CS459/698 Privacy, Cryptography, Network and Data Security

Multi-Party Computation, PSI, PIR

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Distributed trust

The main way to use distributed trust to achieve privacy in computation is by using MPC (multiparty computation)

→ Sometime called SMC (secure multiparty computation)

→ Let us do the computation without seeing the input data (prevent data breaches)

Goal: learn f(x, y) but not reveal anything else about x or y

CS459 Fall 2024

Q: how can Bob and Alice determine who is richer?

Q: how can Bob and Alice determine who is richer?

A: A multi-party computation to compute f: x < y

Fun Facts:

- And rew C. Yao, Protocols for Secure Computations Proceedings of the 21st Annual IEEE Symposium on the Foundations of Computer Science, 1982
- "Yao's millionaires' problem" (Andrew C. Yao, Turing Award 2000)

CS459 Fall 2024

Solution

1. Bob picks a random N-bit integer **x**, and computes $\mathbf{k} = E_a(\mathbf{x})$

- 2. Bob sends Alice the number k j + 1
- 3. Alice computes $y_u = D_a(k j + u)$ for u = [1, 2, ..., 10].
- 4. Alice generates random prime **p** of N/2-bits, and computes $\mathbf{z}_{\mathbf{u}} = \mathbf{y}_{\mathbf{u}} \pmod{\mathbf{p}}$
 - if all \mathbf{z}_{u} differ by at least 2 mod p, stop;
 - otherwise, generate another p and repeat until all z_u differ by at least 2 mod p
- 5. Alice sends the prime **p** and the following 10 numbers to Bob:
 - z_1, z_2, \ldots, z_i followed by $z_{i+1} + 1, z_{i+2} + 1, \ldots, z_{10} + 1$

6. Bob looks at z_j , and decides that $i \ge j$ if $z_j = x \mod p$, and i < j otherwise. Tells Alice.

Let's use RSA as our crypto scheme!

Alice holds:

```
Pub_A = (e, N) = (79, 3337)
Priv_A = (d) = 1019
```

RSA operations:

```
Encryption: y = x^e \mod N
Decryption: x = y^d \mod n
```


For this example, assume Alice has 5 millions (i = 5) and Bob has 6 millions (j = 6)

Step 1:

- Bob picks a random N-bit integer **x** = 1234
- Bob computes $\mathbf{k} = E_a(\mathbf{x}) = 1234^{79} \mod 3337 = 901$

Step 2:

• Bob sends Alice k - j + 1 = 901 - 6 + 1 = 896

Step 3:

- Alice generates $Y_1...Y_{10}$, obtained by decrypting k j + 1 to k j + 10
 - This is because of our bound that tells us Alice and Bob have a number of millions between 1 and 10
 - i.e., **u** = [1 ... 10]
- Alice can do this even without knowing **k** or **j**
- So, what does she get?

u	k - j + u	RSA decryption	Уu
1	896	896^1019 mod 3337	1059> The original value Bob sent
2	897	897^1019 mod 3337	1156
3	898	898^1019 mod 3337	2502
4	899		2918
5	900		385
6	901		1234 (as it should be) \longrightarrow Bob's random number
7	902		296
8	903		1596
9	904		2804
10	905	905^1019 mod 3337	1311

Step 4:

- Next, Alice generates prime number **p** of N/2 bits
- In this example, let's pick p = 107
- Then, Alice generates $Z_1...Z_{10}$, obtained by computing $Y_1...Y_{10}$ mod p
- Keep in mind that **p** must be such that all **Z**_u differ by at least 2 units
 - This will later allow Bob to reliably determine whether i < j

Step 4:

- Next, Alice generates prime number p of N/2 bits
- In this example, let's pick p = 107
- Then, Alice generates $Z_1...Z_{10}$, obtained by computing $Y_1...Y_{10}$ mod p
- Keep in mind that **p** must be such that all **Z**_u differ by at least 2 units
 - This will later allow Bob to reliably determine whether i < j
- So, what does she get?

u	k - j + u	RSA decryption	y u	Z _u = (Y _u mod 107
1	896	896^1019 mod 3337	1059	96
2	897	897^1019 mod 3337	1156	86
3	898	898^1019 mod 3337	2502	41
4	899		2918	29
5	900		385	64
6	901		1234	57
7	902		296	82
8	903		1596	98
9	904		2804	22
10	905	905^1019 mod 3337	1311	27

s **j** millions

Solution Rundown

u	k - j + u	RSA decryption	y _u	<i>Z_u</i> = (Y _u mod 107)
1	896	896^1019 mod 3337	1059	96
2	897	897^1019 mod 3337	1156	86
3	898	898^1019 mod 3337	2502	41
4	899		2918	29
5	900		385	64
6	901		1234	57
7	902		296	82
8	903		1596	98 uffer by at least
9	904		2804	22 All Zu dine
10	905	905^1019 mod 3337	1311	27

CS459 Fall 2024

Step 5:

- Now, Alice sends **p** and 10 numbers to Bob
 - The first few numbers are Z_1 , Z_2 , Z_3 ... up to the value of Z_i , where *i* is Alice's wealth in millions

р	Z1	Z2	Z3	Z4	Z5	Z6+1	Z7+1	Z8+1	Z9+1	Z10+1
107	96	86	41	29	64	58	83	99	23	28

Step 6:

• Bob now looks at the **j**th number, where **j** is his wealth in millions

- He then computes **x** mod **p** = **1234** mod **107** = **57**
- Lastly, if the jth number is equal to 57, then Alice is equally wealthy (or more) than Bob (i >= j). Else, Bob is wealthier than Alice (i < j).

Step 6:

• Bob now looks at the **j**th number, where **j** is his wealth in millions

- He then computes **x** mod **p** = **1234** mod **107** = **57**
- Lastly, if the jth number is equal to 57, then Alice is equally wealthy (or more) than Bob (i >= j). Else, Bob is wealthier than Alice (i < j).
- **Step 7:** Bob tells Alice the result

Why does the Solution Work?

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth (i = 5);
- Bob checks to see if the one in his position in the series (j = 6) has had one added to it: if it has, then he knows he must be wealthier than Alice.

Why does the Solution Work?

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth (i = 5);
- Bob checks to see if the one in his position in the series (j = 6) has had one added to it: if it has, then he knows he must be wealthier than Alice.

• All this has been done <u>without</u> either of them transmitting their wealth

Any issues?

Q: Can anyone identify a reason it would fail?

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Long A: This technique is not cheat-proof (Bob could lie in step 7). Yao shows that such techniques can be constructed so that cheating can be limited, usually by employing extra steps.

How Scalable is this Solution?

In the real-world:

- You would need (lots of) processing power!
- **Q:** Any idea why?

How Scalable is this Solution?

In the real-world:

- You would need (lots of) processing power!
- If you wanted to cover the range 1 to 100,000,000 at a unit resolution, then Alice will be sending Bob a table of 100,000,000 numbers!
- This table would be on the order of a GB. You could handle it, but processing and storage implications are non-trivial.

New advances on MPC attempt to tackle these issues in clever ways...

A Potential "Real-World" Example

A Potential "Real-World" Example

A Potential "Real-World" Example

Require: A function f over public parameters, but secret architecture

Goal: A MPC for f(x, y) such that only Alice learns the analysis of her sentence and Alice does not learn the NN

"Types" of MPC: Participant Set

Multi-Party

CS459 Fall 2024

MPC Server Model

- Assume n >> 3 clients with an input
 - E.g., collect statistics about emoji usage in texting
- Dedicate 2 (or 3) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs
- The servers perform multi-party computation
 - Decrypt input
 - Compute *f*

MPC Server Model

"Types" of MPC: Functionality

Generic

Generic functions:

A multi-party computation protocol that can be used for "any" function f

CS459 Fall 2024

"Types" of MPC: Functionality

Generic functions:

A multi-party computation protocol that can be used for "any" function f

Specific functions:

A multi-party computation protocol that can only be used for **a specific function f**

CS459 Fall 2024

"Types" of MPC: Security

Passive

Passive security (security against semi-honest adversaries)

Each party **follows the protocol** but keeps a record of all messages and after the protocol is over, **tries to infer additional information** about the other parties' inputs

"Types" of MPC: Security

Passive

Passive security (security against semi-honest adversaries)

Each party **follows the protocol** but keeps a record of all messages and after the protocol is over, **tries to infer additional information** about the other parties' inputs

Active security (security against malicious adversaries)

Each party **may arbitrarily deviate from the protocol**. Either the protocol computes *f* or the protocol is aborted.

Active

Relationship between Passive and Active Security

- Passive security is a **prerequisite** for active security
 - A protocol can be secure against passive adversaries but not active ones
 - A protocol secure against active adversaries is also secure against passive ones
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries
 - E.g., by adding protocol steps proving the correct computation of each message:
 - Cryptographic commitments: can we detect if a participant deviates from the protocol?
 - Validations: Are parameters within expected bounds?

Known as Goldreich's compiler (Oded Goldreich, Knuth Prize 2017)

An MPC Application for a <u>specific function</u>: Private Set Intersection (PSI)

Private Set Intersection (PSI)

- Alice has set $X = \{x_1, x_2, x_3, ..., x_n\}$
- Bob has set $\mathbf{Y} = \{y_1, y_2, y_3, ..., y_m\}$
- They want to compute $Z = X \cap Y$ (but reveal nothing else)
- Good real-world use case: private contact discovery
 - i.e., how many and which contacts do we have in common?

Private Set Intersections

2-Party, One-Way PSI A \rightarrow B

n-Party PSI

Private Set Intersections

Strawman Protocol for PSI

- Alice permutes her set **X**, Bob permutes his set **Y**. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - O Compute x =? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(\mathbf{x})$
 - Bob: Choose random *r* and compute $c = (E_A(x) * E_A(-y))^r$ O Add encrypted value of *x* with encrypted value of -y (the negative of *y*) and raise the result to the power of *r*.
 - Bob \rightarrow Alice: **c**
 - Alice: Output $\mathbf{x} = \mathbf{y}$, if $D_A(\mathbf{c}) = 0$, else $\mathbf{x} \neq \mathbf{y}$

Strawman Protocol for PSI

- Alice permutes her set **X**, Bob permutes his set **Y**. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - O Compute x =? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(\mathbf{x})$
 - Bob: Choose random *r* and compute $c = (E_A(x) * E_A(-y))^r$ O Add encrypted value of *x* with encrypted value of -y (the negative of *y*) and raise the result to the power of *r*.
 - Bob \rightarrow Alice: **c**
 - Alice: Output $\mathbf{x} = \mathbf{y}$, if $D_A(\mathbf{c}) = 0$, else $\mathbf{x} \neq \mathbf{y}$

E_A and D_A are part of a homomorphic encryption scheme that supports operations on ciphertexts. We will see more later!

Strawman Protocol for PSI

Complexity of O(xy)

More efficient solutions exist e.g., based on precomputations

- Alice permutes her set **X**, Bob permutes his set **Y**. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - O Compute x =? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(\mathbf{x})$
 - Bob: Choose random *r* and compute $c = (E_A(x) * E_A(-y))^r$ O Add encrypted value of *x* with encrypted value of -y (the negative of *y*) and raise the result to the power of *r*.
 - Bob \rightarrow Alice: **c**
 - Alice: Output $\mathbf{x} = \mathbf{y}$, if $D_A(\mathbf{c}) = 0$, else $\mathbf{x} \neq \mathbf{y}$

E_A and D_A are part of a homomorphic encryption scheme that supports operations on ciphertexts. We will see more later!

Private Information Retrieval (PIR)

Can we privately query a database?

Ideally...

Motivating Example (0)

• You want to look something up in an online database

○ For example, a database of patents

- You want to keep private the information being retrieved
 - For example, the patent number (6368227) you're looking up

(12)	Unite Olson	d States Patent	(10) Patent No.:(45) Date of Pater	US 6,368,227 B1 Apr. 9, 2002
(54)	METHOD OF SWINGING ON A SWING		5,413,298 A * 5/1995 Perreault 248/228	
(76)	Inventor:	Steven Olson, 337 Otis Ave., St. Paul, MN (US) 55104	* cited by examiner	
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	Primary Examiner—Kien T (74) Attorney, Agent, or Fi	T. Nguyen <i>irm</i> —Peter Lowell Olson
(21)	Appl. No.: 09/715,198		(57) ABS	TRACT
(22)	Filed:	Nov. 17, 2000	A method of swing on a swing is disclosed, in which a user	
(51) (52) (58)	Int. Cl. ⁷		positioned on a standard swing suspended by two chains from a substantially horizontal tree branch induces side to side motion by pulling alternately on one chain and then the other.	
(56)		References Cited		
	U.S. PATENT DOCUMENTS		4 Claims, 3 Drawing Sheets	
	242,601 A	* 6/1881 Clement 472/118		

Motivating Example (1)

- A server stores a list of "broken" passwords that appeared on the Internet
- The client wants to check whether the password they just created for an Internet site is in that database
 - If it is, they should not use it
 - If it is not but revealed to the database, it should not be used either

Motivating Example (1)

- A server stores a list of "broken" passwords that appeared on the Internet
- The client wants to check whether the password they just created for an Internet site is in that database
 - If it is, they should not use it
 - If it is not but revealed to the database, it should not be used either
- The client should query **without revealing** the password!

Motivating Example (2)

• Netflix stores movies in a database

- 1. The Shawshank Redemption
- 2. The Godfather
- 3. The Dark Knight
- 4.12 Angry Men
- •
- You request movies by index, say 1, 4, 2, ...
- Netflix caches your selection and gradually builds a profile on your movie preferences

Motivating Example (2)

• Netflix stores movies in a database

- 1. The Shawshank Redemption
- 2. The Godfather
- 3. The Dark Knight
- 4.12 Angry Men
- •
- You request movies by index, say 1, 4, 2, ...
- Netflix caches your selection and gradually builds a profile on your movie preferences
- The server should be queried **without learning** the item of interest!

Goal 1: Correctness - Client learns d_i

Goal 1: Correctness - Client learns d_i

Goal 2: Security - Server does not learn index i

Blatantly non-private protocol

Formal model:

 \circ Server: holds an n-bit string {X₁, X₂, ..., X_n} \circ User: wishes to retrieve X_i AND keep i private

Protocol:

 \circ User: show me i \circ Server: here is $\boldsymbol{X_i}$

Analysis:

```
No privacy!
# of bits: 1 — very efficient
```

Trivially-private protocol

Formal model:

 \circ Server: holds an n-bit string {X₁, X₂, ..., X_n} \circ User: wishes to retrieve X_i AND keep i private

Protocol:

 \circ User: show me **ALL indexes** \circ Server: here is {X₁, X₂, ..., X_n}

Analysis:

Complete privacy!
of bits: n — very impractical

More solutions?

User asks for additional random indices

• Drawback: balance information leak vs communication cost

Anonymous communication:

 \circ Note: this is in fact a different concern: it hides the identity of a user, not the fact that X_i is retrieved

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve $X_i\,\text{AND}\,\text{keep}\,i$ private

Assumption: multiple (≥ 2) non-cooperating servers

Information-Theoretic PIR

An example 2-server IT-PIR protocol:

○ User → Server 1:
$$\mathbf{Q}_1 \subset R \{1, 2, ..., n\}$$
, $i \neq Q_1$

○ Server 1 → User:
$$\mathbf{R}_1 = \bigoplus_{k \in Q1} X_k$$

○ User → Server 2:
$$\mathbf{Q}_2 = \mathbf{Q}_1 \cup \{i\}$$

○ Server 2 → User:
$$\mathbf{R}_2 = \bigoplus_{k \in Q2} X_k$$

○ User derives
$$X_i = R_1 \oplus R_2$$

Analysis:

- \circ Probabilistic-based privacy (1/|Q₂|)
- # of bits: 1 (× 2 servers) + inexpensive computation

Database: [X₁, X₂, X₃, X₄] = [0, 1, 0, 1]

- User → Server 1: $\mathbf{Q}_1 \subset \{1, 2, ..., N\}$, $i \neq Q_1$
- Server 1 → User: $\mathbf{R}_1 = \bigoplus_{k \in Q1} X_k$
- $\bigcirc \text{ User} \rightarrow \text{Server 2: } \mathbf{Q_2} = \mathbf{Q_1} \cup \{i\}$
- Server 2 → User: $\mathbf{R}_2 = \bigoplus_{k \in Q2} X_k$
- \bigcirc User derives **X**_i = R₁ \oplus R₂

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve $X_i\,AND\,keep\,i$ private

○ User → Server 1:
$$Q_1 = X_1, X_4$$
○ Server 1 → User: $R_1 = 1$
○ User → Server 2: $Q_2 = X_1, X_3, X_4$
○ Server 2 → User: $R_2 = 1$
○ User derives $X_3 = 0$

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Computational PIR

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

An example CPIR protocol:

- \odot User chooses a large random number **m**
- User generates *n* 1 random quadratic residues (QR) mod *m*: a₁, a₂, ..., a_{i-1}, a_{i+1}, ..., a_n
- \odot User generates a quadratic non-residue (QNR) mod m: **b**_i
- $\bigcirc \quad \text{User} \rightarrow \text{Server:} \quad a_1, a_2, ..., a_{i^{-1}}, \textbf{b}_i, a_{i^{+1}}, ..., a_n$

(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series of random numbers: u_1 , u_2 , ..., u_n)

- Server → User: **R** = $u_1^{X1} * u_2^{X2} * ... * u_n^{Xn}$ (The product of QRs is still a QR)
- User check: if **R** is a QR mod m, $X_i = 0$, else (**R** is a QNR mod m) $X_i = 1$

Quadratic Residues: A recap

Definition: A number *a* is a quadratic residue modulo *n* if there is an integer *x* such that $x^2 = a \mod n$

e.g., let **n** = 7

 $0^2 = 0 \mod 7$

 $1^2 = 0 \mod 7$

 $2^2 = 4 \mod 7$

 $3^2 = 2 \mod 7$

 $4^2 = 2 \mod 7$

 $5^2 = 4 \mod 7$

 $6^2 = 1 \mod 7$

•••

Quadratic Residues: A recap

Definition: A number **a** is a quadratic residue modulo **n** if there is an integer **x** such that $x^2 = a \mod n$

e.g., let **n** = 7

 $0^2 = 0 \mod 7$

 $1^2 = 0 \mod 7$

 $2^2 = 4 \mod 7$

 $3^2 = 2 \mod 7$

 $4^2 = 2 \mod 7$

 $5^2 = 4 \mod 7$

 $6^2 = 1 \mod 7$

... (and so on)

0, 1, 2, 4 are Quadratic Residues mod 7
Quadratic Residues: A recap

Definition: A number **a** is a quadratic residue modulo **n** if there is an integer **x** such that $x^2 = a \mod n$

Computational PIR

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

An example CPIR protocol:

- \odot User chooses a large random number **m**
- User generates *n* 1 random quadratic residues (QR) mod *m*: a₁, a₂, ..., a_{i-1}, a_{i+1}, ..., a_n
- \odot User generates a quadratic non-residue (QNR) mod m: **b**_i
- $\bigcirc \quad \text{User} \rightarrow \text{Server:} \quad a_1, a_2, ..., a_{i^{-1}}, \textbf{b}_i, a_{i^{+1}}, ..., a_n$

(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series of random numbers: u_1 , u_2 , ..., u_n)

- Server → User: **R** = $u_1^{X1} * u_2^{X2} * ... * u_n^{Xn}$ (The product of QRs is still a QR)
- User check: if **R** is a QR mod m, $X_i = 0$, else (**R** is a QNR mod m) $X_i = 1$

Computational PIR (Example)

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

Database: [X₁, X₂, X₃, X₄] = [0, 1, 0, 1]

- User chooses random number **7**
- User generates n 1 random quadratic residues (QR) mod 7: a_1 , a_2 , $a_4 = 0$, 2, 4
- \odot User generates a quadratic non-residue (QNR) mod m: b₃ = **3**
- $\bigcirc \text{ User} \rightarrow \text{Server: } a_1, a_2, b_3, a_4 \quad \textbf{0, 2, 3, 4}$

(The server cannot distinguish between QRs and QNRs mod m)

○ Server → User: $\mathbf{R} = 0^{X1} * 2^{X2} * 3^{X3} * 4^{X4} = 0^{0} * 2^{1} * 3^{0} * 4^{1} = 1 * 2 * 1 * 4 = 8$ (The product of QRs is still a QR)

• User check: **8 = 1 mod 7**. Thus, 8 is a quadratic residue modulo 7, since 1 is a QR mod 7

Hence, $X_3 = 0$

CS489 Spring 2024

Comparison of CPIR and IT-PIR

CPIR

- Possible with a single server
- Server needs to perform intensive computations
- To break it, the server needs to solve a hard problem

IT-PIR

- Only possible with >1 server
- Server may need lightweight computations only
- To break it, the server needs to collude with other servers

Quick announcements

- Student Course Perceptions (https://perceptions.uwaterloo.ca/)
 - \circ $\,$ Open on Wednesday, Nov 20th $\,$
 - Close on Tuesday, Dec 3rd
 - Did you like it? Did you hate it? Let me know!