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Prologue: a couple more DP properties
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Recap on Group privacy

3

Group privacy: Let 𝑀: 𝒟 → ℛ be a mechanism that provides 𝜖-DP for 𝐷, 𝐷′ 
that differ in one entry. Then, it provides 𝑘𝜖-DP for datasets 𝐷, 𝐷′ that differ in 

𝑘 entries. 

If this is 𝜖-DP…. … then this is 2𝜖-DP
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Group privacy with 𝜖, 𝛿 -DP

● For approximate DP, 𝛿 gets an additional factor of 𝑘𝑒 𝑘−1 𝜖 :

4

Group privacy: Let 𝑀: 𝒟 → ℛ be a mechanism that provides (𝜖, 𝛿)-DP for 

𝐷, 𝐷′ that differ in one entry. Then, it provides (𝑘𝜖, 𝑘𝑒 𝑘−1 𝜖𝛿)-DP for datasets 

𝐷, 𝐷′ that differ in 𝑘 entries. 
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Renyi Differential Privacy

● Differential privacy is a very ambitious privacy guarantee, that protects against 

a worst-case adversary that potentially knows 𝐷 and 𝐷′, and for all possible 

outputs of the mechanism.

● 𝜖 and 𝛿 provid a very limited and pessimistic description of the differences 

between Pr(𝑀 𝐷 ∈ 𝑆) and Pr(𝑀 𝐷′ ∈ 𝑆).

● There are other relaxed notions of DP that capture other nuances between 

these distributions, allowing for a tighter analysis.

○ Relaxes how much we care about the worst case (sometimes very unlikely)

○ A popular one is Renyi Differential Privacy

5
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Renyi Differential Privacy

● To introduce Renyi DP we need to know Renyi Divergence 

● The logarithm measures how much more or less likely an event x is under P compared to Q.

(divergence is intended to measure how much information is lost when using Q(x) instead of P(x) )

6

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi 

divergence of order 𝛼 > 1 is

𝐷𝛼(𝑃| 𝑄 =
1

𝛼 − 1
 log𝔼𝑥∼𝑄

𝑃 𝑥

𝑄 𝑥

𝛼

=
1

𝛼 − 1
 log න

𝑥

𝑃 𝑥 𝛼𝑄 𝑥 1−𝛼 𝑑𝑥



CS489 Spring 2024 

Renyi Differential Privacy

7

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi 

divergence of order 𝛼 = ∞ (defined by its limit) is

𝐷∞(𝑃| 𝑄 = sup
𝑥

 log
P 𝑥

𝑄 𝑥
= log max

𝑥

P 𝑥

𝑄 𝑥

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi 

divergence of order 𝛼 = 1 is the Kullback-Leibler divergence

𝐷1(𝑃| 𝑄 = 𝔼𝑥∼𝑃log
P 𝑥

𝑄 𝑥
= න

𝑥

𝑃 𝑥 log
P 𝑥

𝑄 𝑥
 𝑑𝑥

(note that 𝑥 ∼ 𝑃 in the expectation)
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Renyi Differential Privacy – DP connection

8

• Recall that, when 𝛼 = ∞, then the divergence (defined by its limit) is:

𝐷∞(𝑀(𝐷)| 𝑀(𝐷′) = sup
𝑥

 log
Pr(𝑀 𝐷 ∈ 𝑥)

Pr(𝑀 𝐷′ ∈ 𝑥)

• In that case, it is easy to see that 𝜖, ∞ -RDP is equivalent to 𝜖-DP

Renyi DP: a mechanism 𝑀: 𝒟 → ℛ is (𝜖, 𝛼)-RDP (also read as “𝜖-RDP of 

order 𝛼”) if, for any neighboring datasets 𝐷, 𝐷′ it holds that

𝐷𝛼(𝑀(𝐷) 𝑀 𝐷′ ≤ 𝜖 
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Renyi Differential Privacy: Properties

9

RDP Sequential Composition: if 𝑀1 is (𝛼, 𝜖1)-RDP and 𝑀2 is (𝛼, 𝜖2)-RDP, 

then the sequential composition 𝑀1, 𝑀2  satisfies (𝛼, 𝜖1 + 𝜖2)-RDP

RDP to DP: if 𝑀 is (𝛼, 𝜖)-RDP, then it is also 𝜖 +
log

1

𝛿

𝛼−1
, 𝛿 -DP
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Renyi Differential Privacy: Example

10

Let's consider the following probability distributions:

• P={P(x1) = 0.6, P(x2) = 0.4}; Q={Q(x1) =0.5, Q(x2) = 0.5}

For α = 1 (KL Divergence):

For α > 1 (e.g., α=2):

For α = ∞ :
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Renyi Differential Privacy: Example

11

Let's consider the following probability distributions:

• P={P(x1) = 0.6, P(x2) = 0.4}; Q={Q(x1) =0.5, Q(x2) = 0.5}

For α = 1 (KL Divergence):

𝐷1(𝑃| 𝑄 = 𝑃 𝑥1 log
P 𝑥1

𝑄 𝑥1
+ 𝑃 𝑥2 log

P 𝑥2

𝑄 𝑥2
≈ 0.1092 − 0.0892 = 0.02

For α > 1 (e.g., α=2):

𝐷2(𝑃| 𝑄 =
1

2 − 1
 log 𝑃 𝑥1

2 𝑄 𝑥1
0 + 𝑃 𝑥2

2 𝑄 𝑥2
0 = log 0.36 + 0.16  ≈ −0.653.

For α = ∞ :

𝐷∞(𝑃| 𝑄 = log max
𝑥

P 𝑥

𝑄 𝑥
≈ 0.182    For x1

0.6

0.5
= 1.2 For x2

0.4

0.5
= 0.8 
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Many other variations…

● An SOK from 

2020 

12

https://petsymposium.org/popets/2020/popets-2020-0028.pdf


Primer on Machine Learning

13
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Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a 

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

14
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Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a 

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

● We want to produce a function 𝑓: 𝒳 → 𝒴 that can predict a sample’s label from its 

features.

15
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Machine learning: quick primer

● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 } with 𝑛 samples. Given a 

sample (𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 are the features and 𝑦𝑖 is its label.

● We want to produce a function 𝑓: 𝒳 → 𝒴 that can predict a sample’s label from its 

features.

● We will use the training set to train such a function. Ideally, it should correctly 

predict labels for unseen samples (e.g., samples in a testing set).

○ We will say that a model generalizes well if it has high accuracy on unseen samples

○ A model overfits if it works perfectly for samples in the training set but does not generalize.

16
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Machine learning: quick primer

Train

𝐷

𝑥𝑖 , 𝑦𝑖

𝑓

𝑥

𝑦=“Dog”

Usually, this gives confidence scores for each class: ( ො𝑦1, ො𝑦2,…, ො𝑦𝑘)

For example: [“Dog”, “Cat”, “Mouse” …]=[0.81, 0.10, 0.03, …]

17
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Neural networks

● There are many architectures for machine learning models (i.e., many 

structures for the function 𝑓).

● One of the most popular are neural networks.

𝑥𝑖

𝑥𝑖,1
𝑥𝑖,2

𝑥𝑖,𝑑

Multiply by 

a weight w

∑(  )+b act(  )

Sum, add bias term b

Activation function

(we want this non-linear)
(More layers)

Training the model means tuning all w’s and b’s

ො𝑦2

ො𝑦1

ො𝑦𝑘

18
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Loss Functions

● We define a loss function that we want to minimize: ℓ(𝜃, 𝑥, 𝑦), where 𝜃 are the 

parameters w and b.

○ For example, a typical loss function is ℓ 𝜃, 𝑥, 𝑦 = ∑𝑗 −𝑦𝑗 log ො𝑦𝑗  where 𝑦𝑗 is only 1 for the 

true label of the sample, 𝑗. 

ℓ 𝜃, 𝑥, 𝑦 = 

𝑗

−𝑦𝑗 log ො𝑦𝑗  

1.0

0.0

0.0

0.7

0.2

0.1

𝑦
ො𝑦 = 𝑓Θ(𝑥). Predictions or model output

19
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Training neural networks

𝑥𝑖

𝑥𝑖,1
𝑥𝑖,2

𝑥𝑖,𝑑

w

∑(  )+b act(  )

(More layers)

• Since we have the training set 𝐷, 

it makes sense to minimize the 

empirical loss in this training set:

ℒ 𝜃, 𝐷 =
1

𝑁


𝑖

ℓ 𝜃, 𝑥𝑖 , 𝑦𝑖

• In practice, the minimization is 

done using Stochastic Gradient 

Descent (SGD).

ො𝑦2

ො𝑦1

ො𝑦𝑘

20
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Gradient Descent

● The gradient of the loss ∇ℓ(𝜃, 𝑥, 𝑦) evaluated at (𝑥, 𝑦) is the derivative with 

respect to each parameter 𝜃𝑖 (every w and b).

● It tells us the direction in which 𝜃 should go to minimize the loss (for sample 

(𝑥, 𝑦)).

ℓ(𝜃, 𝑥, 𝑦)

𝜃

Minimal Loss

21
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Gradient Descent

● We could minimize the loss by running several steps (epochs) of Gradient 

Descent:

○ For each step 𝑡 ∈ [𝑇]:

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇ℒ(𝜃𝑡−1, 𝐷)

○ 𝜂 is the learning rate

● This is expensive, so usually we do these iterations over a subset of the training 

sets (batches)

● Note 𝜃 represents parameters, 𝜂 and 𝑇 are hyper-parameters 

22
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Stochastic Gradient Descent – with Mini Batches

For each training step 𝑡 ∈ [𝑇]:

1. Take a batch 𝐵 of 𝐿 samples from 𝐷

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔

23



Inference Attacks in ML
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Attacking ML models

Train

Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Evasion attacks

Model stealing attacks

Poisoning attacks

(targeted, untargeted, 

backdoors)

Whitebox: adversary sees the 

parameters 𝜃
Blackbox: adversary is only allowed 

to send queries

● There are many types of attacks against ML

● Later we will see that there are also different types 

of defenses

25
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Attacking ML models in Federated Learning

Inference Attacks:

(adv sees all intermediate 

gradients, can potentially 

send malicious 𝜃)

- Membership inference

- Attribute inference

- Property inference

- …

Poisoning 

attacks

(targeted, 

untargeted, 

backdoors)

● Federated Learning: a centralized server builds a model, a set of clients send 

updates (gradients) using their local datasets

26
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Inference attacks

Train

?
Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Membership Inference:

Is a given sample in the 

training set?

Attribute Inference:

Given a sample with 

some missing attributes, 

can we guess them?

Property Inference:

Given a property about 

the whole training set, 

can we guess if it’s true 

or not?

Model inversion:

Given a label, can we find a 

representative element of 

this class? (learn 𝑥 from 𝑦)

27
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Inference attacks

Train

?
Inference Attacks:

- Membership inference

- Attribute inference

- Property inference

- Model inversion

Membership Inference:

Is a given sample in the 

training set?

Attribute Inference:

Given a sample with 

some missing attributes, 

can we guess them?

28

Property Inference:

Given a property about 

the whole training set, 

can we guess if it’s true 

or not?

Model inversion:

Given a label, can we find a 

representative element of 

this class? (learn 𝑥 from 𝑦)
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● Given a sample (𝑥, 𝑦), and a model 𝑓 trained with dataset 𝐷, guess whether 𝑥, 𝑦 ∈

𝐷.

● With only black-box access, and a model that outputs confidence scores:

○ 𝑓 𝑥 = [ ො𝑦1, ො𝑦2, … , ො𝑦𝑘], where ො𝑦𝑗 are confidence scores for label 𝑗.

Membership Inference Attacks (MIAs)

Train

𝐷
𝑓

Black-box: the adversary queries 

the model (possibly more than once)

White-box: the adversary sees the 

model parameters 𝜃

Q: If you were the adversary, with a target sample (𝑥, 𝑦) and black-box access to the 

model 𝑓, how would you guess if the target sample is a member?

29
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Threshold Attacks

● Idea: the model will be more confident on samples it has seen during training.

Threshold attack

● This attack queries the model on sample 𝑥 and then measures the confidence score assigned to 

its true label 𝑦.

● If the confidence score is above some threshold, then the attack decides the sample is a member.

Yeom et al. "Privacy risk in machine learning: Analyzing the connection to overfitting." CSF, 2018.

Train

𝐷 𝑓 𝑥

𝑓(𝑥)

If 𝑓 𝑥 𝑦 > 𝑇, then 

(𝑥, 𝑦) is a member!

Q: how can the attacker compute this threshold?

30
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Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

31
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Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

● The first NN-based attack (which was also the first MIA) was proposed by 

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓𝑡𝑎𝑟 Assumption: the adversary can 

generate data with a similar 

distribution as 𝐷.

Target model (adv has 

black-box access)

Training dataset 

(unknown to adv)

32
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Neural Network-based Attacks

● Other MIAs use Machine Learning against Machine Learning.

● The first NN-based attack (which was also the first MIA) was proposed by 

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓𝑡𝑎𝑟 Assumption: the adversary can 

generate data with a similar 

distribution as 𝐷.

Target model (adv has 

black-box access)

Training dataset 

(unknown to adv)

33

Q: how realistic is this?
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Shokri et al.’s attack

1. Generate shadow training datasets 𝐷𝑠1, 𝐷𝑠2, …, 𝐷𝑠𝑘(based on D’ with distribution similar to 𝐷).

2. Train 𝑘 shadow models 𝑓𝑠1, … , 𝑓𝑠𝑘 (same classification task as the target model ”AWS MLaaS” ).

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷𝑠1

𝐷𝑠𝑘

𝑓𝑠1

𝑓𝑠𝑘

34
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Shokri et al.’s attack

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷𝑠1

𝐷𝑠𝑘

𝑓𝑠1

𝑓𝑠𝑘

35

Works even with different 

models! (but better if you 

know the actual one)

1. Generate shadow training datasets 𝐷𝑠1, 𝐷𝑠2, …, 𝐷𝑠𝑘(based on D’ with distribution similar to 𝐷).

2. Train 𝑘 shadow models 𝑓𝑠1, … , 𝑓𝑠𝑘 (same classification task as the target model ”AWS MLaaS” ).
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Shokri et al.’s attack

3. Generate shadow test data ෩𝐷𝑠1, ෩𝐷𝑠2,…, ෩𝐷𝑠𝑘.

4. For each shadow model 𝑖 ∈ [𝑘]: get the confidence scores for each sample in 𝐷𝑠𝑖 and ෩𝐷𝑠𝑖 . 

Create a dataset with [confidence scores, true label, membership] for each sample.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓𝑠𝑖𝐷𝑠𝑖

෩𝐷𝑠𝑖 [confidence scores, true label, non-member]

[confidence scores, true label, member]

36
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Shokri et al.’s attack

5. With the new dataset, that contains [confidence scores, true label, membership status] 

computed with all the shadow models, train a new attack model 𝑓𝑎𝑡𝑡 to predict the 

membership status from [confidence scores, true label]

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑥=[confidence scores, true label], 𝑦=[member/non-member]

Train

𝑓𝑎𝑡𝑡
This model is a binary 

classifier that receives 

conf. scores and true 

label, and returns 

member/non-member

37



CS489 Spring 2024 

Shokri et al.’s attack

6. Get the confidence scores of the target sample in the target model 𝑓𝑡𝑎𝑟.

7. Evaluate those [confidence scores, true label] samples in the attack model 𝑓𝑎𝑡𝑡.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓𝑎𝑡𝑡

Train

𝐷
𝑓𝑡𝑎𝑟 𝑥

𝑓𝑡𝑎𝑟(𝑥)

(𝑓𝑡𝑎𝑟 𝑥 , 𝑦)

membership

prediction

38
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Shokri et al.’s attack

𝑓𝑎𝑡𝑡

Train

𝐷
𝑓𝑡𝑎𝑟 𝑥

𝑓𝑡𝑎𝑟(𝑥)

(𝑓𝑡𝑎𝑟 𝑥 , 𝑦)

membership

prediction

39

The higher the discrepancy between training and testing 

accuracy 

→ The more likely membership inference attack can 

happen.



CS489 Spring 2024 

Attribute Inference Attacks

● Each sample is 𝑧 = (𝑥, 𝑎, 𝑦), where 𝑥 is the features, 𝑎 is a privacy-sensitive attribute, and 𝑦 is 

the label.

● The adversary has a sample 𝑧 = (𝑥, ? , 𝑦), and wants to learn the attribute.

● Assume the space of all attributes is 𝒜 = {𝑎1, 𝑎2, … , 𝑎𝑚}

● Simple attack: query for all possible samples (𝑥, 𝑎1), …,(𝑥, 𝑎𝑚). 

→ The true attribute is probably the one that yields a highest confidence score for the true 

class 𝑦.

Train

𝐷 𝑓 (𝑥, 𝑎𝑖)

𝑓((𝑥, 𝑎𝑖))

Ƹ𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑓 𝑥, 𝑎𝑖 𝑦

40
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Defending against inference attacks

● Where do we defend?

Train

Input: add noise to inputs, 

generate synthetic training data, 

etc.

Model: add noise to the model 

weights

Output: add noise to the outputs of the model 

(this only works in the black-box setting)Training: add noise to the 

gradients or the loss function.

41



Defenses against inference attacks

42
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Differentially Private Stochastic Gradient Descent 

(DP-SGD) 
● Adds privacy during the training step, modifying SGD.

● Recall Differential Privacy: we want to limit the effect that a single training set sample has on 

the output (the “output” of the training algorithm is the “model!”)

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

“Private” SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient: 

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients and add 

noise 𝑔 =
1

𝐿
(∑𝑖 𝑔𝑖 + 𝒩 0, 𝜎2  ).

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

Q: Is it enough to add noise to the gradients?

43
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Differentially Private Stochastic Gradient Descent 

(DP-SGD) 
● The gradient could potentially be unbounded → Here, unbounded sensitivity is bad for 

DP(Algorithm is highly sensitive to individual data points)

● We clip the gradients to ensure their ℓ2 norm is at most 𝐶.

○ 𝐶 is the clipping threshold (1 is usually a good value)

○ 𝐶 is independent of the data

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.
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Differentially Private Stochastic Gradient Descent 

(DP-SGD) 
● The gradient could potentially be unbounded → Here, unbounded sensitivity is bad for DP

● We clip the gradients to ensure their ℓ2 norm is at most 𝐶.

○ 𝐶 is the clipping threshold (1 is usually a good value)

○ 𝐶 is independent of the data

SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Average the gradients 𝑔 =
1

𝐿
∑𝑖 𝑔𝑖.

4. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅ 𝑔.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿

● Note that a single sample will participate in 

multiple training steps → there will be some 

sequential composition involved.

● We need to keep track of 𝝐, 𝜹. 

● For a fixed amount of noise 𝜎, if we do not keep 

track of 𝜖, 𝛿, we can end up with a very large 𝜖, 

which is bad.

○ The actual true 𝜖 will be smaller than the 𝜖 we can 

compute theoretically. – e.g., due to batching, one 

sample may not appear in a given training step.

○ We can only guarantee an 𝜖 we can prove w/ 

theory.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿

● First, we choose a 𝛿. Recall that this 

should be smaller than 𝛿 <
1

𝑁
.

○ The reason is the following: 

a training algorithm that simply publishes a 

random training set record would provide 

(𝜖 = 0, 𝛿 = 1/𝑁)-DP. 

However, we know this is not private 

enough.

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 

sample in 𝐷 is used once per training 

step, what is the total 𝜖 we get?

• Use naive composition

48

Δ2
2 = 𝐶2 : second-order sensitivity

Typically refers to the maximum L₂ norm of the gradients, 

and it is directly related to the gradient clipping bound
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DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if

𝑌 ∼ 𝑁(0, 𝜎2)

𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2

DP-SGD

For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.

2. For each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵 , compute the 

gradient:

gi = ∇ℓ 𝜃𝑡−1, 𝑥𝑖 , 𝑦𝑖

3. Clip the gradients: 𝑔𝑖 = 𝑔𝑖/ max 1,
𝑔𝑖 2

𝐶

4. Sum the gradients 𝑔 = ∑𝑖 𝑔𝑖.

5. Add noise:𝑔 = 𝑔 + 𝒩(0, 𝜎2𝐶2)

6. Descend 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
1

𝐿
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 

sample in 𝐷 is used once per training 

step, what is the total 𝜖 we get?

• Use naive composition

A: 𝜎2 = 2 ln
1.25

𝛿
Δ2

2/𝜖2  → 𝜖𝑠𝑡𝑒𝑝 = 2 ln
1.25

𝛿
𝐶2/𝜎2    

for each step. Then naïve composition gives 

𝜖𝑡𝑜𝑡𝑎𝑙 = 𝑇. 𝐶/𝜎 2 ln
1.25

𝛿

*Note: this question is very over simplified
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DP-SGD: keeping track of 𝜖, 𝛿
● Renyi Differential Privacy (RDP) provides a tighter 

𝜖, 𝛿 bound.

○ Better suited to Gaussian Noise

○ Keeps track of more information

● This means that, for a given 𝜎, 𝐶, and 𝛿, RDP tells 

us our actual 𝜖 is smaller than what Advanced 

Composition (AC) tells us.

● In other words, for a target privacy budget 𝜖, using 

RDP we need to add less noise than using AC.

○ E.g., again, because a sample may be excluded from a 

given training step

● Note that, even with RDP, we need 𝜖 > 100 if we 

do not want any accuracy loss

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.

50

zCDP: Zero-Concentrated Differential Privacy
NC: Noise-Contrastive privacy 
AC: Approximate Composition
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DP-SGD: theoretical vs empirical privacy

● Both attacks we’ve seen perform similarly

● It seems that 𝜖 = 100 or even 𝜖 = 1000 still provides good empirical privacy

● The theoretical bound “worst-case” on the privacy leakage provided by DP is very loose 

“overestimates the actual risk”.

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.
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Issues of DP-SGD

● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.

● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.

● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?
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Issues of DP-SGD

● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.

● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.

● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?

A: It might be OK to use DP-SGD tuned to 𝜖 = 100, but at that point we might as well use 

defenses that do not provide DP, since the DP guarantee is already meaningless at that point.
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Private Aggregation of Teacher Ensembles 

(PATE)
1. Train teacher models with disjoint subsets of the training data

2. Use the teachers to label some (incomplete) public data

3. Use the labeled public data to train a student model

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Private Aggregation of Teacher Ensembles 

(PATE)

● For a sample from the incomplete public data Ԧ𝑥, let 𝑛𝑗( Ԧ𝑥) be the number of teachers that voted for label 𝑗.

● Instead of labeling by taking 𝑎𝑟𝑔𝑚𝑎𝑥𝑗{𝑛𝑗 Ԧ𝑥 }, we can add Laplacian noise to provide DP:

𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑛𝑗 Ԧ𝑥 + 𝐿𝑎𝑝
1

𝛾

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 

whether a 

sample is “real” 

or “fake”)

𝒩(0, 𝜎)

𝐷

56

If we train the GAN 

using privacy-preserving 

training algorithms (e.g., 

DP-SGD on the 

discriminator), we can 

use it to generate a 

privacy-preserving 

synthetic dataset!
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Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 

whether a 

sample is “real” 

or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 

using privacy-preserving 

training algorithms (e.g., 

DP-SGD on the 

discriminator), we can 

use it to generate a 

privacy-preserving 

synthetic dataset!

Q: What can we do with 

the resulting dataset?
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Synthetic Data Generation

● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 

whether a 

sample is “real” 

or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 

using privacy-preserving 

training algorithms (e.g., 

DP-SGD on the 

discriminator), we can 

use it to generate a 

privacy-preserving 

synthetic dataset!

Q: What can we do with 

the resulting dataset?

A: Anything!
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Other defenses

● There are defenses that add noise to the confidence scores (MemGuard [Jia 

et al.]), but are not very effective.

● MIAs can work even if the model just leaks the predicted label (and not the 

confidence scores)

● Sometimes, generalization is a good defense by itself:

○ A well-generalized model will perform similarly in members (training set) and non-

members (testing set)

○ Therefore, it will be harder for an adversary to decide whether a sample is a member or 

non-member if the model generalizes well.

○ Generalization is also good for utility (improves test accuracy), so it’s a win-win.
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