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Assignment One

● Available on Learn today at 4pm

● Due October 3rd, 4pm

● Written and programming
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Public-key Cryptography

6

o Invented (in public) in the 1970’s

o Also called Asymmetric Cryptography

o Allows Alice to send a secret message to Bob without any prearranged shared secret!

o In secret-key cryptography, the same (or a very similar) key encrypts the message and also 

decrypts it

o In public-key cryptography, there’s one key for encryption, and a different key for decryption! 

o Some common examples:

o RSA, ElGamal, ECC, NTRU, McEliece
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How does it work ?

key pair (ek , dk ) 

Public-key Cryptography
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How does it work ?

ek

dk

Public-key Cryptography

Pub. Cloud/Directory
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How does it work ?

Public-key Cryptography
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How does it work ?

Public-key Cryptography

✓ Eve can’t decrypt; she only has the encryption key ek 

✓ Neither can Alice!
✓ It must be HARD to derive dk from ek
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Steps for PKE?

1. Bob creates a key pair

2. Bob gives everyone the public key 

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key

11
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Requirements for PKE

● The encryption function? 
o Must be easy to compute 

● The inverse, decryption? 
o Must be hard for anyone without the key vs.

12

Thus, we require so called “one-way” functions for this.



CS459 Fall 2024 

Requirements for PKE

● The encryption function? 
o Must be easy to compute 

● The inverse, decryption? 
o Must be hard for anyone without the key vs.

13

Thus, we require so called “one-way” functions for this.

But because of decryption, 
we need a “Trapdoor”

Image Credit: https://en.wikipedia.org/wiki/Trapdoor_function
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Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

14

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.



CS459 Fall 2024 

Prime Numbers

● Prime: a natural number that can only be divided by 1 or itself

● Primes and factorization: An integer number can be written as a 

unique product of prime numbers
o E.g., 1234567 = 127 * 9721

15

How to know if a number is prime? How to discover a number’s factors?

Run a primality test algorithm (Solovay-Strassen, 

Miller-Rabin, etc.)

Run a factorization algorithm (Pollard p-1, etc.)
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Textbook RSA

● High-level idea
○ It is easy to find large integers e, d, and n (=p.q), that satisfies:

(me)d ≡ m (mod n)

● Computational difficulty of the factoring problem
○ Given two large primes p.q = n, it is very hard to factor n.

16

Easy for me to pick e, d, and 

n that satisfy that equation

Ugh. I know e and n and (even m) 

extremely hard to find d!!!
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Textbook RSA

● Encryption:

C = me (mod n)

The ciphertext is equal to m multiplied by itself e times modulo n.

Public key: PubKey = (e, n)

17
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Textbook RSA

● Decryption:

m = Cd (mod n) = (me)d (mod n)= med (mod n)

Decryption relies on number d satisfying e.d = 1 (mod n), 
s.t. med (mod n) = m1 (mod n) = m 

○ In other words, d is the multiplicative inverse of e mod n

Private key: PrivKey = d (other numbers can be discarded)

18
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Key Generation (how to choose e and find d)

● Pick two random primes p and q, such that p.q = n

● Generate 𝜑(n) = (p-1).(q-1)
o We know all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

o 𝜑(n) is the order of the multiplicative group of units mudulo n

● Pick e as a random prime smaller than 𝜑(n) 
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1) 

● Generate d (the inverse of e mod 𝜑(n) ) 
o e.d = 1 mod 𝜑(n)
o Can be obtained via the extended Euclidean algorithm

19

*If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

20

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

21

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

22

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

23

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7   = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

24

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2

1 = 5 – 2 * 2

Euclidean Algorithm:

40 = 5 * 7 + 5
7   = 1 * 5 + 2

5   = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

25

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

2 = 7 – 1 * 5

Euclidean Algorithm:

40 = 5 * 7 + 5
7   = 1 * 5 + 2

5   = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7   = 1 * 5 + 2

5   = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

1 = 3 (40 - 5 * 7) - 2 * 7
1 = 3 * 40 - 17 * 7

5 = 40 – 5 * 7
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Extended Euclidean Algorithm (find d)

● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

27

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

1 = 3 (40 - 5 * 7) - 2 * 7
1 = 3 * 40 - 17 * 7
d = -17 = 23 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7   = 1 * 5 + 2

5   = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Textbook RSA (summary)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that 
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption:  C  = me mod n

7. Decryption:  m = Cd mod n

28
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Textbook RSA (summary)

29

✓ Note that the decryption works.

✓ This is textbook RSA, never do this!!
(we’ll see one of the reasons next)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that 
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption:  C  = me mod n

7. Decryption:  m = Cd mod n
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Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

30

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N 

c = me mod n

Nice!
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Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

31

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N 

c = me mod n

Applying e or d to encrypt does not really 

matter from a functionality perspective
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Attacking RSA(Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 

● d=1459

● c = 5274

32

I know e and n…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would
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Attacking RSA(Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 

● d=1459

● c = 5274

33

I know e and N…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would
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Factoring and RSA

You want to factor the public modulus?

● Good news, abundant literature on factoring 
algorithms

● Bad news, “appropriate” primes will not be 
defeated

34
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Factoring and RSA

35

Bad primes: easily factored

You want to factor the public modulus?

● Good news, abundant literature on factoring 
algorithms

● Bad news, “appropriate” primes will not be 
defeated
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Approach at Factoring

Strawman approach: 

● Try to divide a number by all numbers smaller than it until you find 
a number a that divides n

● Then, carry on to divide n with a+1 and so on…

● We end up with a list of factors of n

36

Way too computationally expensive.
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A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p.q > n, which is impossible

37
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A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p.q > n, which is impossible

38

Still too computationally expensive for large n.

n = 4096 bits requires about 2128 operations

AMD’s EPYC or Intel’s Xeon series, 3 teraflops/sec

≈ 13.8 billion years
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Attacking ”bad primes”

● Some primes are not suited to be used for RSA, as they 
make n easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o n = pr.qs and r > log p
o …

39

Let’s dive into an example…
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Fermat’s Little Theorem

● The theorem states:
o ap ≡ a mod p , for prime p and integer a

o Special case when p is co-prime with integer a
→ gcd(p,a) = 1,  ap-1 ≡ 1 mod p 

o This is also true for any multiple of p-1 (you keep wrapping around):
→ ak(p-1) ≡ 1 mod p

o We can rewrite this as:
ak(p-1) -1 = p.r

40
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Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) = 
= gcd(p.r, p.q) = 
= p

41
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Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) = 
= gcd(p.r, p.q) = 
= p

42

This allow us to find a factor of n
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Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) = 
= gcd(p.r, p.q) = 
= p

43

This allow us to find a factor of n

But how does this help us? We don't know p, 

nor do we have a way of calculating k.
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Inputs: Odd integer n and a “bound” b*

The Pollard p-1 Factoring Algorithm

1. a = 2

2. for j =2 to b
a. Do a  aj mod n

3. d = gcd(a-1,n)

4. if 1 < d < n
a. Then return (d)

b. Else return (“failure”)

44

● We guess k(p-1) by brute-force

● Place a to the power of integers 
with a lot of prime factors. Likely 
that the factors of p−1 are there.
→ Calculate ak! mod n

● Calculate gcd(ak(p-1) -1,n )

● If it is not equal to one, we found a 
factor

* Usually, a large prime
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The Pollard p-1 Factoring Algorithm

Let’s factor n = 713: 
Calculate a, a2, (a2)3, ((a2)3)4, …  and each GCD

45

1. a = 2

2. for j =2 to b
a. Do a  aj mod n

3. d = gcd(a-1,n)

4. if 1 < d < N
a. Then return (d)

b. Else return (“failure”)

713/31 = 23

23 * 31 = 713

a d

21 ≡ 2 mod 713, gcd(1,713)==1

22 ≡ 4 mod 713, gcd(3,713)==1

43 ≡ 64 mod 713, gcd(63,713)==1

644 ≡ 326 mod 713, gcd(325,713)==1

3265 ≡ 311 mod 713,  gcd(310,713)==31
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The case of “smooth” factors

● A prime is deemed smooth if it has multiple small 
factors

○ p-1 = p1
e1 . p2

e2 …  , ∀pi
ei s.t. pi

ei ≤B

● Pollard p-1 algorithm is useful when p is smooth

o Its iterative approach is more likely to include p −1 sooner rather than later
o i.e., if p is smooth, k! will includes small prime factors, making the 

exponentiation  ak! mod n reduce to 1 simplifying the calculation of the GCD.

46
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So far so good, but…

47
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o Compute n.
o Compute  C1 = Ence(m1). Verify the decryption works.
o Compute  C2 = Ence(m2). Verify the decryption works.
o Compute  m = Decd(C1 . C2). What is happening? Why ?

A: The decryption would yield the product of the original plaintexts. 
(m1)e . (m1)e ≡ (m1 . m1)e

Malleability: it is possible to transform a ciphertext into 

another ciphertext that decrypts to a transformation of the 
original plaintext.

This is typically (but not always!) undesirable.

Why not “Textbook RSA”?
Example: Given the following parameters: p=53, q=101, e=139, d=1459. 

Encryption: c  ≡ me (mod n), Decryption:  m = cd (mod n)
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Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m). 

o We intercept c. 

o Alice is convinced her textbook RSA is very secure, so she is willing to 

decrypt any ciphertext we send her (except for c).  
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Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m). 

o We intercept c. 

o Alice is convinced her textbook RSA is very secure, so she is willing to 

decrypt any ciphertext we send her (except for c).  

Goal: Ask Alice to decrypt something (other than c) that helps us guess m
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

I am so clever 

mwahaha
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m. 
We divide the result by 2, and we get m. 

I am so clever 

mwahaha

Example: given m=5, e=3, and n=33 → c1 = 26, c2 = 208 →m2 = 10  
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m. 
We divide the result by 2, and we get m. 

I am so clever 

mwahaha

✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things) 

✓ We can fix this with padding techniques (RSA-OAEP). 



CS459 Fall 2024 

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

54
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

55
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

56
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

57
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

58

I win.

Thank you 
deterministic 
algorithm
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Adversaries and their Goals

59

You’ve assumed 
my goal is the 
secret/private 
key…
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Adversaries and their Goals

60

You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…
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Adversaries and their Goals

61

You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…

We better figure this out.

Yup.
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Goal 1: Total Break

62

● Win the Symmetric key K

● Win Bob’s private key kb

● ()Can decrypt any ci for:  

ci = EncK(m) 

or 

ci = Enckb(m)

● All messages using 

compromised k 

revealed

● Unless detected game 

over
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Goal 2: Partial Break

63

● Decrypt a ciphertext c

(without the key)

● Learn some specific 

information about a 

message m from c

**Need to occur with non-negligible probability.

● Some (or a) message 

revealed
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Goal 3: Distinguishable Ciphertexts

64

● Pr {learn b ∈ {0,1}}

exceeds ½

● Distinguish  between 

Enc(m1) and Enc(m2) 

or 

between Enc(m) and 

Enc(random string) 

● The ciphertexts are 

leaking small/some 

information…
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Semantic Security of RSA

● We saw CCA against Naive RSA

● We showed IND-CPA on Naive RSA

65
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Fix it? Ciphertext Distinguishability

● If Enc( ) is deterministic, fail

● Thus, require some randomization

66

Goal: prove (given comp. assumptions) that no information regarding m 
is revealed in polynomial time by examining c =  Enc(m)

RSA-OAEP: Optimal Asymmetric Encryption Padding
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Practicality of Public-Key vs. Symmetric-Key 

67

1. Longer keys

2. Slower

3. Different keys for 

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and 

Dec(c)

Secure Channel 

Insecure Channel 
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Practicality of Public-Key vs. Symmetric-Key 

68

Secure Channel 

Insecure Channel 

1. Longer keys

2. Slower

3. Different keys for 

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and 

Dec(c)
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Public-Key sizes

69

o Recall that if there are no shortcuts, Eve would have to try 2128 iterations in 

order to read a message encrypted with a 128-bit key

o Unfortunately, all of the public-key methods we know do have shortcuts 

➢ Eve could read a message encrypted with a 128-bit RSA key with just 233 work, 

which is easy!

➢ Comparison of key sizes for roughly equal strength
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What cab be done? (Hybrid Cryptography)

We can get the best of both worlds: 

o Pick a random “128-bit” key K for a symmetric-key cryptosystem

o Encrypt the large message with the key K (e.g., using AES)

And then…

o Encrypt the key K using a public-key cryptosystem

o Send the encrypted message and the encrypted key to Bob

70

Hybrid cryptography is used in (many) applications on the internet today
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Knowledge Check!

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 

71

Q: How should Alice build the message efficiently? How does Bob recover m?
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Knowledge Check!

72

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don’t want to use it on m.

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 
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Knowledge Check!

73

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes c1 = EnceB(K), c2 = EK(m) and sends <c1||c2>.

Bob recovers K = DecdB(c1) and then m = DecK(c2)

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 
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Knowledge Check!

We know how to “send secret messages”, and Eve cannot do anything 

about it. What else is there to do? 

o Mallory can modify our encrypted messages in transit!

o Mallory won’t necessarily know what the message says, but can still change it in 

an undetectable way 

➢ e.g. bit-flipping attack on stream ciphers 

o This is counterintuitive, and often forgotten

74

Q: How do we make sure that Bob gets the same message Alice sent? 



Up next: More Cryptography…

75

Symmetric Asymmetric
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