
where M; is ¢;-DP. Let D4, D, ..., D;, let a deterministic partition of D.
Publishing M, (D;), M,(D,), ..., M} (Dy) sat|sf|es( max El) -DP.

I:> M;(D,) J:>
e Overall: max(eq, €;, €3)-DP

2(D3) ) i ..
D —> Dz g |:> o E-J;> w * |t Is crucial that the partition of

D must be deterministic!

g I:> e Eﬁ> * (and no overlap)
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More Mechanisms
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Randomized Response (RR)

o Now we consider a mechanism with binary inputs and

@

M(x)

= §

outputs, i.e., M:{0,1} — {0,1}. This makes more sense in the
local setting, where x € {0,1} and the outputsis y € {0,1}.
e For example, x can be the answer to a yes/no question:

o Haveyou voted for party X?
o Have you tested positive for virus Y?
o  Have cheated in any assignment this term?

o Instead of reporting x, Alice follows the following process:

CS459 Fall 2024
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RR - Question

o Instead of reporting x, Alice follows the following process:

Q: compute these probabilities with an unbiased coin:
Pr(y = 0|x = 0)
Pr(y =1|x =0)
Pr(y =0|x = 1)
Pri(y =1lx=1)

CS459 Fall 2024
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RR - Question

o Instead of reporting x, Alice follows the following process:

Q: compute these probabilities with an unbiased coin:
Pr(y = 0|x = 0)
Pr(y =1|x =0)
Pr(y =0|x = 1)
Pri(y =1lx=1)

CS459 Fall 2024
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= §

A N
Pr(y = 0|lx = 0) = 0.75
Pr(y = 1|x = 0) = 0.25
Pr(y =0|x =1) = 0.25
Pr(y =1|x =1) =0.75
8 /
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Randomized Response (RR)

Differential Privacy (local model, discrete outputs)
A mechanism M: X — U is e-differentially private (e-DP) if the following holds for all possible outputs
y € Y and all pairs of neighboring datasets x, X

Pr(M(x) =y) < Pr(M(x") =y) e

Q: what is the level of DP that RR provides?

0.75
x=0 > y = 0
0.25
é 0.25
v
0.75
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Randomized Response (RR)

Differential Privacy (local model, discrete outputs)
A mechanism M: X — U is e-differentially private (e-DP) if the following holds for all possible outputs
y € Y and all pairs of neighboring datasets x, X

Pr(M(x) =y) < Pr(M(x") =y)e€

Q: what is the level of DP that RR provides?

0.75
x=0 > y=0
@ 0.25 /AZ \
B 0.25 Pr(y = 0|x = 0) .
x=1 > y=1 Pr(y =0|x = 1)
0.75 Pr(y=0lx=1) 1
Pr(y = 0|x = 0) ~3

\The maximum ratio is 3. S0 € = log 3 = 1.10./
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Randomized Response (RR): Statistical Analyses

e More generally, we can have any probabilities p and 1 — p.

p
1_p
2B; 1-p
p

Q: what is the € in this case?

CS459 Fall 2024
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Randomized Response (RR): Statistical Analyses

e More generally, we can have any probabilities p and 1 — p.

p
1_p
2B; 1-p
p

Q: what is the € in this case?

Q: Whenp - 0.5, € - 0, does
this make sense?

Ve
A:

(U

1-p

e = log(max P )
1-p

p

b
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Randomized Response (RR): Statistical Analyses

e Eventhoughitis hard to guess the x given y (unless p — 1 or 0),
when multiple users report outputs we can get an estimate of the

percentage of users that had x = 1.
e Assume there are n users reporting values, and a fraction p, have

x = 0, while a fraction p; =1 — p, have x = 1.

Q: How many answers y = 1 should we get, on average? D
><
B, 1-p
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Randomized Response (RR): Statistical Analyses

e Eventhoughitis hard to guess the x given y (unless p — 1 or 0),
when multiple users report outputs we can get an estimate of the

percentage of users that had x = 1.
e Assume there are n users reporting values, and a fraction p, have

x = 0, while a fraction p; =1 — p, have x = 1.

Q: How many answers y = 1 should we get, on average? D
’» 1-p
[A:E{y}=p0-(1—p)+(1—Po)'P } 1-p
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Randomized Response (RR): Statistical Analyses

[A:E{y}=P0'(1—p>+(1—po)-P} o~

® You can also see this using the law of total probability:
E{y}=Pr(y=1) =Pr(y=1|x=0)Pr(x =0) + Pr(y = 1|x = 1) Pr(x = 1)
® Therefore, the analyst can estimate E{y} empirically using the reported values (let this be ¥),
and then compute p, by solvingy = py - (1 —p) + (1 —py) - p.
® This gives us an estimator for p,:

. _J-p
Po 1—2p

Q: Can this gives us a negative estimate? Why?
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Randomized Response (RR): Statistical Analyses

s

v_J 1-p
x=1 > y=1

[A: E{y}=po-(1—p)+ (1 —pg) ' p }

® You can also see this using the law of total probability:
E{y}=Pr(y=1)=Pr(y=1|x=0)Pr(x=0)+Pr(y =1lx =1) Pr(x = 1)
® Therefore, the analyst can estimate E{y} empirically using the reported values (let this be ¥),
and then compute p, by solvingy = py - (1 —p) + (1 —py) - p.
® This gives us an estimator for p,:
y—p
1—-2p

Do =

Q: Can this gives us a negative estimate? Why?

[A: It can happen, this will only approach the true percentage as n - . }

CS459 Fall 2024
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Statistical analysis with RR: exercise

Disclaimer: you have € = 1.1 (high-ish privacy); no matter what you report in
this exercise, you can always claim it was not your true answer (plausible
deniability).

Let’s learn how many of you cheated in an exam/assignment before/after
covid times.

CS459 Fall 2024
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Statistical analysis with RR: exercise

e x =1 means “l have cheated”. Flip two coins, run randomized response:

During | After covid
covid
235 Number of participants
we ~0
Heads ., @ <: y ] Number of )= i
@ x @—7 Tails . 0

Y \ EmplrICa| avg. }_]
Tails y=x

Estimate of non-cheaters: p, = 1.5 — 2y

Estimate of cheaters: p; = 2y — 0.5

CS459 Fall 2024
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Exponential Mechanism

Sometimes, adding Laplacian noise could destroy the utility of a
mechanism.

- What if we want noise that is hot symmetrical?
Sometimes, we do not want to make numerical answers private, but
we want to be able to report objects/classes/categories.

- How do we do this privately?
The exponential mechanism can be used to provide DP in many
settings.
The idea is that we will report an output privately, but with a
probability proportional to its utility.

CS459 Fall 2024
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Private Auction: noise is not great for DP!

g

« A set of users wants to buy an item, and each
has a private amount they are willing to pay:
V.

* The retaliler sees the v;'s and could choose the

@ = @ a 1,=$3.01 largest price p that maximizes the revenue

v, =$1 (number of clients with v; > p, times p).
« However, the p chosen this way would reveal

@ 2 1,=$1 information about the users’ valuations v;,
which can be privacy-sensitive.
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Private Auction: noise is not great for DP!

g

Issue here: the revenue (utility) is very sensitive

to the choice of p:
- If p =1, then the revenue is $3

@ _g1 @ a v,=$3.01 - Ifp = 1.01, then the revenue drops to $1.01
Okes - If p = 3.01, then the revenue is $3.01
- But at p = 3.02, the revenue drops to $0
@v2:$1 Adding noise Fc_) p before making it public can
0 destroy the utility (revenue)
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The Exponential Mechanism

Given a database D € D, a set of outputs H and a score function s:D X H — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(Mg(D) = h) & exp (E 0 h)>

2AA

Here, A Is the sensitivity of the score function, defined as

A = max rlgl’%); |s(D,h) —s(D', h)|

CS459 Fall 2024
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The Exponential Mechanism

Given a database D € D, a set of outputs " and a score function s:D X H — R,
the exponential mechanism My chooses an output h € H with probability
proportional to:

Pr(Mz(D) = h)  exp <E s, h)>

2AA

* In order to compute the actual probability Pr(Mz(D) = h), we need to
compute the values of the score function for every h € . This can

sometimes be very expensive.
« The exponential mechanism chooses items proportional to the score function

* The epsilon smooths this distribution
* The set of outputs is public knowledge, the choice Is sensitive

CS459 Fall 2024

70



The Exponential Mechanism — an example

=y
@ &2 »
* Q: how can we use the exponential mechanism
In this scenario?

@ b, =$1 @v3=$3.01
@vz =$1

€-s(D,h)
2A )

Pr(Mgz(D) = h) « exp(
A= max rlr)ll%zc |s(D,h) —s(D', h)|

CS459 Fall 2024
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The Exponential Mechanism — an example

g

* Q: how can we use the exponential mechanism

In this scenario?
@ b =$1 @Ug =$3.01 /A

. we can discretize the set of possible outputs, A
e.g., H ={0.1,0.2, ...10} (assuming the maximum
@vz =$1 price of the item is $10). This is the set of possible
9 values p. Compute the probability of each and
: sample with that probability.
Pr(Mg(D) = h) « exp (E Sz(f' h)> k P P y /

A= max rg’%zc |s(D,h) —s(D', h)|
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The Exponential Mechanism — an example

@ P * Then, the retailer computes s(D, h) for each
possible output h. Note that D is simply

{vy,v,,v3} In this case.

@ b, =$1 @v3=$3.01
@vz =$1

e-s(D, h))

Q: what will be the sensitivity?

Pr(Mgz(D) = h) « exp( o

A= max rg’%z( |s(D,h) —s(D', h)|

CS459 Fall 2024
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The Exponential Mechanism — an example

@ P * Then, the retailer computes s(D, h) for each
possible output h. Note that D is simply

{vy,v,,v3} In this case.

@ b, =$1 @v3=$3.01
@ vz =$1 - N

Q: what will be the sensitivity?

A: the maximum effect that an item can have in
Pr(My(D) = h) o exp (E -s(D, h)> the revenue is $10, assuming the maximum price
24 of the item is $10).
A= max max |s(D,h) —s(D', h)| L /
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The Exponential Mechanism — an example
@ P  Q: Assume H ={1,2, 3,4} compute the

probability of selecting each output, when € = 1.

@ b, =$1 @v3=$3.01
@vz =$1

€-s(D,h)
2A )

Pr(Mgz(D) = h) « exp(
A= max rlr)ll%zc |s(D,h) —s(D', h)|
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The Exponential Mechanism — an example
i

oK  Q: Assume H ={1,2, 3,4} compute the
9 probability of selecting each output, when € = 1.

@ L o 1.=$3.01 ﬂsensitivity would be 4 \
v;=%1 3 » Scores would be {3,2,3,0}
)
8

+ Pr(Mp(D) = 1) = exp(2) /Zpexp(
s(Dh)

0 1 + Pr(Mg(D) = 2) = exp(2) /Znexp
@vz ’ + Pr(Mz(D) = 3) = exp(3) /Zpexp S(D ”)

Pr(M (D) = ) o exp (e -s(D, h)>  Pr(Mg(D) =4) =1 /Z,ex (S(l;h)

()+exp()+1 /

s(D,h)

)

A= (D) — s(D', h) o ThexpC2) =
_mf?xrg’%),ds , s(D', h)| \\h 3
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The Exponential Mechanism — an example

Assume we want to make a small decision tree for classifying heart attacks

based on cholesterol

Given the following dataset we want to choose a threshold h that maximizes

accuracy of the classifier f(c):

© ()

216
501
100
535
214

Let s(D,h) = %Zi(fh(ci) == ;)
CS459 Fall 2024
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Classifier f;,(c)

c<h c>=h
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AcCt.

The Exponential Mechanism — an example

Cholesterol Classifier f;,(c)
(C) )
0

216

c<h c>=h

501 1
w ==
535 1
214 1 - N

1 * Q: Assume H = {100,200,300,400,500}
s(D,h) = ;Zi(fh (c;) == yi) compute the probability of selecting each

output, when ¢ = 1.25.
- s(D . )

Pr(Mg(D) = h) « exp (E SZ(A’ h))

A= max rlr)ll%>,< |s(D,h) —s(D', h)|
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Just checking...

Given a database D € D, a set of outputs H and a score function s:D X H — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(Mg(D) = h) & exp (E 0 h)>

2AA

Q: What is the runtime
complexity of the
exponential mechanism in
relation to

CS459 Fall 2024
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Just checking...

Given a database D € D, a set of outputs H and a score function s:D X H — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(Mgz(D) = h) « exp (E 50 h)>
2A
Q: What is the runtime
complexity of the A 0(|H]) }
exponential mechanism in
relation to
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Just checking...

Given a database D € D, a set of outputs H and a score function s:D X H — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(Mg(D) = h) & exp (E 0 h)>

2AA

Q: What is the effect of
reducing epsilon on the
probability of each item?
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Just checking...

Given a database D € D, a set of outputs H and a score function s:D X H — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

-S(D, h
Pr(Mg(D) = h) o« exp (E SZ(A )>
Q: What is the effect of "A: The probabilities become
reducing epsilon on the more similar. As epsilon
probability of each item? tends to 0, probabilities tend
1
to —
. )
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The Exponential Mechanism is Generic!

{Q: What is the probability of selection when }

the score function is s(D,h) =-|f (D) - h|




The Exponential Mechanism is Generic!

Q: What is the probability of selection when

the score function is s(D,h) =-|f(D) - h|
[A: X exp (— Elf(fA) _hl) }

Q: What distribution is this?

CS459 Fall 2024
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The Exponential

Mechanism is Generic!

Q: What is the probability of selection when

the score function is s(D,h) =-|f(D) - h|

Q: What distribution is this?

€lf (D) -hl)

A: ocexp(— oA

( N
A: Even the Laplace mechanism is

an instantiation of the exponential

mechanism!
N\ )

CS459 Fall 2024
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Bonus Content
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The Gaussian Mechanism

e So far, we have seen mechanisms for pure DP. Let's see one for
approximate DP.
e First, given a function f: D —» R¥, we define the #,-sensitivity as:

A, = max||f(D) — F(D)I;

CS459 Fall 2024
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The Gaussian Mechanism

Given a function f: D — R¥, we define the £,-sensitivity as:

A, = rgg’,(“f(D) — f(DHII;

The Gaussian mechanism simply adds Gaussian noise to the
output of the function:

Given a function f: D —» R* with #,-sensitivity A,, the Gaussian mechanism

is defined as M(D) = f(D) + (Y1, Y, ..., Y;) where each Y; is independently

distributed as Y; ~ N(0,02) with 6% = 21n (1725) A% /e? .

CS459 Fall 2024
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The Gaussian Mechanism

e Given a function f: D — R¥, we define the ¢,-sensitivity as:
A, = rgg’,(“f(D) — f(D)]l;

e The Gaussian mechanism simply adds Gaussian noise to the
output of the function:
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Let’'s think about this

The Gaussian mechanism M(D) = f(D) + Y where Y ~ N(0,0%)

with 6% = 21n (1725) A% /€? provides (g, §)-DP.

Q: does the relationship between the privacy parameter e
and the noise variance o2 make sense?

CS459 Fall 2024
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Let’'s think about this

The Gaussian mechanism M(D) = f(D) + Y where Y ~ N(0,0%)

with 6% = 21n (1725) A% /€? provides (g, §)-DP.

Q: does the relationship between the privacy parameter e A: yes, to provide more privacy
) : > o \
and the noise variance o make sense” (lower €) we need more noise
(higher ).

|

CS459 Fall 2024
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Let’'s think about this

The Gaussian mechanism M(D) = f(D) + Y where Y ~ N(0,0%)
with 6% = 21n (125) A% /€? provides (g, §)-DP.

Q: if we fix the noise level (¢), what is the relationship
between € and §, and why?
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Let’'s think about this

The Gaussian mechanism M(D) = f(D) + Y where Y ~ N(0,0%)

with 6% = 21n (1725) A% /€? provides (g, §)-DP.

Q: if we fix the noise level (¢), what is the relationship A: for a fixed noise, € and § will be inversely
between € and §, and why? proportional: if we want allow for a higher §
then that level of noise can provide lower €’s.
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Let’'s think about this

The Gaussian mechanism M(D) = f(D) + Y where Y ~ N(0,0%)

with 6% = 21n (1725) A% /€? provides (g, §)-DP.

Q: if we fix the noise level (¢), what is the relationship A: for a fixed noise, € and § will be inversely
between € and §, and why? proportional: if we want allow for a higher §
then that level of noise can provide lower €’s.

This is not just for the Gaussian mechanism, but all €, 5-DP mechanisms:

Smaller ¢, larger & Higher €, smaller §

A=A = A

CS459 Fall 2024
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Gaussian Mechanism: examples

Example 1. D contains the salaries of a set of n users.
The salaries range from 10k to 200k. We want to
release the total salary of the users. What is the o2 of
the gaussian mechanism under bounded DP assuming
5 = 1/n?

CS459 Fall 2024

A; = rg%¥||f(D) — f(D)I];

?
©

©
e

|/

7(D) + Y is (¢, 6)-DP if
Y ~ N(0,52)
1.25
0?2 =2In (T) A% /€2

Data collector

Data analyst

%g M) ':>w
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Gaussian Mechanism: examples

Example 1. D contains the salaries of a set of n users.
The salaries range from 10k to 200k. We want to
release the total salary of the users. What is the o2 of
the gaussian mechanism under bounded DP assuming
5 = 1/n?

(C N

A: sensitivity is 190k

0% = 21In(1.25n%)(190k)? /€

AU )

CS459 Fall 2024

A; = rg%¥||f(D) — f(D)I];

7(D) + Y is (¢, 6)-DP if
Y ~ N(0,52)
1.25
0?2 =2In (T) A% /€2

Data collector

|/

?
©

©
e

%g M) ':>w

7
/

Data analyst

96



Gaussian Mechanism: examples

Example 2: D contains the age of a set of users. We
want to release the histogram of ages [0-10), [10-
20)...[100,110). What is the a2 of the gaussian
mechanism under bounded DP assuming § = 1/n?

CS459 Fall 2024

A; = rg%¥||f(D) — f(D)I];

?
©
©
e

|/

((((((

f(D) +Yis (¢ 6)-DP if
Y ~N(0,0%)

1.25
0'2 = Zln(T)A%/EZ

Data collector

o

=0 |=@

7
/
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Gaussian Mechanism: examples

Example 2: D contains the age of a set of users. We
want to release the histogram of ages [0-10), [10-
20)...[100,110). What is the a2 of the gaussian
mechanism under bounded DP assuming § = 1/n?

C I
A: sensitivity v2 in bounded DP

0% = 41n(1.25 n?) /€?
\ )
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A; = rg%¥||f(D) — f(D)I];

f(D) +Yis (¢ 6)-DP if
Y ~N(0,0%)

1.25
0'2 = Zln(T)A%/EZ

Data collector

|/

?
©

©
e

%g M) ':>w

7
/

Data analyst
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General Discrete Mechanisms

e A general mechanism that takes inputs and outputs from discrete sets can be
written in matrix form by listing its inputs as rows, and its outputs as columns
o thisis similar to how we wrote mechanism when we talked about statistical inference
attacks
RN
@ |:> Pr(yz|x2)
Ym

o you get the idea...

CS459 Fall 2024
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General Discrete Mechanisms

e Computing € for a mechanism in matrix form --

IS very easy!
1. For every column (output), take the largest
value and divide it by the smallest

o  This is computing max Pr(y|x) / Pr(y|x") for a given y.
x,x!

2. Take the largest one of those ratios
o  This value is < than any Pr(y|x) / Pr(y|x’)

3. Compute the natural logarithm of this, and this /\
will give you e.

o Since € is the value such that max( )/ min( )
Prylx) _ o€ <

Pr(y|x") — max( ) = log( ) = ¢

max( )/min( )
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General Discrete Mechanism: example

Q: Alice uses the generalized randomized response to report a differentially private version of

her location to a location-based service provider. Her possible locations are points of interest

{x1, x5, ..., x,}. The mechanism reports her real location with probability p and any other location

with probability q.

« What is the e-DP level this provides? (note that it will be dependent on p and n).

* Youcanassumep > 1/n.

* You should check that, when setting n = 2, you get the same formula for € as for the RR
mechanism.
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General Discrete Mechanism: example

Q: Alice uses the generalized randomized response to report a differentially private version of

her location to a location-based service provider. Her possible locations are points of interest

{x1, x5, ..., x,}. The mechanism reports her real location with probability p and any other location

with probability q.

« What is the e-DP level this provides? (note that it will be dependent on p and n).

* Youcanassumep > 1/n.

* You should check that, when setting n = 2, you get the same formula for € as for the RR
mechanism.

e

A q= =P Since p > 2, then p > g, and the maximum ratio for any output will be
n

n—1
p_pn—-1) e log(p(n— 1))
q 1—p 1—p

CS459 Fall 2024
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