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Prologue: a couple more DP properties




Recap on Group privacy

Group privacy: Let M: D - R be a mechanism that provides e¢-DP for D, D’

that differ in one entry. Then, it provides ke-DP for datasets D, D’ that differ in
k entries.

If this is e-DP.... ... then this is 2¢-DP

Pr(M (D) = R) @ e Pr(M(D) = R)
Q—= , . = = P
.

Pr(M(D') = R) Pr(M(D') = R)
e—g. . -
D R - D' R
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Group privacy with (e,6)-DP

. For approximate DP, & gets an additional factor of ke(x~1)€ :

Group privacy: Let M: D — R be a mechanism that provides (€, §)-DP for

D, D' that differ in one entry. Then, it provides (ke, ke *~1€5)-DP for datasets
D, D' that differ in k entries.
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Renyi Differential Privacy

Differential privacy Is a very ambitious privacy guarantee, that protects against
a worst-case adversary that potentially knows D and D', and for all possible
outputs of the mechanism.

e and § provid a very limited and pessimistic description of the differences
between Pr(M(D) € S) and Pr(M(D') € §).

There are other relaxed notions of DP that capture other nuances between

these distributions, allowing for a tighter analysis.
Relaxes how much we care about the worst case (sometimes very unlikely)
A popular one is Renyi Differential Privacy
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Renyi Differential Privacy

To introduce Renyi DP we need to know Renyi Divergence

Renyi Divergence: given two probability distributions P and Q, the Renyi
divergence of order o > 1 is

Da(P”Q) —

a—1 a—1

p(x)>“ ~

logE, - (Q(x) log f P(x)*Q(x)1%dx

X

The logarithm measures how much more or less likely an event x is under P compared to Q.
(divergence is intended to measure how much information is lost when using Q(X) instead of P(x) )

CS489 Spring 2024



Renyi Differential Privacy

Renyi Divergence: given two probability distributions P and Q, the Renyi
divergence of order o = oo (defined by its limit) is

i P
D.o(PIIQ) = sup log (&’3)) - log (mf‘x Q((»;)))

Renyi Divergence: given two probability distributions P and Q, the Renyi
divergence of order o = 1 is the Kullback-Leibler divergence

D, (P|IQ) = IEx~p108(P(x)> = f P(x)108<P(x)) dx

Q)

(note that x ~ P In the expectation)
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Renyi Differential Privacy — DP connection

Renyi DP: a mechanism M:D — R is (¢, a)-RDP (also read as “e-RDP of
order a”) if, for any neighboring datasets D, D’ it holds that
Do, (M(D)|M(D")) < €

« Recall that, when a = o, then the divergence (defined by its limit) is:

Pr(M(D
Do, (M(D)||M(D")) = SUPb log (P:((M((D’)) :3))

* |n that case, it is easy to see that (¢, ©)-RDP is equivalent to e-DP
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Renyi Differential Privacy: Properties

RDP Sequential Composition: if M; is (a, €,)-RDP and M, Is (a, €;,)-RDP,
then the sequential composition (M,, M,) satisfies («a,€; + €,)-RDP

loo( X
RDP to DP: if M is (a, €)-RDP, then it is also (e + Og(‘S),(S)-DP

a—1
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Renyi Differential Privacy: Example

Let's consider the following probability distributions:
* P={P(xy) = 0.6, P(x,) = 0.4}; Q={Q(x,) =0.5, Q(x;) = 0.5}

For a = 1 (KL Divergence):

For o > 1 (e.g., a=2):

Foro = oo




Renyi Differential Privacy: Example

Let's consider the following probability distributions:
* P={P(x,) = 0.6, P(x;) = 0.4}; Q={Q(x,) =0.5, Q(x;) = 0.5}

For a =1 (KL Dlvergence)
D,(P||Q) = P(x1)10g< < 1)> + P(xz)log(P(x2)> ~0.1092 - 0.0892 = 0.02

Q(x1) Q(x3)
Fora>1 (e.g, 0{=2):
Dz(PHQ) = 5

—1

Foro = o

Do, (P||Q) = log (maxﬁ) 0.182 For x, ( :) 1.2 For x, (%) = 0.8
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log (P(x1)? Q(x1)° + P(x,)? Q(x,)%) =1o0g(0.36 + 0.16) = —-0.653.
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Many other variations...

An SOK from
2020

(D, t,e)-per-instance DP [162]

(©, e, d)-active PK DP [11, 14, 35]

Name & references ‘

(R, £)-generic DP [105]

(©, e, d)-passive PK DP [35]

(€, 9)-approximate DP [52] (G, T, e)-blowfish Pr [84, 86]

(©, ®, e)-pufferfish Pr [106]

(¢, 8)-probabilistic DP [20, 124, 127] e-adjacency-relation div. DP [97]

(©, g, d)-distribution Pr [98]

-Kullback-Leiber Pr [9, 31
s-Kullback-Letber Pr [, 31] W-personalized DP [59, 76, 94, 118]

(d, ©, g)-extended DnPr [98]

(o, £)-Rényi DP [128] U-tailored DP /e(-)-outlier Pr [120]

(f, ©, e)-divergence DnPr [97]

e-mutual-information DP [31] (x, v, €)-random DP [83]
v fr =)

(d, f, ©, e)-ext. div. DnPr [97]

(i, T)-mean concentrated DP [58] dp-Pr [22]

(©, e)-positive membership Pr [114]

(€, p)-zero concentrated DP [19] (g, v)-distributional Pr [141, 177]

(©, e, d)-adversarial Pr [139]

(f,€)-divergence DP [9] (e(-), 6(+))-endogenous DP [107]

(O, €)-aposteriori noiseless Pr [14]

s-unbounded DP [105] (dp, e, §)-pseudo-metric DP [36]

e-semantic Pr [69, 96]

e-bounded/attribute/bit DP [105] (6, ¢,~, 8)-typical Pr [10]

(Agg, €)-zero-knowledge Pr [72]

(e, &)-group DP [49] (©, g)-on average KL Pr [164]

(©,T, e)-coupled-worlds Pr [11]

e-free lunch Pr [105] (f, d, e)-extended divergence DP [97]

(©,T, e, b)-inference-based CW Pr [11]

(R, ¢, €)-dependent DP [116] (R, M)-general DP [103]

€r-SIM-computational DP [129]

(P, €)-one-sided DP [42] (©, e)-noiseless Pr [14, 44]

gr-IND-computational DP [129]

(D, €)-individual DP [149] (©, £)-distributional DP [11, 35]
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(Agg, €)-computational ZK Pr [72]



https://petsymposium.org/popets/2020/popets-2020-0028.pdf

Primer on Machine Learning
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Machine learning: quick primer

o For simplicity, we will focus on a classification problem with supervised learning.
Unsupervised or Reinforcement learning are other types

e We have a training set D = {(x1,y1), (x2,¥>), ..., (x5, ¥,)} With n samples. Given a
sample (x;,y;), x; are the features and y; is its label.




Machine learning: quick primer

e For simplicity, we will focus on a classification problem with supervised learning.
Unsupervised or Reinforcement learning are other types

e We have a training set D = {(xq,y1), (x2,¥>), ..., (x5, ¥,)} With n samples. Given a
sample (x;,y;), x; are the features and y; is its label.

« We want to produce a function f: X — Y that can predict a sample’s label from its
features.
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Machine learning: quick primer

For simplicity, we will focus on a classification problem with supervised learning.
Unsupervised or Reinforcement learning are other types

We have a training set D = {(x4, v1), (x5, V5), ..., (x,, y»,) } with n samples. Given a
sample (x;,y;), x; are the features and y; is its label.

We want to produce a function f: X — Y that can predict a sample’s label from its
features.

We will use the training set to train such a function. ldeally, it should correctly

predict labels for unseen samples (e.g., samples in a testing set).
We will say that a model generalizes well if it has high accuracy on unseen samples
A model overfits if it works perfectly for samples in the training set but does not generalize.
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Machine learning: quick primer

p f
(x, y1) ﬂ —) Train —> |
y="Dog"

Usually, this gives confidence scores for each class: (34, V5,...,
For example: [‘Dog”, “Cat”, “Mouse” ...]=[0.81, 0.10, 0.03, ...]

CS489 Spring 2024
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Neural networks

e There are many architectures for machine learning models (i.e., many
structures for the function f).
e One of the most popular are neural networks.

—xi’l Sum, add bias term b A
Xi2 @—* >@ @
Activation function O (More layers) O Y2
xi = (we want this non-linear)
Multiply by O @9,
a weight w
Xid

Training the model means tuning all w’s and b’s
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| 0SS Functions

e We define a loss function that we want to minimize: £(60, x,y), where 6 are the
parameters w and b.

- For example, a typical loss function is £(8,x,y) = % ; —y;logy; where y; is only 1 for the
true label of the sample, j.

y = fo(x). Predictions or model output




Training neural networks

« Since we have the training set D,

It makes sense to minimize the X1
empirical loss in this training set: X2 0
1 .
L(Q’ D) = Nz 1’D(H'Xii yl) X; = ® (More layers) @
i A
* |n practice, the minimization is w ® @
done using Stochastic Gradient Xiq
Descent (SGD). B

CS489 Spring 2024
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Gradient Descent

e« The gradient of the loss V£(6, x, y) evaluated at (x, y) Is the derivative with

respect to each parameter 6; (every w and b).

e lttells us the direction in which 6 should go to minimize the loss (for sample

(x,¥)).

e

Initial

weaight \

! Gradient

£(0,x,y)

Minimal Loss

CS489 Spring 2024
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Gradient Descent

e We could minimize the loss by running several steps (epochs) of Gradient
Descent:
For each step t € [T]:

0y = 0t —nVL(Ot-1,D)
n is the learning rate

e This is expensive, so usually we do these iterations over a subset of the training

sets (batches)
e Note 6 represents parameters, n and T are hyper-parameters

CS489 Spring 2024
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Stochastic Gradient Descent — with Mini Batches

For each training step t € [T]:

1.
2.

3.

Take a batch B of L samples from D
For each (x;,y;) € B, compute the gradient g; = V£(60:_1, x;,y;)

Average the gradients g = %Zigi

momentum
Descend Ht — Ht_l — T] . g é '—/_ actual step

gradient

L1Loss

= N W b~ U OO N
H N W A~ U OO N




Inference Attacks in ML




Attacking ML models

e There are many types of attacks against ML

o Later we will see that there are also different types Inference Attacks:

Membership inference
Attribute inference

of defenses

4

Poisoning attacks

(targeted, untargeted,
backdoors)

- _ Property inference
: \Y) | '
‘ ‘ odel inversion

Evasion attacks
Model stealing attacks

Whitebox: adversary sees the
parameters 6
Blackbox: adversary is only allowed
to send queries

CS489 Spring 2024
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Attacking ML models in Federated Learning

o« Federated Learning: a centralized server builds a model, a set of clients send
updates (gradients) using their local datasets

Send y Inf Attacks:
Pdate nference Attacks:
' Q = 9 mode g (adv all intermediate
Seng . — gradients, can potentially
Poisoning Idradients o — send )
attacks —

Membership inference
@ = Attribute inference

Property inference

(targeted,
untargeted,
backdoors)

0

CS489 Spring 2024
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Inference attacks

qqls* o0

Membership Inference: Attribute Inference: Property Inference:
Is a given sample in the Given a sample with Given a property about
training set? some missing attributes, the whole training set,
can we guess them? can we guess if it's true
or not?

CS489 Spring 2024

Inference Attacks:

Membership inference
Attribute inference
Property inference
Model inversion

Model inversion:

Given a label, can we find a
representative element of
this class? (learn x from y)
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Inference attacks

qqls* o0

Membership Inference: Attribute Inference: Property Inference:
Is a given sample in the Given a sample with Given a property about
training set? some missing attributes, the whole training set,
can we guess them? can we guess if it's true
or not?
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Inference Attacks:

Membership inference
Attribute inference
Property inference
Model inversion

Model inversion:

Given a label, can we find a
representative element of
this class? (learn x from y)
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Membership Inference Attacks (MIAS)

Given a sample (x,y), and a model f trained with dataset D, guess whether (x,y) €

D .

D.

f
@~ =

Black-box: the adversary queries
the model (possibly more than once)
White-box: the adversary sees the
model parameters 6

With only black-box access, and a model that outputs confidence scores:

f(y) =1[1. 9. 7. 1 where 4. are eonfidence senorec for lahel i
Q: If you were the adversary, with a target sample (x, y) and black-box access to the
model f, how would you guess if the target sample is a member?

(@]

CS489 Spring 2024
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Threshold Attacks

e Idea: the model will be more confident on samples it has seen during training.

Threshold attack

e This attack queries the model on sample x and then measures the confidence score assigned to
its true label y.

e |f the confidence score is above some threshold, then the attack decides the sample is a member.

\ Q: how can the attacker compute this threshold? ]

If f(x), > T, then
(x,y) iIs a member!

Yeom et al. "Privacy risk in machine learning: Analyzing the connection to overfitting." CSF, 2018.
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Neural Network-based Attacks

e Other MIAs use Machine Learning against Machine Learning.

| E
. W b
- = A:. '. : -otl ‘:‘-
PRINACY =
PROBLEMS IN ML
/

-

B - -~ . .
¥ - > o "‘
- y
P -
P -~ ’ oy ¢
> - Al g \/
> o
< -

gfiigies _ .
b LA gi



Neural Network-based Attacks

e Other MIAs use Machine Learning against Machine Learning.
o The first NN-based attack (which was also the first MIA) was proposed by
Shokri et al.

f tar . the adversary can
generate data with a similar

: - distribution as D.
~m-E S

D .

Training dataset Target model (adv has
(unknown to adv) black-box access)

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

CS489 Spring 2024

32



Neural Network-based Attacks

e Other MIAs use Machine Learning against Machine Learning.
o The first NN-based attack (which was also the first MIA) was proposed by
Shokri et al.
ftar

Training dataset Target model (adv has

. the adversary can
generate data with a similar

D .

distribution as D.

Q: how realistic is this?
v

(unknown to adv) black-box access)

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.
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Shokri et al.’s attack

1. Generate shadow training datasets D¢, Dy, ..., Do (based on D’ with distribution similar to D).
2. Train k shadow models f,4, ..., fsx (Same classification task as the target model "AWS MLaaS”).

fs1

D, g A Train L2 o2
O ®
O ®

Dy g ‘ Train ‘ P,

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.
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Shokri et al.’s attack

1. Generate shadow training datasets D¢, Dy, ..., Do (based on D’ with distribution similar to D).
2. Train k shadow models f,4, ..., fsx (Same classification task as the target model "AWS MLaaS”).

fs1

D, g A Train L2 o2
O ®
O ®

Dy g ‘ Train ‘ P,

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Works even with different
models! (but better if you
know the actual one)
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Shokri et al.’s attack

~

Generate shadow test data D, Ds,,..., D .

4. For each shadow model i € [k]: get the confidence scores for each sample in Dg; and D .
Create a dataset with [confidence scores, true label, membership] for each sample.

o _
get [confidence scores, true label, ]
%‘
[confidence scores, true label, non-member]

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.
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Shokri et al.’s attack

5. With the new dataset, that contains [confidence scores, true label, membership status]
computed with all the shadow models, train a new attack model f,;; to predict the
membership status from [confidence scores, true label]

fate
This model is a
that receives
—> —> conf. scores and true
label, and returns
member/non-member

x=[confidence scores, true label], y=[ /non-member]

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.
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Shokri et al.’s attack

6. Getthe confidence scores of the target sample in the target model f; ..
7. Evaluate those [confidence scores, true label] samples in the attack model f,;;.

ftar x
* v Frar (), ) .

‘ _ —
— ->. I
{——

frar(x)
membership
prediction

D

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

CS489 Spring 2024
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Shokri et al.’s attack

D

-m-E =

f tar X

(f tar (%), ¥)

fatt

frar ()
Dataset Training Testing Attack
Accuracy  Accuracy  Precision
Adult 0.848 0.842 0.503
MNIST 0.984 0.928 0.517 membershlp
Location 1.000 0.673 0.678 prediction
Purchase (2) 0.999 0.984 0.505
Purchase (10) 0.999 0.866 0.550 : : — :
Purchase (20) 1.000 0.781 0.590 The higher the discrepancy between training and testing
Purchase (50) 1.000 0.693 0.860 accuracy
Purchase (100) 0.999 0.659 0.935 - The more likely membership inference attack can
TX hospital stays 0.668 0.517 0.657 happen.
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Attribute Inference Attacks

e FEachsampleis z = (x,a,y), where x is the features, a is a privacy-sensitive attribute, and y is

the label.

e The adversary has a sample z = (x,?,y), and wants to learn the attribute.

e Assume the space of all attributes is A = {aq, a,, ..., an}

e Simple attack: query for all possible samples (x,a;), ...,(x, a,;,).
—> The true attribute is probably the one that yields a highest confidence score for the true
class y.

i = argmax; f((x» ai))y

f((x,a))

CS489 Spring 2024
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Defending against inference attacks

e Where do we defend?

] ] Model: add noise to the model
Input: add noise to inputs,

generate synthetic training data,
etc.

Output: add noise to the outputs of the model

Training: add noise to the

or the function.
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Defenses against inference attacks




Differentially Private Stochastic Gradient Descent
(DP-SGD)

e Adds privacy during the training step, modifying SGD.
e Recall Differential Privacy: we want to limit the effect that a single training set sample has on
the output (the “output” of the training algorithm is the “model!”)

[Q: Is it enough to add noise to the gradients? }




Differentially Private Stochastic Gradient Descent
(DP SGD)

The gradient could potentially be unbounded - Here, unbounded sensitivity is bad for
DP(Algorithm is highly sensitive to individual data points)

We clip the gradients to ensure their £, norm is at most C.
o  Cis the clipping threshold (1 is usually a good value)

o  Cisindependent of the data




Differentially Private Stochast'c Gradient Descent
(DP-SGD)

e The gradient could potentially be unbounded =2 \(\\o dad for DP
e We clip the gradients to ensure f *~norm;/ - e(\O\)g a“-\'\(\g
o C is the clipping threshold (1 is us ve \a(c-} ne \© (e \\\6\'
o  C is independent of the data 0\)\6 ed\(\g G(\S\) X0
. C o Y N0~ awe
“0‘(6 ‘\,‘\Ga(\\\\J\\ e(\o\\g o ce0°
. . \]O\ b\) (e ®) Ul L Sainipive woo. D.
For each training step * ) S+ s O da\a :
- ce d\e(\ R\ ) € B, compute the gradient:
1. Take a batch of© (O . AQV |
2  For ear* \‘(\G g ‘\(\6\\] g(et—l; Xi yi)
gradient: _lip the graw. 1ts: g; = g;/ max(l, ||g£||2)
gi = V£(0;- " Sum the gradients g = };; g;.
3. Averagetheco _usg = ZE ‘ Add noise:g = g + N (0, 72C?)
4. Descend =6, 1—1n"-g. . Descendf,=6, ,—n-~g.
L
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DP-SGD: keeping track of ¢, 6

o Note that a single sample will participate In
multiple training steps -> there will be some
sequential composition involved.

e We need to keep track of €, 6.
e For a fixed amount of noise o, if we do not kee
track of ¢, 6, we can end up with a very large ¢,

which iIs bad.

- The actual true € will be smaller than the € we can
compute theoretically. — e.g., due to batching, one
sample may not appear in a given training step.

- We can only guarantee an € we can prove w/




DP-SGD: keeping track of ¢, 6

e First, we choose a §. Recall that this

should be smaller than § < %

- The reason is the following:
a training algorithm that simply publishes a
random training set record would provide
(e=0,6 =1/N)-DP.
However, we know this is not private
enough.




DP-SGD: keeping track of ¢, 6

4 A

Q: Given §,0,C, T, and assuming each
sample in D is used once per training
step, what is the total € we get?

« Use naive composition

& )
f(D)+Yis (¢6)-DPif
A% = C? : second-order sensitivity Y ~N(0,0 2)
Typically refers to the maximum L, norm of the gradients, 1.25 .
and it is directly related to the gradient clipping bound g% =2In 5 A% /€?



DP-SGD: keeping track of €, 6

Q: Given §,0,C, T, and assuming each
sample in D is used once per training
step, what is the total e we get?

« Use naive composition

5
for each step. Then naive composition gives

/A: 6% =2In (1725) A5 /€% = Egrep = \/Zln (1'25) C2/o2 \

DP-SGD
For each training step t € [T]:

1. Take a batch B of L samples from D.

2. Foreach (x;,y;) € B, compute the
gradient:

8i = Vf(et—ltxii yl)
Clip the gradients: g; = g;/ max (1,

Sum the gradients g = )}, g;.
Add noise:g = g + N (0,5%C?)
Descend 6; = 6;,_; — n -%g.

2 S

|lgill,

&)

1.25
Etotal =TC/O- Zln T

Q\Iote: this question is very over simplified /
CS489 Spring 2024

f(D) + Y is (¢ 6)-DP if
Y ~N(0,0%)

1.25
0'2 — 211’1(T)A%/62
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DP-SGD: keeping track of ¢, 6

e Renyi Differential Privacy (RDP) provides a tighter

1.0
€, § bound. =
o  Better suited to Gaussian Noise . 0-8
o  Keeps track of more information § 0.6
e This means that, for a given o, C, and 6, RDP tells 504_ AC
us our actual e is smaller than what Advanced g RDP\ 2CDP\  Nc
Composition (AC) tells us. <02
e In other words, for a target privacy budget €, using 0.0 >

RDP we need to add less noise than using AC. 102 107" 10° 10" 10° 10°
. Privacy Budget (¢)
o E.g., again, because a sample may be excluded from a

given training step ZCDP: Zero-Concentrated Differential Privacy

e Note that, even with RDP, we need € > 100 if we NC: Noise-Contrastive privacy
do not want any accuracy loss AC: Approximate Composition

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.
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DP-SGD: theoretical vs empirical privacy

Both attacks we’ve seen perform similarly
It seems that € = 100 or even € = 1000 still provides good empirical privacy

The theoretical bound “worst-case” on the privacy leakage provided by DP is very loose

“overestimates the actual risk”.

0.25 , 0.25
i
[}
0.201 ; 0.20
) H o
= 1'£-DP Bound =
% 0.15 1 i % 0.15
<] ! Q
4 ! 3
20.101 / £0.10
© , R ©
2 / 7
& 0.05- / & 0.05
0.001 === 0.001 i
102 10~ 10° 10 102 103

102 107 10° 10' 102 103

Privacy Budget (€) Privacy Budget (&)

(a) Shokri et al. membership inference (b) Yeom et al. membership inference

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.

CS489 Spring 2024
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Issues of DP-SGD

e We saw that, for strong theoretical privacy (e.g., € < 1), the models usually
lose all utility.

o For very weak theoretical privacy (e.g., € = 100), some models achieve
reasonable utility.

e However, DP-SGD with e = 100 seems to provide enough protection against
existing attacks.

( Q: Isit OKto use e = 1007? ]

CS489 Spring 2024
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Issues of DP-SGD

e We saw that, for strong theoretical privacy (e.g., € < 1), the models usually
lose all utility.

o For very weak theoretical privacy (e.g., € = 100), some models achieve
reasonable utility.

e However, DP-SGD with e = 100 seems to provide enough protection against
existing attacks.

‘ Q: Isit OKto use e = 1007? J

A: It might be OK to use DP-SGD tuned to € = 100, but at that point we might as well use
defenses that do not provide DP, since the DP guarantee is already meaningless at that point.
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Private Aggregation of Teacher Ensembles
(PATE)

1. Train teacher models with disjoint subsets of the training data
2. Use the teachers to label some (incomplete) public data
3. Use the labeled public data to train a student model

Not accessible by adversary [J Accessible by adversary

/o Daaz b Teacherz % I

Segzﬁve é 'h_—H_Data 3 Teacher 3 k' Algeg;glglgie tadent 7 Queries
N « |
Teacher n complotion | [ | Public pata
| =——— Training = cecceee- P Prediction — - — - Data feeding ]

Figure 1: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model 1s trained on public data labeled using the ensemble.

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Private Aggregation of Teacher Ensembles
(PATE)

Not accessible by adversary [J Accessible by adversary

Teacher 1 \
| T Dauz e[ Teaherz 4 _—
Segzltt;ve é ‘[ Data3 | Teacher3 |/V Alggggﬁgre Student  <q- - Queries
N 2\ I
Teacher n completion | [* 7 Public pata
| =——— Training = cecceee- P Prediction — - — - Data feeding ]

Figure 1: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model 1s trained on public data labeled using the ensemble.

e For a sample from the incomplete public data X, let n;(x) be the number of teachers that voted for label ;.
e Instead of labeling by taking argmax;{n;(x)}, we can add Laplacian noise to provide DP:

argmax; {nj (xX) + Lap (%)}

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Synthetic Data Generation

For example, by using a GAN to generate real-
looking synthetic samples:

Discriminator
(guesses

whether a
sample is “real”
or “fake”)
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If we train the GAN
using privacy-preserving
training algorithms (e.qg.,
DP-SGD on the
discriminator), we can
use it to generate a
privacy-preserving
synthetic dataset!
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Synthetic Data Generation

o« For example, by using a GAN to generate real- If we train the GAN

looking synthetic samples: using privacy-preserving
training algorithms (e.qg.,
DP-SGD on the
discriminator), we can
use it to generate a
privacy-preserving
whether a synthetic dataset!
sample is “real” L

Discriminator
(guesses

or “fake”) Q: What can we do with J

the resulting dataset?

[A: Anything! }
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Other defenses

e« There are defenses that add noise to the confidence scores (MemGuard [Jia
et al.]), but are not very effective.

o« MIAs can work even if the model just leaks the predicted label (and not the
confidence scores)

e Sometimes, generalization is a good defense by itself:

- A well-generalized model will perform similarly in members (training set) and non-
members (testing set)

- Therefore, it will be harder for an adversary to decide whether a sample is a member or
non-member if the model generalizes well.

- Generalization is also good for utility (improves test accuracy), so it's a win-win.
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