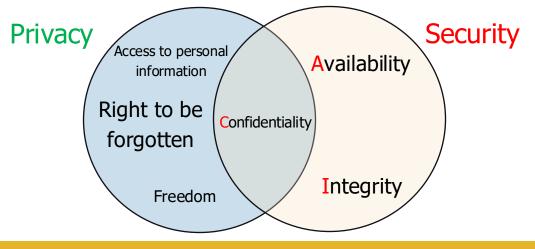
CS459/698 Privacy, Cryptography, Network and Data Security

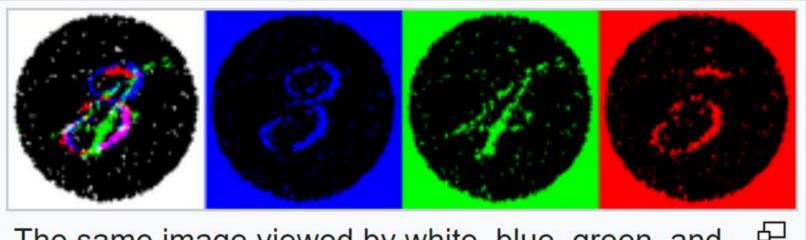

Basics of Cryptography

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Quick recap

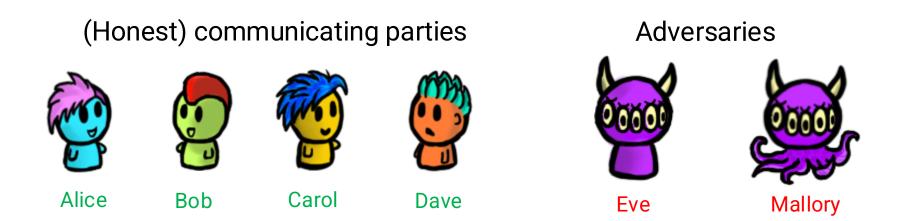
• Security and Privacy? (rights vs responsibilities)

- Explored how can we distinguish between privacy & security
- Defined, **what** is being protected, from **who**, and under what **conditions** this protection will hold.
- Gave a loose definition of assets, vulnerabilities, threats and attacks.



This lecture

- Identify attack techniques and apply them (Cryptanalysis)
 - Cryptanalysis: studies cryptographic systems to look for weaknesses or information leakage
- Explain building blocks of cryptography
 - Cryptography: Show how to send secure messages over an insecure medium (eg. Internet)
- Explain how modern cryptography properties arose


Goal: Why does Basically, know what cryptography tools exist and how to securely use them. <u>Build a foundation of primitives</u> for more complicated "applied cryptography" later.

Steganography-Secretly "hidden" messages

The same image viewed by white, blue, green, and red lights reveals different hidden numbers.

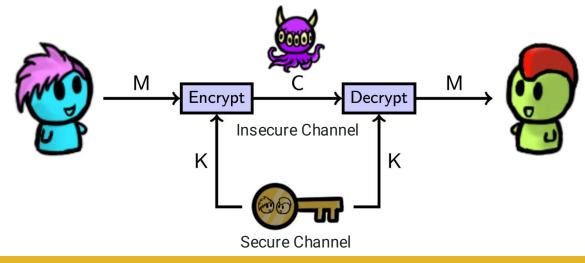
Cryptography – Cast of characters

- Eve: a passive eavesdropper who can listen to transmitted messages
- Mallory: an active Man-In-The-Middle, who can listen to, and modify, insert, or delete, transmitted messages.

Components of Cryptography

• Confidentiality

O Preventing Eve from reading Alice's messages

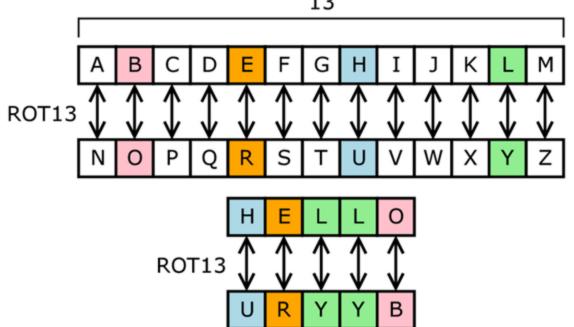

Integrity

- O Preventing Mallory from Modifying Alice's messages without being detected
- Authenticity,
 - O Preventing Mallory from impersonating Alice

Cryptography - Path for Secret Messages

- Secret-key encryption (symmetric encryption) is the simplest form of cryptography.
- O The key Alice uses to encrypt the message is the same as the key Bob uses to decrypt it
- Eve, not knowing the key, should not be able to recover the plaintext

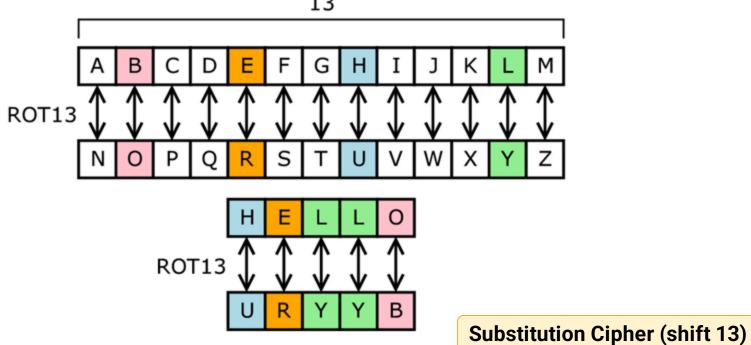
Historical Ciphers: Example One


FUBSWRJUDSKB CRYPTOGRAPHY

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Substitution Cipher (shift 3):

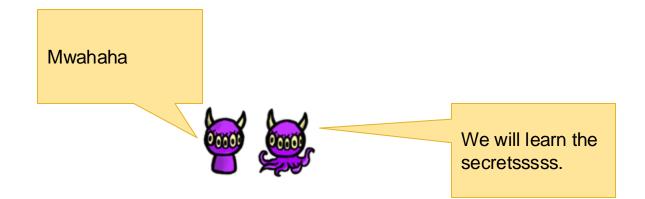

Caesar Cipher

13

Image source: wikipedia

Caesar Cipher

13


Image source: wikipedia

Shift and Substitution Ciphers

Replace symbols (letters) by others

- Using a rule e.g., $y = x + 13 \pmod{26}$, Caesar's cipher Key: 13
- Using a keyword e.g, Key: table(t=a shift of 20.)

Cryptanalysis - Analyzing "secret" messages

Historical Ciphers: Example Two

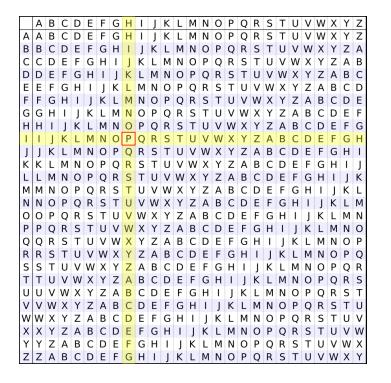
wordplays |com

Cros	swo	ord	Sol	ver	9	Scra	bbl	e W	ord	Fin	der		Bog	gle	Т	ext	Twi	ist	S	udo	ku	A	nag	ırar	n S	olve	er	Wc	ord G	Sam
Vordl	е	Scra	bble	e Hel	р	Word	ds w	ith F	rien	ds C	heat	t V	Vord	ls in	Wor	ds	Woi	rd Ju	ımbl	es	Wo	rd S	earc	:h	Scra	bble	e Che	eat	Cry	otogr
DAII	_Y	CR	YP	то	GR	AM	1																	Dail	y C	rypt	ogra	am I	Help	?
uzz	le #	31	62 ·	- CA	TE	GOR	Y: 1	PEO	PLE														Puz	zle	#			< >	Fir	nd
V	L	В	Α	D	E	V		В	т	Ρ		D	Z	E	•	X		С	Q	Ρ		A	U	F	E	-	М	В	J	
R	В	E	Z	D	Ρ	F	L		Y		F		0	т	Y	F		E	0	Y	D	S	F	7	·		1	2		
ĸ	D	-	~	U	r	F	-		^	U	F		Y	•	^	F	1	-	Ŷ	^	U	3		2						
Y	Q	J	L	D	R	F		R	U	F	S	Q	т	D	F	L														
Get	a⊦	lint								Sol	ve tł	ne F	uzz	le						Ne	wΡ	uzzl	e						Clea	r

English Frequency

Α	11.7%	
в	4.4%	
С	5.2%	
D	3.2%	
E	2.8%	
F	4%	
G	1.6%	
н	4.2%	
I	7.3%	
J	0.51%	I
к	0.86%	
L	2.4%	
м	3.8%	

Ν	2.3%	
0	7.6%	
Р	4.3%	
Q	0.22%	
R	2.8%	
S	6.7%	
т	16%	
U	1.2%	
v	0.82%	
w	5.5%	
x	0.045%	
Y	0.76%	
Z	0.045%	

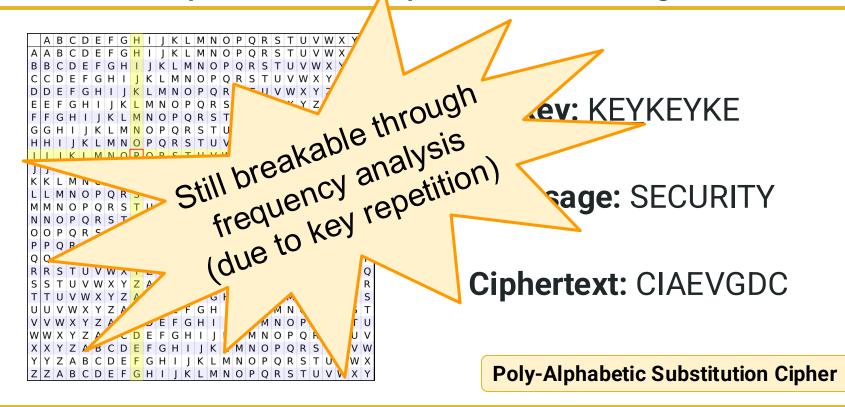


Historical Ciphers: Example Two

wordplays[™]|com

Cros	ssw	ord	So	ver		Scra	abbl	e W	/ord	l Fin	der		Bog	gle	1	Text	Tw	ist	s	udo	ku	P	nag	grar	n S	olve	er	Wo	ord (Game
Word	le	Scr	abble	e He	lp	Wor	ds w	ith l	Frier	nds (Chea	t ۱	Norc	ls in	Wor	rds	Wo	rd Ju	umb	les	Wo	ord S	Searc	ch	Scra	abble	e Ch	eat	Cry	ptogra
DAI	DAILY CRYPTOGRAM Daily Cryptogram Help ?																													
Puzz	le	#31	.62	- CA	TE	GOF	RY:	PEC	PLI	E													Puz	zle	#			$\stackrel{\scriptstyle \wedge}{\scriptstyle \sim}$	Fi	nd
G	R		w	1	N				L			1	s	N	Ŀ	T		B	A	D				E			Y	0	-	
V C	L 0	B		D	E D	V E	R	в	T T		Е	D	Z A		т	X E	R	C N	_	P T	T.	A V	E	F S	E		м -	В -	J	
R	B	E	Z	D	Ρ	F	L		X	U	F		Q	т	X	F	L	E	Q	X	D	S	F	Z	•		-	-		
M Y	A Q	-	R	I D	CR	E	_		H		V S	A 0	L	I D	E															
	ž					_						~			<u> </u>															
Ge	tal	Hint								So	ve t	he F	⁵ uzz	le						Ne	w F	uzz	le						Clea	ır

Historical Ciphers: Example Three – Vigenère


Key: <u>KEY</u>KEYKE

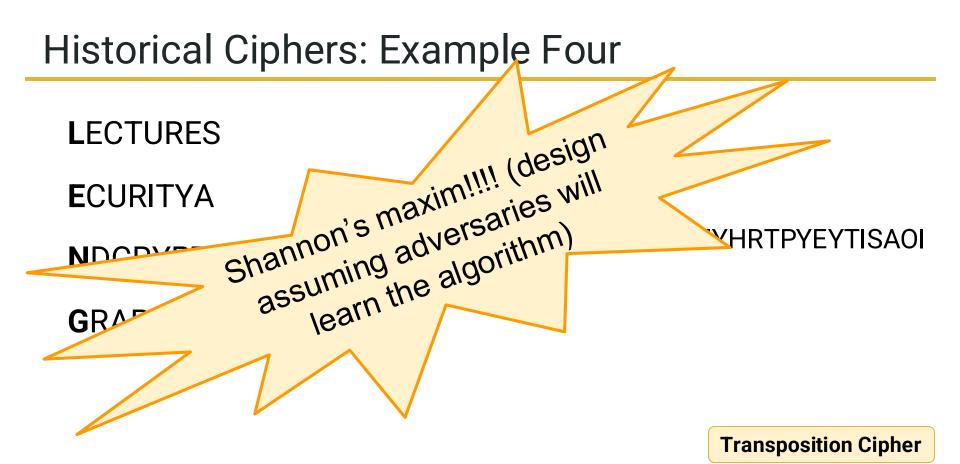
Message: SECURITY

Ciphertext: CIAEVGDC

Poly-Alphabetic Substitution Cipher

Historical Ciphers: Example Three – Vigenère

Historical Ciphers: Example Four


LECTURE SECURITY AND CRYPTOGRAPHY II

LENGECDRCUCATRRPUIYHRTPYEYTISAOI

Historical Ciphers: Example Four

Transposition Cipher

Kerckhoff's Principle

- **Kerckhoff's principle**: a cryptosystem should be secure, even if everything about the system, except the key, is public knowledge.
 - The system is at most as secure as the number of keys(shortcuts to finding the key)

Kerckhoff's Principle

- Shannon's maxim: we should design systems under the assumption that the enemy will immediately gain full familiarity with them.
 - Don't use "secret" encryption methods (security by obscurity)
 - Have public algorithms that use a secret key as input (easier to change the key than the whole system)

Vernam Cipher

• Encrypts one bit at a time by XOR'ing the plaintext with the key:

- Plaintext (t bits): $M = [m_1, m_2, ..., m_t]$
- Key (t bits): K = $[k_1, k_2, ..., k_t]$
- Ciphertext (t bits): C = $[c_1, c_2, ..., c_t] = [m_1, m_2, ..., m_t] \oplus [k_1, k_2, ..., k_t]$
- XOR reminder:

0⊕0=0	0⊕1=1	1⊕0=1	1⊕1=0										
Q: How do we decrypt ?													

A:
$$[m_1, m_2, ..., m_t] = [c_1, c_2, ..., c_t] \oplus [k_1, k_2, ..., k_t]$$

○ If K is randomly chosen and never reused, Vernam cipher is called One-Time Pad

One-time Pad

- Vernam cipher: $C = M \oplus K$
- If K is randomly chosen and never reused, Vernam cipher is called One-Time Pad
 - This provides Information-Theoretic security (The key must be truly random \neq PRG).

Q: Why does "trying every key" not work here?

A: Because, given a ciphertext C, for every possible message M, there exist a key K that could have generated that ciphertext.

Well, this sucks for me...

Q: What happens if we use the same key K (therefor, same keystream) ?

Ciphertext₁ = Message₁ \oplus K = 2c1549100043130b1000290a1b

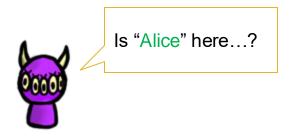
 $Ciphertext_2 = Message_2 \oplus K = 3f16421617175203114c020b1c$

Hmmm... how can I relate these messages together?

A: We can XOR the ciphertexts: $C_1 \oplus C_2 = (M_1 \oplus K) \oplus (M_1 \oplus K) = M_1 \oplus M_2$

 $Ciphertext_1 \oplus Ciphertext_2 =$

 $Message_1 \oplus K \oplus Message_2 \oplus K =$


 $Message_1 \oplus Message_2 = 13030b0617544108014c2b0107$

 $Message_1 \oplus Message_2 = 13030b0617544108014c2b0107$

Suppose Message₁ starts with "Alice" (416C696365)

• Message₂ seems to start with readable text ("Rober")

$Message_1 \oplus Message_2 = 13030b0617544108014c2b0107$

Suppose It starts with "Alice and Bob" (416C69636520616E6420426F62)

• Message₂ is fully readable now ("Rober feline")

Messages are not purely random!

- A "two-time pad" is insecure!
- The key must never be used more than once
- The key must be as long as the message

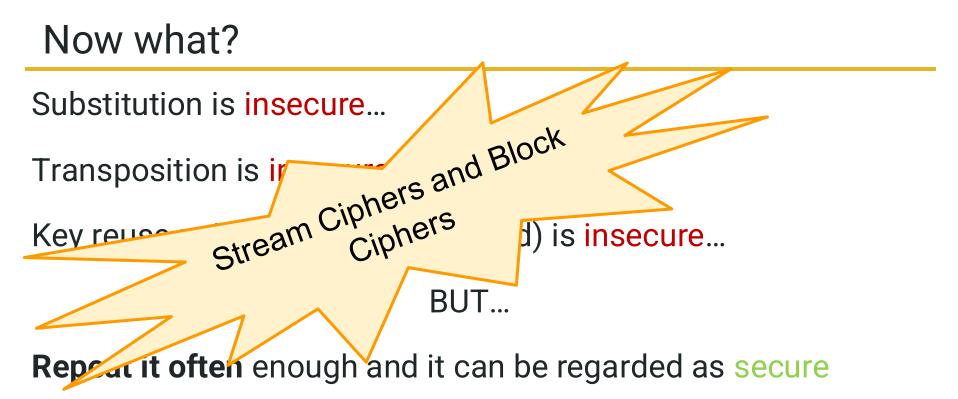
CS459 Fall 2024

So...Cryptography?

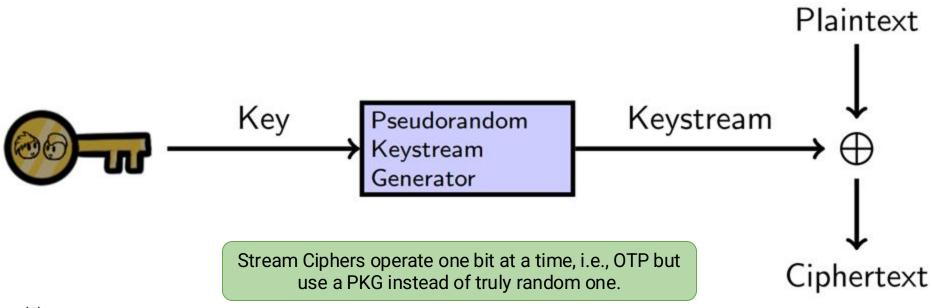
- Simple substitution/transposition is insecure
- One-Time Pad is inefficient over the secure channel
 - Keys as long as messages think about encrypting GBs of data!

Goal: Securely communicate "a lot" of information on an <u>insecure</u> channel while requiring "limited" communication over a <u>secure</u> channel

Now what?


Substitution is insecure...

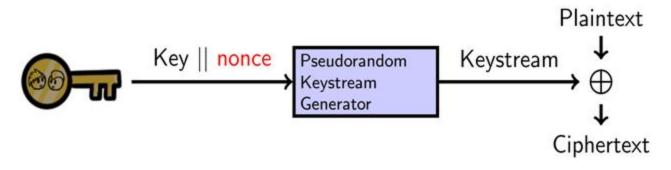
Transposition is insecure...


Key reuse using XOR (one-time pad) is insecure...

BUT...

Repeat it often enough and it can be regarded as secure

Stream Cipher?



Fun(?) Facts:

- RC4 was the most common stream cipher on the Internet but deprecated.
- ChaCha increasingly popular (Chrome and Android), and SNOW3G in mobile phone networks.

Stream Ciphers Share Conditions with OTP

- Stream ciphers can be very fast
 - This is useful if you need to send a lot of data securely
- But they can be tricky to use correctly!
 - We saw the issues of re-using a key! (two-time pad)
 - Solution: concatenate key with nonce (which <u>does not</u> need to be a secret)

Fun(?) Facts:

WEP, PPTP are great examples of how not to use stream ciphers. "Susceptible to dictionary attacks and brute-force attacks"

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

Bit by bit.... but do you have to?

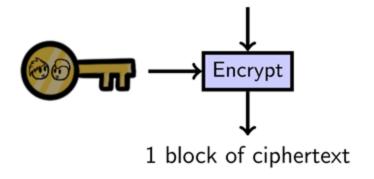
- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

A: You only change a bit in the ciphertext

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

A: You only change a bit in the ciphertext


Q: Can we do better?

Bit by bit.... but do you have to?

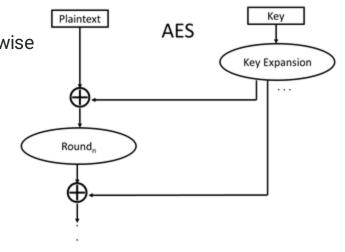
Weakness of streams...one bit at a time?
What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

A: You only change a bit in the ciphertext

Q: Can we do better?

1 block of plaintext

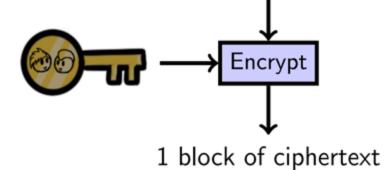
Block Ciphers !!!


Block Ciphers

• Welcome, use of block ciphers

- Block ciphers operate on the message one block at a time
- Blocks are usually 64 or 128 bits long

• AES, the current standard


• You better have a very...very good reason to choose otherwise

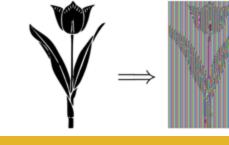
Two Catches with Block Ciphers

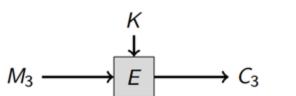
- Message is **shorter** than one block?
 - Requires padding
- Message is **longer** than a block?
 - Requires modes of operation <u><new concept></u>

1 block of plaintext

Electronic Code Book (ECB) mode

 $\rightarrow C_1$

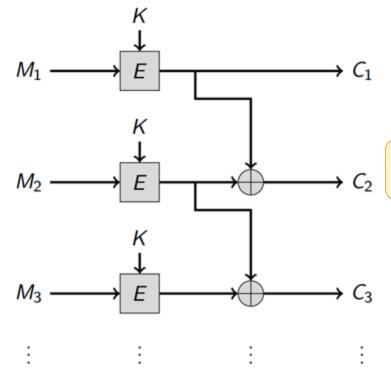

 C_2


• Encrypts each successive block separately

Q: What happens if the plaintext M has some blocks that are identical, $M_i = M_j$?

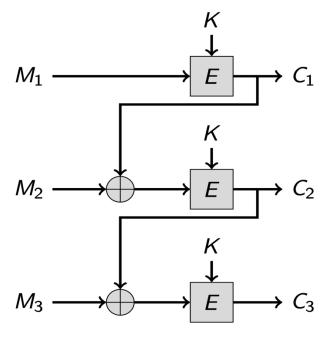
A:
$$C_i = E_K (M_i), C_j = E_K (M_j) \Rightarrow C_i = C_j$$

This reveals the pattern in the ciphertext...



Ε

Improving ECB (V_1)



 We can provide "feedback" among different blocks, to avoid repeating patterns

Q: Does this avoid repeating patterns? Are there other issues?

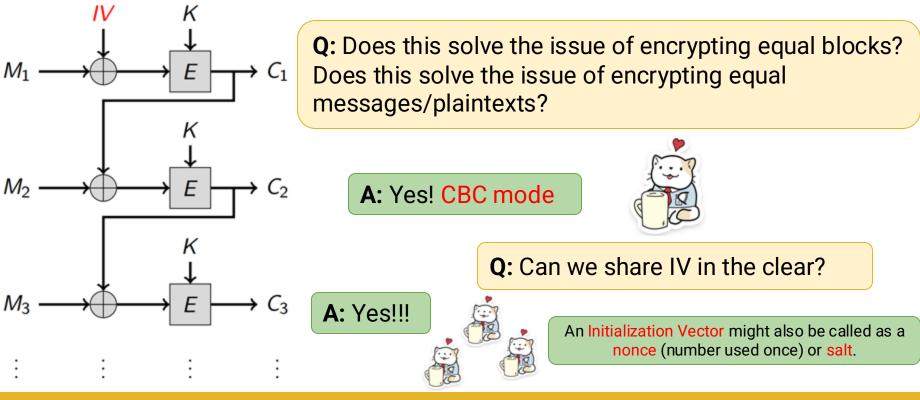
A: We can un-do the XOR <u>if we get all the</u> <u>ciphertexts</u>. This basically does not improve compared to ECB.

Improving ECB (V₂)

Q: Spot the difference?

Q: Does this avoid repeating patterns among blocks?

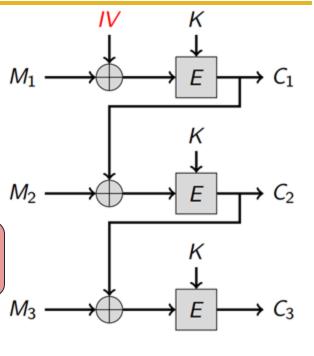
Q: What would happen if we encrypt the message twice with the same key?


A:
$$C_1 = E_K(M)$$
, $C_2 = E_K(M) \Rightarrow C_1 = C_2$

We could change the key... but there is a better way

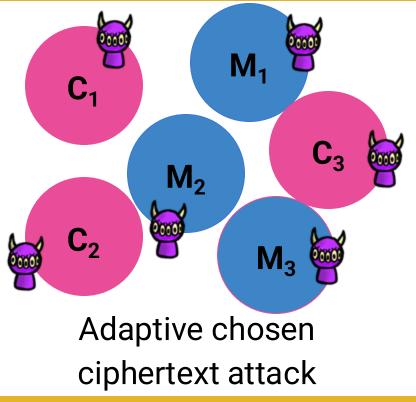
CS459 Fall 2024

Cipher Block Chaining (CBC) mode



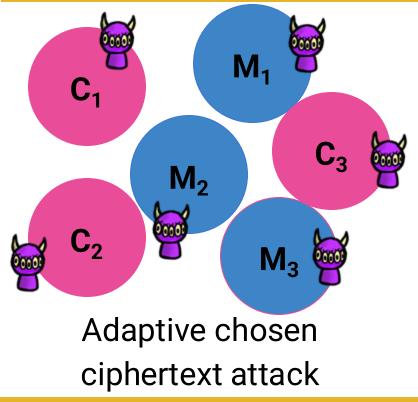
CS459 Fall 2024

CBC Recap:


- 1. Generate a secret key K
- 2. Encrypt M using K and a generated IV
- 3. Decrypt C using K and the IV to get M

Security Goal: Indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)

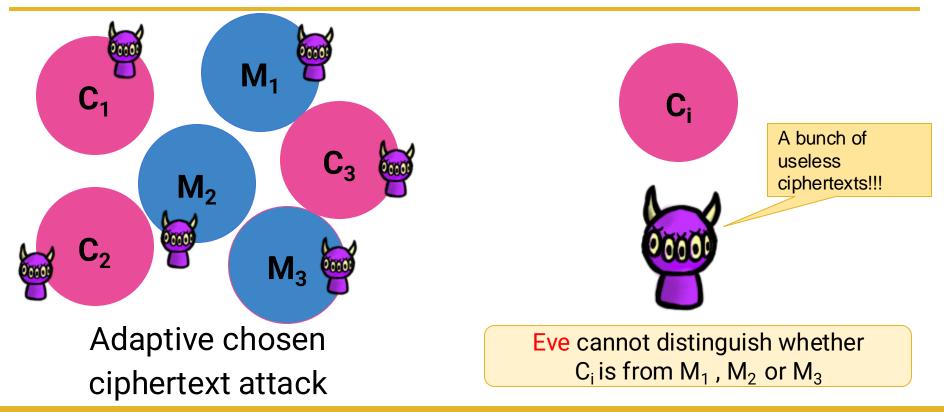
Cipher Security, IND-CCA2


Indistinguishability under Adaptive Chosen Ciphertext Attack

Eve exploits the ability to interact with the decryption oracle.

Cipher Security, IND-CCA2

Indistinguishability under Adaptive Chosen Ciphertext Attack



ACCA: Eve exploits the ability to interact with the decryption oracle.

IND-CCA: Even if Eve can choose ciphertexts to be decrypted and has access to the decrypted results, they cannot distinguish between two different plaintexts based on their ciphertexts

Cipher Security, IND-CCA2


Indistinguishability under Adaptive Chosen Ciphertext Attack

CS459 Fall 2024

Common modes of operation

- There are different modes of operation
 - O e.g., Cipher Block Chaining (CBC), Counter (CTR), and Galois Counter (GCM) modes
- Patterns in the plaintext are no longer exposed because these modes involve some kind of "feedback" among blocks.
 - But you need an IV

So...now what?

• How do Alice and Bob share the secret key?

• Meet in person; diplomatic courier...

• In general this is very hard

Or, we invent new technology!!

Spoiler Alert: it's already been invented...

Stay tuned!

Until next time...