
CS459/698
Privacy, Cryptography,

Network and Data Security

A pinch of Homomorphic Encryption

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

What is Homomorphic Encryption?

2

CS459 Fall 2024

What is Homomorphic Encryption?

3

• Definition: Homomorphic encryption is a cryptographic technique that
allows computations to be performed on encrypted data without
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed,
manipulated, and run through various algorithms.

CS459 Fall 2024

What is Homomorphic Encryption?

4

• Definition: Homomorphic encryption is a cryptographic technique that
allows computations to be performed on encrypted data without
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed,
manipulated, and run through various algorithms.

• Idealized in 1978, fully realized in 2009 by Craig Gentry

CS459 Fall 2024

Homomorphic Encryption for Dummies

5

“Anybody can come and they can stick their hands inside the gloves
and manipulate what’s inside the locked box. They can’t pull it out,
but they can manipulate it; they can process it… Then they finish
and the person with the secret key has to come and open it up—
and only they can extract the finished product out of there.”
-- Craig Gentry

https://www.youtube.com/watch?v=pXb39wj5ShI

https://www.youtube.com/watch?v=pXb39wj5ShI

CS459 Fall 2024

Computing on Ciphertexts (Simple Math)

6

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

Computing on Ciphertexts (More sophisticated math)

7

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

Homomorphic Encryption in the Wild

8

https://dualitytech.com/blog/homomorphic-encryption-making-it-real/

https://dualitytech.com/blog/homomorphic-encryption-making-it-real/

CS459 Fall 2024

Homomorphic Encryption in the Wild

● Used as a tool in many real-world scenarios:
○ https://www.ibm.com/security/services/homomorphic-encryption

○ https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption

○ https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-
homomorphic-encryption

○ https://www.intel.com/content/www/us/en/developer/tools/homomorphic-
encryption/overview.html

○ https://www.microsoft.com/en-us/research/project/microsoft-seal/
○ https://machinelearning.apple.com/research/homomorphic-encryption

○ https://github.com/apple/swift-homomorphic-encryption

○ https://github.com/google/heir

○ https://github.com/google/fully-homomorphic-encryption?tab=readme-ov-file

9

https://www.ibm.com/security/services/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://machinelearning.apple.com/research/homomorphic-encryption
https://github.com/apple/swift-homomorphic-encryption
https://github.com/google/heir

CS459 Fall 2024

E.g., Homomorphic Encryption for Secure Voting

10

● Microsoft’s ElectionGuard

So what is this all about?

11

CS459 Fall 2024

Homomorphic Encryption

Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)

Let f() be a function that operates over plaintext x and y

12

CS459 Fall 2024

Homomorphic Encryption

Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)

Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that

g(c, d) = EK(f(x, y))

13

CS459 Fall 2024

Homomorphic Encryption

Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)

Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that

g(c, d) = EK(f(x, y))

14

g() is a homomorphic function on the ciphertexts c, d, …

CS459 Fall 2024

Partial versus Fully Homomorphic Encryption

…either multiplication or
addition but not both.

15

The function on the plaintexts is:

…either multiplication or
addition, or both

Partial HE Fully HE

CS459 Fall 2024

4 Shades of Homomorphic Encryption

16

https://chain.link/education-hub/homomorphic-encryption

and / or

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

4 Shades of Homomorphic Encryption

17

https://chain.link/education-hub/homomorphic-encryption

and / or

Only useful for simpler operations. Relatively efficient.

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

4 Shades of Homomorphic Encryption

18

https://chain.link/education-hub/homomorphic-encryption

and / or

of operations that can be performed is bounded and the accuracy of
the computation may degrade as more operations are performed.

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

4 Shades of Homomorphic Encryption

19

https://chain.link/education-hub/homomorphic-encryption

and / or

Can perform an arbitrary # of computations on encrypted data, if it
has a pre-defined set of computations specified ahead of time.

https://chain.link/education-hub/homomorphic-encryption

CS459 Fall 2024

4 Shades of Homomorphic Encryption

20

https://chain.link/education-hub/homomorphic-encryption

and / or

Enables any # of computations to be performed on encrypted data
without a predefined sequence or limit. Computationally expensive.

https://chain.link/education-hub/homomorphic-encryption

A partial homomorphic encryption
scheme based on El Gamal

21

CS459 Fall 2024

Recap: ElGamal Public Key Cryptosystem

● Let p be a prime such that the DLP in (Zp
*,.) is infeasible

● Let α be a generator in Zp
* and “a” a secret value

● PubK ={(p,α, β): β≡αa (mod p)}

● For message “m” and secret random “k” in Zp-1:
○ eK(m,k) = (y1, y2), where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

22

Public key is p,α, β

CS459 Fall 2024

Consider Multiplicative HE

23

f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK → (p, α, β)

Bob’s PrivK → a
y2 ≡ m βk (mod p)

β ≡ αa (mod p)

CS459 Fall 2024

Consider Multiplicative HE

24

f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

Goal: show how the multiplication of ciphertexts corresponds to the multiplication
of plaintexts.

y1 ≡ αk (mod p)Bob’s PubK → (p, α, β)

Bob’s PrivK → a
y2 ≡ m βk (mod p)

β ≡ αa (mod p)

CS459 Fall 2024

Consider Multiplicative HE

25

f(x, y) = x ⋅ y

Private key: a, public key: αa

c1 = αr, c2 = x αra ;

d1 = αs, d2 = y αsa

Instead of k, choose r and s

Idea: Create ciphertexts for the two different plaintexts
x and y

y1 ≡ αk (mod p)Bob’s PubK → (p, α, β)

Bob’s PrivK → a
y2 ≡ m βk (mod p)

β ≡ αa (mod p)

CS459 Fall 2024

Consider Multiplicative HE

26

f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d):

○e1 = c1 ⋅ d1 = αr αs = αr+s

○e2 = c2 ⋅ d2 = xy αra αsa = xy αa(r+s)

Instead of k, choose r and s

Idea: combine ciphertexts of
two different plaintexts

y1 ≡ αk (mod p)Bob’s PubK → (p, α, β)

Bob’s PrivK → a
y2 ≡ m βk (mod p)

β ≡ αa (mod p)

c1 = αr, c2 = x αra ;

d1 = αs, d2 = y αsa

CS459 Fall 2024

Consider Multiplicative HE

27

f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d) = xy αa(r+s)

xy = xy αa(r+s) / αa(r+s)

Instead of k, choose r and s

Idea: decrypt the combined ciphertext

y1 ≡ αk (mod p)Bob’s PubK → (p, α, β)

Bob’s PrivK → a
y2 ≡ m βk (mod p)

β ≡ αa (mod p)

c1 = αr, c2 = x αra ;

d1 = αs, d2 = y αsa

CS459 Fall 2024

Consider Additive HE

Multiplicative: The math of ElGamal ensures that multiplying the encrypted

values corresponds to multiplying the original plaintext values.

Additive: Here, we no longer have the same nice properties of how

exponents play together.

• “Crazy” idea: Something like g(EK(αx), EK(αy)) = EA(αx+y) could work

o But we would need to break the discrete log of αx+y to retrieve the sum

▪ Only really works for small x and y

28

The Paillier Partially Homomorphic
Encryption Scheme

29

CS459 Fall 2024

Paillier’s Encryption Scheme

• Proposed by Pascal Pailler in 1999

• The Paillier cryptosystem is a public-key cryptosystem known for its
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the
composite residuosity class problem
• This problem involves determining whether a given number is an n-th residue modulo n2

for a composite n.

30

CS459 Fall 2024

Paillier’s Encryption Scheme

• Proposed by Pascal Pailler in 1999

• The Paillier cryptosystem is a public-key cryptosystem known for its
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the
composite residuosity class problem
• This problem involves determining whether a given number is an n-th residue modulo n2

for a composite n.

31

CS459 Fall 2024

Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq

● Ciphertexts are mod N2

32

CS459 Fall 2024

Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq

● Ciphertexts are mod N2

● Choose r ; plaintext m (mod p) is encrypted as gm rN (mod N2)

33

g is a generator

CS459 Fall 2024

Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq

● Ciphertexts are mod N2

● Choose r ; plaintext m (mod p) is encrypted as gm rN (mod N2)

34

CS459 Fall 2024

Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq

● Ciphertexts are mod N2

● Choose r ; plaintext m (mod p) is encrypted as gm rN (mod N2)

● Multiply encryption of m1 and m2:

E(m1,r1) ⋅ E(m2,r2) mod N2 =

gm1 ⋅ gm2 ⋅ r1
N ⋅ r2

N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

35

From the product of ciphertexts to addition of plaintexts

CS459 Fall 2024

Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2:

E(m1,r1) ⋅ E(m2,r2) mod N2 =

gm1 ⋅ gm2 ⋅ r1
N ⋅ r2

N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

36

CS459 Fall 2024

Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2:

E(m1,r1) ⋅ E(m2,r2) mod N2 =

gm1 ⋅ gm2 ⋅ r1
N ⋅ r2

N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

37

Simplica Numara!

DGHV:
A Fully Homomorphic Encryption Scheme

38

CS459 Fall 2024

Fully Homomorphic Encryption (FHE)

• Many schemes now, usually abbreviated by the first letters of
the last names of the authors

• Different security assumptions (not factoring or discrete log)
o Lattice problems: Learning with errors, …

39

Examples:

● First construction by Gentry in 2009

● E.g. FV, BGV, or DGHV (not used in practice)

CS459 Fall 2024

The DGHV Fully Homomorphic Encryption Scheme

• FHE scheme whose security is based on the difficulty of the
approximate greatest common divisor (AGCD) problem.

o Finding the greatest common divisor of a set of integers that are close to multiples
of a secret integer.

40

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6

https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/

https://github.com/coron/fhe

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6
https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/
https://github.com/coron/fhe

CS459 Fall 2024

Consider Simplified DGHV (not used in practice)

• m ∈ {0, 1}

• Secret key: prime p

41

CS459 Fall 2024

Consider Simplified DGHV (not used in practice)

• m ∈ {0, 1}

• Secret key: prime p

• Encryption

o Choose q, r such that r < p → r is random noise

o c = q.p + 2.r + m

42

CS459 Fall 2024

Consider Simplified DGHV (not used in practice)

• m ∈ {0, 1}

• Secret key: prime p

• Encryption

o Choose q, r such that r < p → r is random noise

o c = q.p + 2.r + m

• Decryption

o m = c mod 2 ⊕ (⌊c/p⌋ mod 2)

43

CS459 Fall 2024

Computing with Simplified DGHV

● Ciphertexts
○c1 = q1.p + 2.r1 + m1

○c2 = q2.p + 2.r2 + m2

44

CS459 Fall 2024

Computing with Simplified DGHV

● Ciphertexts
○c1 = q1.p + 2.r1 + m1

○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

45

Note that noise grows linearly

CS459 Fall 2024

Computing with Simplified DGHV

● Ciphertexts
○c1 = q1.p + 2.r1 + m1

○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

● Multiplication
○c1 ⋅ c2 = q’.p + 2.r’ + m1.m2

○ r’ = 2.r1.r2 + r1.m2 + r2.m1

○q′= q1⋅q2⋅p + q1⋅m2 + q2 ⋅ m1

46

Note the increased growth of the noise.
(no longer linear). One gets a new
ciphertext with noise roughly twice larger
than in the original ciphertexts c1 and c2.

The bootstrapping problem in FHE

47

CS459 Fall 2024

Bootstrapping… in Fully HE Schemes

• If r > p/2 ⇒ decryption fails on DGHV
• Also a problem for other schemes.

• If the noise grows too much, it can corrupt the encrypted
data and make it unusable

• Each operation increases the noise, so one must control
this growth

48

CS489 Spring 2024

Bootstrapping… in Fully HE Schemes

49

• To obtain a FHE scheme, (i.e. unlimited addition and

multiplication on ciphertexts), one must reduce the

amount of noise in a ciphertext

• Bootstrapping is a procedure that reduces noise to it’s
initial lenght

• Still, bootstrapping is slow in most fully HE schemes

• Thus, w/ fully HE, aim to avoid subsequent

multiplications

• DGHV does not have bootstrapping

CS459 Fall 2024

Practical FHE Schemes

● FV, BGV, BFV, CKKS

○Lattice-based encryption schemes

○Encrypt vectors (usually as polynomials)

● TFHE

○Fully HE over the Torus

○Usually encrypts bits

○Very fast bootstrapping (frequently performed)

○https://tfhe.github.io/tfhe/

50

https://tfhe.github.io/tfhe/

CS459 Fall 2024

Try it… on your own ☺

● Download Microsoft’s SEAL library and hack away!
○https://www.microsoft.com/en-us/research/project/microsoft-seal/
○Create a key

○Encrypt two 8 bit numbers bit-wise using batch encoding (allows rotation)

○Perform comparison, for each position: If prefix is equal and bits are different, output 1 if bit
of first number is 1; else output 0

○Decrypt result

51

https://www.microsoft.com/en-us/research/project/microsoft-seal/

52

Encrypted Search
Algorithms

CS459 Fall 2024

Tradeoffs: Efficiency vs. Security

53

Efficiency STE/SSE-based

PPE-based

FHE-based

ORAM-based

skFE-based pkFE-based

Leakage

CS459 Fall 2024

Cryptographic Mechanisms

54

• Schemes to search over encrypted data
• Server-side processing of encrypted data

• Server knows nothing* about the data• Query from an authenticated client

Setup(1k, DS) ⟾ (K, EDS)

Token(K, q) ⟾ tk Query(EDS, tk) ⟾ ans

CS459 Fall 2024

Examples of Data Structures

55

CS459 Fall 2024

Examples of Data Structures

56

CS459 Fall 2024

Examples of Data Structures

57

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

58

Untrusted

Server

Trusted

Client

Data

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

59

Untrusted

Server

Trusted

Client

Enc(Search Index)

Data

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

60

Untrusted

Server

Trusted

Client

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

61

Untrusted

Server

Trusted

Client

q = “ CS-459 ” q = [2022,2024]

Enc(q)

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

62

Untrusted

Server

Trusted

Client

D(q) = { D ∈ D : q(D) }

Enc(q)

q = “ CS-459 ” q = [2022,2024]

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

63

Untrusted

Server

Trusted

Client

D(q) = { D ∈ D : q(D) }

Enc(q)

q = “ CS-459 ” q = [2022,2024]

Query Leakage
L Q

Setup Leakage
L S

Update Leakage

L U

CS459 Fall 2024

Encrypted Search Algorithms (ESAs)

64

Untrusted

Server

Trusted

Client

q = “ CS-459 ” q = [2022,2024]

Enc(q)

D(q) = { D ∈ D : q(D) }

𝒒 or 𝓓

Auxiliary Information

Adversary

(Known or Sampled)

Passive & Persistent

CS459 Fall 2024

How do we model leakage?

65

Leakage Information

Response Length |D q |

Query Equality qi = qj

Co-Occurrence |D qi ∩ D qj |

Response Identity {i: Di ∈ q(D)}

Response Volume { Di b: Di ∈ q(D)}

(Simplified)

▪ The ”Baseline” leakage profile for response-revealing
EMMs
✓ (L S , L Q , L U) = (dsize, (qeq, rid), usize)

▪ The ”Baseline” leakage profile for response-hiding
EMMs
✓ (L S , L Q , L U) = (dsize, qeq, usize)

▪ There exists several new constructions with better
leakage profiles

✓ AZL and FZL [Kamara-Moataz-Ohirimenko’18]
✓ VHL and AVHL [Kamara-Moataz’19]

CS459 Fall 2024

Leakage Attacks Types

66

q =′ Defense′

[]
Keyword (point) queries Range queries

Keyword Document IDs

‘Encrypted’ 2,5,11,13,20,31

‘systems’ 3,5,10,11,13,25

‘lab’ 5,11,21,27

ID Age

1 65

2 7

3 27

𝑞 = 𝑤
𝒟 𝑞 = {𝐷 ∈ 𝒟: 𝑞 ∈ 𝐷)}

Recover 𝐪

𝑞 = (𝑎, 𝑏)
𝒟 𝑞 = {𝑟 ∈ 𝒟: 𝑎 ≤ 𝑟 ≤ 𝑏}

Recover 𝓓

[KKNO16,LMP18,GLMP18,
GLMP19,GJW19,KPT20,KPT21]

[IKK12,CGPR15,BKM20,RPH21]

q = (18,39)

CS459 Fall 2024

Leakage Attacks against ESAs

67

Adversary Type

Attacks against PPE
[NKW15]

Adversarial Power

Snapshot Persistent

Active Passive

Injection Attacks
[ZKP16,BKM20,PWLP20]

Auxiliary Information

CS459 Fall 2024

Leakage Attacks against ESAs

68

Persistent Passive

Auxiliary Information

Sampled-data or sampled-query
NoneKnown-data

Keyword & Range attacks
[LZWT14,LMP18,GLMP18,GJW19,OKa21,DHP21,

GPP21,OKb21]

Keyword attacks
[IKK12*,CGPR15,BKM20, RPH21]

q = w
𝒟 q = {D ∈ 𝒟: q(D)}

Recover 𝐪

Range attacks
[KKNO16,LMP18,GLMP18,
GLMP19,GJW19,KPT20,

KPT21]

q = (a, b)
𝒟 q = {r ∈ 𝒟: a ≤ r ≤ b}

Recover 𝓓

[]

CS459 Fall 2024

ESA Techniques Overview

69

Technique Leakage Query Time

Fully Homomorphic
Encryption (FHE)

• None
Linear

Oblivious RAM (ORAM) • Response Length +
Volume Sublinear

Structured Encryption
(STE)

• Query Equality
• Response Identities +

Volumes
Optimal

Property-Preserving
Encryption (PPE)

• Ciphertext Equality
• Ciphertext Order
• All STE leakage

Optimal

Considered secure but
inefficient

Considered efficient but
provides low level of security

[NKW15]

Considered efficient and
Has some leakage

Our work

CS459 Fall 2024

Uncertainty Of Security

70

Benign leakage

Common leakage

Standard leakage

Accepted leakage

[Attacks] assume extremely strong adversarial
models

Leakages [...] are not exploitable via leakage-abuse
attacks in practice

Severe threat

Devastating results

[ESAs] are extremely
vulnerable to [attacks]

[ESA] schemes
should no longer be

used without
countermeasures

Our assumptions on background information are
weak

With some prior knowledge [...] an honest-but-curious
server can recover the underlying keywords

Constructions Attacks & Countermeasures

CS459 Fall 2024

Uncertainty Of Security

71

Benign leakage

Common leakage

Standard leakage

Accepted leakage

[Attacks] assume extremely strong adversarial
models

Leakages [...] are not exploitable via leakage-abuse
attacks in practice

Severe threat

Devastating results

[ESAs] are extremely
vulnerable to [attacks]

[ESA] schemes
should no longer be

used without
countermeasures

Our assumptions on background information are
weak

With some prior knowledge [...] an honest-but-curious
server can recover the underlying keywords

Constructions Attacks & Countermeasures

CS459 Fall 2024

Encrypted Search Algorithms: Real-World Deployments.

72

200

3

200

3

200

3

200

3

200

3

200

3

[Client-Side Field Level Encryption’19]
• Encrypted Non-Relational Database (EnRDs)
• Property-Preserving Encryption (PPE)

[Always Encrypt ’15]

• Encrypted Relational Database (ERDs)
• Property-Preserving Encryption (PPE)

[Document Encryption’23]
• Encrypted Non-Relational Database (EnRDs)
• Property-Preserving Encryption (PPE)

[Queryable Encryption’23]
• Encrypted Non-Relational Database (EnRDs)
• Structured Encryption (STE)

CS459 Fall 2024

A Few Announcements

● Assignment 3 is due today 4pm
o No-penalty late policy period until Saturday 4pm

● Student Course Perceptions – Available until Dec 3
o https://perceptions.uwaterloo.ca/

73

https://perceptions.uwaterloo.ca/

74

Thanks for tagging along!

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: What is Homomorphic Encryption?
	Slide 3: What is Homomorphic Encryption?
	Slide 4: What is Homomorphic Encryption?
	Slide 5: Homomorphic Encryption for Dummies
	Slide 6: Computing on Ciphertexts (Simple Math)
	Slide 7: Computing on Ciphertexts (More sophisticated math)
	Slide 8: Homomorphic Encryption in the Wild
	Slide 9: Homomorphic Encryption in the Wild
	Slide 10: E.g., Homomorphic Encryption for Secure Voting
	Slide 11: So what is this all about?
	Slide 12: Homomorphic Encryption
	Slide 13: Homomorphic Encryption
	Slide 14: Homomorphic Encryption
	Slide 15: Partial versus Fully Homomorphic Encryption
	Slide 16: 4 Shades of Homomorphic Encryption
	Slide 17: 4 Shades of Homomorphic Encryption
	Slide 18: 4 Shades of Homomorphic Encryption
	Slide 19: 4 Shades of Homomorphic Encryption
	Slide 20: 4 Shades of Homomorphic Encryption
	Slide 21: A partial homomorphic encryption scheme based on El Gamal
	Slide 22: Recap: ElGamal Public Key Cryptosystem
	Slide 23: Consider Multiplicative HE
	Slide 24: Consider Multiplicative HE
	Slide 25: Consider Multiplicative HE
	Slide 26: Consider Multiplicative HE
	Slide 27: Consider Multiplicative HE
	Slide 28: Consider Additive HE
	Slide 29: The Paillier Partially Homomorphic Encryption Scheme
	Slide 30: Paillier’s Encryption Scheme
	Slide 31: Paillier’s Encryption Scheme
	Slide 32: Paillier’s Encryption Scheme
	Slide 33: Paillier’s Encryption Scheme
	Slide 34: Paillier’s Encryption Scheme
	Slide 35: Paillier’s Encryption Scheme
	Slide 36: Paillier’s Encryption Scheme
	Slide 37: Paillier’s Encryption Scheme
	Slide 38: DGHV: A Fully Homomorphic Encryption Scheme
	Slide 39: Fully Homomorphic Encryption (FHE)
	Slide 40: The DGHV Fully Homomorphic Encryption Scheme
	Slide 41: Consider Simplified DGHV (not used in practice)
	Slide 42: Consider Simplified DGHV (not used in practice)
	Slide 43: Consider Simplified DGHV (not used in practice)
	Slide 44: Computing with Simplified DGHV
	Slide 45: Computing with Simplified DGHV
	Slide 46: Computing with Simplified DGHV
	Slide 47: The bootstrapping problem in FHE
	Slide 48: Bootstrapping… in Fully HE Schemes
	Slide 49: Bootstrapping… in Fully HE Schemes
	Slide 50: Practical FHE Schemes
	Slide 51: Try it… on your own
	Slide 52: Encrypted Search Algorithms
	Slide 53: Tradeoffs: Efficiency vs. Security
	Slide 54: Cryptographic Mechanisms
	Slide 55: Examples of Data Structures
	Slide 56: Examples of Data Structures
	Slide 57: Examples of Data Structures
	Slide 58: Encrypted Search Algorithms (ESAs)
	Slide 59: Encrypted Search Algorithms (ESAs)
	Slide 60: Encrypted Search Algorithms (ESAs)
	Slide 61: Encrypted Search Algorithms (ESAs)
	Slide 62: Encrypted Search Algorithms (ESAs)
	Slide 63: Encrypted Search Algorithms (ESAs)
	Slide 64: Encrypted Search Algorithms (ESAs)
	Slide 65: How do we model leakage?
	Slide 66: Leakage Attacks Types
	Slide 67: Leakage Attacks against ESAs
	Slide 68: Leakage Attacks against ESAs
	Slide 69: ESA Techniques Overview
	Slide 70: Uncertainty Of Security
	Slide 71: Uncertainty Of Security
	Slide 72: Encrypted Search Algorithms: Real-World Deployments.
	Slide 73: A Few Announcements
	Slide 74: Thanks for tagging along!

