
CS489/698

Privacy, Cryptography,

Network and Data Security

Privacy-Preserving Machine Learning

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Prologue: a couple more DP properties

2

CS489 Spring 2024

Recap on Group privacy

3

Group privacy: Let 𝑀: 𝒟 → ℛ be a mechanism that provides 𝜖-DP for 𝐷, 𝐷′
that differ in one entry. Then, it provides 𝑘𝜖-DP for datasets 𝐷, 𝐷′ that differ in

𝑘 entries.

If this is 𝜖-DP…. … then this is 2𝜖-DP

CS489 Spring 2024

Group privacy with 𝜖, 𝛿 -DP

● For approximate DP, 𝛿 gets an additional factor of 𝑘𝑒 𝑘−1 𝜖 :

4

Group privacy: Let 𝑀: 𝒟 → ℛ be a mechanism that provides (𝜖, 𝛿)-DP for

𝐷, 𝐷′ that differ in one entry. Then, it provides (𝑘𝜖, 𝑘𝑒 𝑘−1 𝜖𝛿)-DP for datasets

𝐷, 𝐷′ that differ in 𝑘 entries.

CS489 Spring 2024

Renyi Differential Privacy

● Differential privacy is a very ambitious privacy guarantee, that protects against

a worst-case adversary that potentially knows 𝐷 and 𝐷′, and for all possible

outputs of the mechanism.

● 𝜖 and 𝛿 provid a very limited and pessimistic description of the differences

between Pr(𝑀 𝐷 ∈ 𝑆) and Pr(𝑀 𝐷′ ∈ 𝑆).

● There are other relaxed notions of DP that capture other nuances between

these distributions, allowing for a tighter analysis.

○ Relaxes how much we care about the worst case (sometimes very unlikely)

○ A popular one is Renyi Differential Privacy

5

CS489 Spring 2024

Renyi Differential Privacy

● To introduce Renyi DP we need to know Renyi Divergence

● The logarithm measures how much more or less likely an event x is under P compared to Q.

(divergence is intended to measure how much information is lost when using Q(x) instead of P(x))

6

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi

divergence of order 𝛼 > 1 is

𝐷𝛼(𝑃| 𝑄 =
1

𝛼 − 1
 log𝔼𝑥∼𝑄

𝑃 𝑥

𝑄 𝑥

𝛼

=
1

𝛼 − 1
 log න

𝑥

𝑃 𝑥 𝛼𝑄 𝑥 1−𝛼 𝑑𝑥

CS489 Spring 2024

Renyi Differential Privacy

7

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi

divergence of order 𝛼 = ∞ (defined by its limit) is

𝐷∞(𝑃| 𝑄 = sup
𝑥

 log
P 𝑥

𝑄 𝑥
= log max

𝑥

P 𝑥

𝑄 𝑥

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi

divergence of order 𝛼 = 1 is the Kullback-Leibler divergence

𝐷1(𝑃| 𝑄 = 𝔼𝑥∼𝑃log
P 𝑥

𝑄 𝑥
= න

𝑥

𝑃 𝑥 log
P 𝑥

𝑄 𝑥
 𝑑𝑥

(note that 𝑥 ∼ 𝑃 in the expectation)

CS489 Spring 2024

Renyi Differential Privacy – DP connection

8

• Recall that, when 𝛼 = ∞, then the divergence (defined by its limit) is:

𝐷∞(𝑀(𝐷)| 𝑀(𝐷′) = sup
𝑥

 log
Pr(𝑀 𝐷 ∈ 𝑥)

Pr(𝑀 𝐷′ ∈ 𝑥)

• In that case, it is easy to see that 𝜖, ∞ -RDP is equivalent to 𝜖-DP

Renyi DP: a mechanism 𝑀: 𝒟 → ℛ is (𝜖, 𝛼)-RDP (also read as “𝜖-RDP of

order 𝛼”) if, for any neighboring datasets 𝐷, 𝐷′ it holds that

𝐷𝛼(𝑀(𝐷) 𝑀 𝐷′ ≤ 𝜖

CS489 Spring 2024

Renyi Differential Privacy: Properties

9

RDP Sequential Composition: if 𝑀1 is (𝛼, 𝜖1)-RDP and 𝑀2 is (𝛼, 𝜖2)-RDP,

then the sequential composition 𝑀1, 𝑀2 satisfies (𝛼, 𝜖1 + 𝜖2)-RDP

RDP to DP: if 𝑀 is (𝛼, 𝜖)-RDP, then it is also 𝜖 +
log

1

𝛿

𝛼−1
, 𝛿 -DP

CS489 Spring 2024

Renyi Differential Privacy: Example

10

Let's consider the following probability distributions:

• P={P(x1) = 0.6, P(x2) = 0.4}; Q={Q(x1) =0.5, Q(x2) = 0.5}

For α = 1 (KL Divergence):

For α > 1 (e.g., α=2):

For α = ∞ :

CS489 Spring 2024

Renyi Differential Privacy: Example

11

Let's consider the following probability distributions:

• P={P(x1) = 0.6, P(x2) = 0.4}; Q={Q(x1) =0.5, Q(x2) = 0.5}

For α = 1 (KL Divergence):

𝐷1(𝑃| 𝑄 = 𝑃 𝑥1 log
P 𝑥1

𝑄 𝑥1
+ 𝑃 𝑥2 log

P 𝑥2

𝑄 𝑥2
≈ 0.1092 − 0.0892 = 0.02

For α > 1 (e.g., α=2):

𝐷2(𝑃| 𝑄 =
1

2 − 1
 log 𝑃 𝑥1

2 𝑄 𝑥1
0 + 𝑃 𝑥2

2 𝑄 𝑥2
0 = log 0.36 + 0.16 ≈ −0.653.

For α = ∞ :

𝐷∞(𝑃| 𝑄 = log max
𝑥

P 𝑥

𝑄 𝑥
≈ 0.182 For x1

0.6

0.5
= 1.2 For x2

0.4

0.5
= 0.8

CS489 Spring 2024

Many other variations…

● An SOK from

2020

12

https://petsymposium.org/popets/2020/popets-2020-0028.pdf

Primer on Machine Learning

13

CS489 Spring 2024

Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

14

CS489 Spring 2024

Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

● We want to produce a function 𝑓: 𝒳 → 𝒴 that can predict a sample’s label from its

features.

15

CS489 Spring 2024

Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

● We want to produce a function 𝑓: 𝒳 → 𝒴 that can predict a sample’s label from its

features.

● We will use the training set to train such a function. Ideally, it should correctly

predict labels for unseen samples (e.g., samples in a testing set).

○ We will say that a model generalizes well if it has high accuracy on unseen samples

○ A model overfits if it works perfectly for samples in the training set but does not generalize.

16

CS489 Spring 2024

Machine learning: quick primer

Train

𝐷

𝑥𝑖 , 𝑦𝑖

𝑓

𝑥

𝑦=“Dog”

Usually, this gives confidence scores for each class: (ො𝑦1, ො𝑦2,…, ො𝑦𝑘)

For example: [“Dog”, “Cat”, “Mouse” …]=[0.81, 0.10, 0.03, …]

17

CS489 Spring 2024

Neural networks

● There are many architectures for machine learning models (i.e., many

structures for the function 𝑓).

● One of the most popular are neural networks.

𝑥𝑖

𝑥𝑖,1
𝑥𝑖,2

𝑥𝑖,𝑑

Multiply by

a weight w

∑()+b act()

Sum, add bias term b

Activation function

(we want this non-linear)
(More layers)

Training the model means tuning all w’s and b’s

ො𝑦2

ො𝑦1

ො𝑦𝑘

18

CS489 Spring 2024

Loss Functions

● We define a loss function that we want to minimize: ℓ(𝜃, 𝑥, 𝑦), where 𝜃 are the

parameters w and b.

○ For example, a typical loss function is ℓ 𝜃, 𝑥, 𝑦 = ∑𝑗 −𝑦𝑗 log ො𝑦𝑗 where 𝑦𝑗 is only 1 for the

true label of the sample, 𝑗.

ℓ 𝜃, 𝑥, 𝑦 =

𝑗

−𝑦𝑗 log ො𝑦𝑗

1.0

0.0

0.0

0.7

0.2

0.1

𝑦
ො𝑦 = 𝑓Θ(𝑥). Predictions or model output

19

CS489 Spring 2024

Training neural networks

𝑥𝑖

𝑥𝑖,1
𝑥𝑖,2

𝑥𝑖,𝑑

w

∑()+b act()

(More layers)

• Since we have the training set 𝐷,

it makes sense to minimize the

empirical loss in this training set:

ℒ 𝜃, 𝐷 =
1

𝑁

𝑖

ℓ 𝜃, 𝑥𝑖 , 𝑦𝑖

• In practice, the minimization is

done using Stochastic Gradient

Descent (SGD).

ො𝑦2

ො𝑦1

ො𝑦𝑘

20

CS489 Spring 2024

Gradient Descent

● The gradient of the loss ∇ℓ(𝜃, 𝑥, 𝑦) evaluated at (𝑥, 𝑦) is the derivative with

respect to each parameter 𝜃𝑖 (every w and b).

● It tells us the direction in which 𝜃 should go to minimize the loss (for sample

(𝑥, 𝑦)).

ℓ(𝜃, 𝑥, 𝑦)

𝜃

Minimal Loss

21

CS489 Spring 2024

Gradient Descent

● We could minimize the loss by running several steps (epochs) of Gradient

Descent:

○ For each step 𝑡 ∈ [𝑇]:

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇ℒ(𝜃𝑡−1, 𝐷)

○ 𝜂 is the learning rate

● This is expensive, so usually we do these iterations over a subset of the training

sets (batches)

● Note 𝜃 represents parameters, 𝜂 and 𝑇 are hyper-parameters

22

CS489 Spring 2024

Stochastic Gradient Descent – with Mini Batches

For each training step 𝑡 ∈ [𝑇]:

1. Take a batch 𝐵 of 𝐿 samples from 𝐷

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔

23

Inference Attacks in ML

24

CS489 Spring 2024

Attacking ML models

Train

Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Evasion attacks

Model stealing attacks

Poisoning attacks

(targeted, untargeted,

backdoors)

Whitebox: adversary sees the

parameters 𝜃
Blackbox: adversary is only allowed

to send queries

● There are many types of attacks against ML

● Later we will see that there are also different types

of defenses

25

CS489 Spring 2024

Attacking ML models in Federated Learning

Inference Attacks:

(adv sees all intermediate

gradients, can potentially

send malicious 𝜃)

- Membership inference

- Attribute inference

- Property inference

- …

Poisoning

attacks

(targeted,

untargeted,

backdoors)

● Federated Learning: a centralized server builds a model, a set of clients send

updates (gradients) using their local datasets

26

CS489 Spring 2024

Inference attacks

Train

?
Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Membership Inference:

Is a given sample in the

training set?

Attribute Inference:

Given a sample with

some missing attributes,

can we guess them?

Property Inference:

Given a property about

the whole training set,

can we guess if it’s true

or not?

Model inversion:

Given a label, can we find a

representative element of

this class? (learn 𝑥 from 𝑦)

27

CS489 Spring 2024

Inference attacks

Train

?
Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Membership Inference:

Is a given sample in the

training set?

Attribute Inference:

Given a sample with

some missing attributes,

can we guess them?

28

Property Inference:

Given a property about

the whole training set,

can we guess if it’s true

or not?

Model inversion:

Given a label, can we find a

representative element of

this class? (learn 𝑥 from 𝑦)

CS489 Spring 2024

● Given a sample (𝑥, 𝑦), and a model 𝑓 trained with dataset 𝐷, guess whether 𝑥, 𝑦 ∈

𝐷.

● With only black-box access, and a model that outputs confidence scores:

○ 𝑓 𝑥 = [ො𝑦1, ො𝑦2, … , ො𝑦𝑘], where ො𝑦𝑗 are confidence scores for label 𝑗.

Membership Inference Attacks (MIAs)

Train

𝐷
𝑓

Black-box: the adversary queries

the model (possibly more than once)

White-box: the adversary sees the

model parameters 𝜃

Q: If you were the adversary, with a target sample (𝑥, 𝑦) and black-box access to the

model 𝑓, how would you guess if the target sample is a member?

29

CS489 Spring 2024

Threshold Attacks

● Idea: the model will be more confident on samples it has seen during training.

Threshold attack

● This attack queries the model on sample 𝑥 and then measures the confidence score assigned to

its true label 𝑦.

● If the confidence score is above some threshold, then the attack decides the sample is a member.

Yeom et al. "Privacy risk in machine learning: Analyzing the connection to overfitting." CSF, 2018.

Train

𝐷 𝑓 𝑥

𝑓(𝑥)

If 𝑓 𝑥 𝑦 > 𝑇, then

(𝑥, 𝑦) is a member!

Q: how can the attacker compute this threshold?

30

CS489 Spring 2024

Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

31

CS489 Spring 2024

Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

● The first NN-based attack (which was also the first MIA) was proposed by

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓𝑡𝑎𝑟 Assumption: the adversary can

generate data with a similar

distribution as 𝐷.

Target model (adv has

black-box access)

Training dataset

(unknown to adv)

32

CS489 Spring 2024

Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

● The first NN-based attack (which was also the first MIA) was proposed by

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓𝑡𝑎𝑟 Assumption: the adversary can

generate data with a similar

distribution as 𝐷.

Target model (adv has

black-box access)

Training dataset

(unknown to adv)

33

Q: how realistic is this?

CS489 Spring 2024

Shokri et al.’s attack

1. Generate shadow training datasets 𝐷𝑠1, 𝐷𝑠2, …, 𝐷𝑠𝑘(based on D’ with distribution similar to 𝐷).

2. Train 𝑘 shadow models 𝑓𝑠1, … , 𝑓𝑠𝑘 (same classification task as the target model ”AWS MLaaS”).

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷𝑠1

𝐷𝑠𝑘

𝑓𝑠1

𝑓𝑠𝑘

34

CS489 Spring 2024

Shokri et al.’s attack

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷𝑠1

𝐷𝑠𝑘

𝑓𝑠1

𝑓𝑠𝑘

35

Works even with different

models! (but better if you

know the actual one)

1. Generate shadow training datasets 𝐷𝑠1, 𝐷𝑠2, …, 𝐷𝑠𝑘(based on D’ with distribution similar to 𝐷).

2. Train 𝑘 shadow models 𝑓𝑠1, … , 𝑓𝑠𝑘 (same classification task as the target model ”AWS MLaaS”).

CS489 Spring 2024

Shokri et al.’s attack

3. Generate shadow test data ෩𝐷𝑠1, ෩𝐷𝑠2,…, ෩𝐷𝑠𝑘.

4. For each shadow model 𝑖 ∈ [𝑘]: get the confidence scores for each sample in 𝐷𝑠𝑖 and ෩𝐷𝑠𝑖 .

Create a dataset with [confidence scores, true label, membership] for each sample.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓𝑠𝑖𝐷𝑠𝑖

෩𝐷𝑠𝑖 [confidence scores, true label, non-member]

[confidence scores, true label, member]

36

CS489 Spring 2024

Shokri et al.’s attack

5. With the new dataset, that contains [confidence scores, true label, membership status]

computed with all the shadow models, train a new attack model 𝑓𝑎𝑡𝑡 to predict the

membership status from [confidence scores, true label]

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑥=[confidence scores, true label], 𝑦=[member/non-member]

Train

𝑓𝑎𝑡𝑡
This model is a binary

classifier that receives

conf. scores and true

label, and returns

member/non-member

37

CS489 Spring 2024

Shokri et al.’s attack

6. Get the confidence scores of the target sample in the target model 𝑓𝑡𝑎𝑟.

7. Evaluate those [confidence scores, true label] samples in the attack model 𝑓𝑎𝑡𝑡.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓𝑎𝑡𝑡

Train

𝐷
𝑓𝑡𝑎𝑟 𝑥

𝑓𝑡𝑎𝑟(𝑥)

(𝑓𝑡𝑎𝑟 𝑥 , 𝑦)

membership

prediction

38

CS489 Spring 2024

Shokri et al.’s attack

𝑓𝑎𝑡𝑡

Train

𝐷
𝑓𝑡𝑎𝑟 𝑥

𝑓𝑡𝑎𝑟(𝑥)

(𝑓𝑡𝑎𝑟 𝑥 , 𝑦)

membership

prediction

39

The higher the discrepancy between training and testing

accuracy

→ The more likely membership inference attack can

happen.

CS489 Spring 2024

Attribute Inference Attacks

● Each sample is 𝑧 = (𝑥, 𝑎, 𝑦), where 𝑥 is the features, 𝑎 is a privacy-sensitive attribute, and 𝑦 is

the label.

● The adversary has a sample 𝑧 = (𝑥, ? , 𝑦), and wants to learn the attribute.

● Assume the space of all attributes is 𝒜 = {𝑎1, 𝑎2, … , 𝑎𝑚}

● Simple attack: query for all possible samples (𝑥, 𝑎1), …,(𝑥, 𝑎𝑚).

→ The true attribute is probably the one that yields a highest confidence score for the true

class 𝑦.

Train

𝐷 𝑓 (𝑥, 𝑎𝑖)

𝑓((𝑥, 𝑎𝑖))

Ƹ𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑓 𝑥, 𝑎𝑖 𝑦

40

CS489 Spring 2024

Defending against inference attacks

● Where do we defend?

Train

Input: add noise to inputs,

generate synthetic training data,

etc.

Model: add noise to the model

weights

Output: add noise to the outputs of the model

(this only works in the black-box setting)Training: add noise to the

gradients or the loss function.

41

Defenses against inference attacks

42

CS489 Spring 2024

Differentially Private Stochastic Gradient Descent

(DP-SGD)
● Adds privacy during the training step, modifying SGD.

● Recall Differential Privacy: we want to limit the effect that a single training set sample has on

the output (the “output” of the training algorithm is the “model!”)

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

“Private” SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients and add

noise 𝑔 =
1

𝐿
(∑𝑖 𝑔𝑖 + 𝒩 0, 𝜎2).

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

Q: Is it enough to add noise to the gradients?

43

CS489 Spring 2024

Differentially Private Stochastic Gradient Descent

(DP-SGD)
● The gradient could potentially be unbounded → Here, unbounded sensitivity is bad for

DP(Algorithm is highly sensitive to individual data points)

● We clip the gradients to ensure their ℓ2 norm is at most 𝐶.

○ 𝐶 is the clipping threshold (1 is usually a good value)

○ 𝐶 is independent of the data

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

44

CS489 Spring 2024

Differentially Private Stochastic Gradient Descent

(DP-SGD)
● The gradient could potentially be unbounded → Here, unbounded sensitivity is bad for DP

● We clip the gradients to ensure their ℓ2 norm is at most 𝐶.

○ 𝐶 is the clipping threshold (1 is usually a good value)

○ 𝐶 is independent of the data

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

45

CS489 Spring 2024

DP-SGD: keeping track of 𝜖, 𝛿

● Note that a single sample will participate in

multiple training steps → there will be some

sequential composition involved.

● We need to keep track of 𝝐, 𝜹.

● For a fixed amount of noise 𝜎, if we do not keep

track of 𝜖, 𝛿, we can end up with a very large 𝜖,

which is bad.

○ The actual true 𝜖 will be smaller than the 𝜖 we can

compute theoretically. – e.g., due to batching, one

sample may not appear in a given training step.

○ We can only guarantee an 𝜖 we can prove w/

theory.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

46

CS489 Spring 2024

DP-SGD: keeping track of 𝜖, 𝛿

● First, we choose a 𝛿. Recall that this

should be smaller than 𝛿 <
1

𝑁
.

○ The reason is the following:

a training algorithm that simply publishes a

random training set record would provide

(𝜖 = 0, 𝛿 = 1/𝑁)-DP.

However, we know this is not private

enough.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

47

CS489 Spring 2024

DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each

sample in 𝐷 is used once per training

step, what is the total 𝜖 we get?

• Use naive composition

48

Δ2
2 = 𝐶2 : second-order sensitivity

Typically refers to the maximum L₂ norm of the gradients,

and it is directly related to the gradient clipping bound

CS489 Spring 2024

DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each

sample in 𝐷 is used once per training

step, what is the total 𝜖 we get?

• Use naive composition

A: 𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2 → 𝜖𝑠𝑡𝑒𝑝 = 2 ln
1.25

𝛿
𝐶2/𝜎2

for each step. Then naïve composition gives

𝜖𝑡𝑜𝑡𝑎𝑙 = 𝑇. 𝐶/𝜎 2 ln
1.25

𝛿

*Note: this question is very over simplified

49

CS489 Spring 2024

DP-SGD: keeping track of 𝜖, 𝛿
● Renyi Differential Privacy (RDP) provides a tighter

𝜖, 𝛿 bound.

○ Better suited to Gaussian Noise

○ Keeps track of more information

● This means that, for a given 𝜎, 𝐶, and 𝛿, RDP tells

us our actual 𝜖 is smaller than what Advanced

Composition (AC) tells us.

● In other words, for a target privacy budget 𝜖, using

RDP we need to add less noise than using AC.

○ E.g., again, because a sample may be excluded from a

given training step

● Note that, even with RDP, we need 𝜖 > 100 if we

do not want any accuracy loss

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.

50

zCDP: Zero-Concentrated Differential Privacy
NC: Noise-Contrastive privacy
AC: Approximate Composition

CS489 Spring 2024

DP-SGD: theoretical vs empirical privacy

● Both attacks we’ve seen perform similarly

● It seems that 𝜖 = 100 or even 𝜖 = 1000 still provides good empirical privacy

● The theoretical bound “worst-case” on the privacy leakage provided by DP is very loose

“overestimates the actual risk”.

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.

51

CS489 Spring 2024

Issues of DP-SGD

● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually

lose all utility.

● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve

reasonable utility.

● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against

existing attacks.

Q: Is it OK to use 𝜖 = 100?

52

CS489 Spring 2024

Issues of DP-SGD

● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually

lose all utility.

● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve

reasonable utility.

● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against

existing attacks.

Q: Is it OK to use 𝜖 = 100?

A: It might be OK to use DP-SGD tuned to 𝜖 = 100, but at that point we might as well use

defenses that do not provide DP, since the DP guarantee is already meaningless at that point.

53

CS489 Spring 2024

Private Aggregation of Teacher Ensembles

(PATE)
1. Train teacher models with disjoint subsets of the training data

2. Use the teachers to label some (incomplete) public data

3. Use the labeled public data to train a student model

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017

54

CS489 Spring 2024

Private Aggregation of Teacher Ensembles

(PATE)

● For a sample from the incomplete public data Ԧ𝑥, let 𝑛𝑗(Ԧ𝑥) be the number of teachers that voted for label 𝑗.

● Instead of labeling by taking 𝑎𝑟𝑔𝑚𝑎𝑥𝑗{𝑛𝑗 Ԧ𝑥 }, we can add Laplacian noise to provide DP:

𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑛𝑗 Ԧ𝑥 + 𝐿𝑎𝑝
1

𝛾

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017

55

CS489 Spring 2024

Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses

whether a

sample is “real”

or “fake”)

𝒩(0, 𝜎)

𝐷

56

If we train the GAN

using privacy-preserving

training algorithms (e.g.,

DP-SGD on the

discriminator), we can

use it to generate a

privacy-preserving

synthetic dataset!

CS489 Spring 2024

Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses

whether a

sample is “real”

or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN

using privacy-preserving

training algorithms (e.g.,

DP-SGD on the

discriminator), we can

use it to generate a

privacy-preserving

synthetic dataset!

Q: What can we do with

the resulting dataset?

57

CS489 Spring 2024

Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses

whether a

sample is “real”

or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN

using privacy-preserving

training algorithms (e.g.,

DP-SGD on the

discriminator), we can

use it to generate a

privacy-preserving

synthetic dataset!

Q: What can we do with

the resulting dataset?

A: Anything!

58

CS489 Spring 2024

Other defenses

● There are defenses that add noise to the confidence scores (MemGuard [Jia

et al.]), but are not very effective.

● MIAs can work even if the model just leaks the predicted label (and not the

confidence scores)

● Sometimes, generalization is a good defense by itself:

○ A well-generalized model will perform similarly in members (training set) and non-

members (testing set)

○ Therefore, it will be harder for an adversary to decide whether a sample is a member or

non-member if the model generalizes well.

○ Generalization is also good for utility (improves test accuracy), so it’s a win-win.

59

