
CS459/698
Privacy, Cryptography,

Network and Data Security
Public Key Cryptography (RSA)

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

CS459 Fall 2024

Assignment One

● Available on Learn today at 4pm

● Due October 3rd, 4pm

● Written and programming

2

CS459 Fall 2024

Cryptography Organization

3

Symmetric Asymmetric

Ciphers
Hash

Functions
Message

Auth. codes
PRFs PKE

Digital
Signatures

Key
Exchange

Organization display source: Doug Stebila

CS459 Fall 2024

Cryptography Organization

4

Symmetric Asymmetric

Ciphers
Hash

Functions
Message

Auth. codes
PRFs PKE

Digital
Signatures

Key
Exchange

Stream

Block

C

M-of-Op Improvements

CS459 Fall 2024

Cryptography Organization

5

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes

PRFs PKE
Digital

Signatures
Key

Exchange

Stream

Block

Ciphers

CS459 Fall 2024

Public-key Cryptography

6

o Invented (in public) in the 1970’s

o Also called Asymmetric Cryptography

o Allows Alice to send a secret message to Bob without any prearranged shared secret!

o In secret-key cryptography, the same (or a very similar) key encrypts the message and also

decrypts it

o In public-key cryptography, there’s one key for encryption, and a different key for decryption!

o Some common examples:

o RSA, ElGamal, ECC, NTRU, McEliece

CS459 Fall 2024 7

How does it work ?

key pair (ek , dk)

Public-key Cryptography

CS459 Fall 2024 8

How does it work ?

ek

dk

Public-key Cryptography

Pub. Cloud/Directory

CS459 Fall 2024 9

How does it work ?

Public-key Cryptography

CS459 Fall 2024 10

How does it work ?

Public-key Cryptography

✓ Eve can’t decrypt; she only has the encryption key ek

✓ Neither can Alice!
✓ It must be HARD to derive dk from ek

CS459 Fall 2024

Steps for PKE?

1. Bob creates a key pair

2. Bob gives everyone the public key

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key

11

CS459 Fall 2024

Requirements for PKE

● The encryption function?
o Must be easy to compute

● The inverse, decryption?
o Must be hard for anyone without the key vs.

12

Thus, we require so called “one-way” functions for this.

CS459 Fall 2024

Requirements for PKE

● The encryption function?
o Must be easy to compute

● The inverse, decryption?
o Must be hard for anyone without the key vs.

13

Thus, we require so called “one-way” functions for this.

But because of decryption,
we need a “Trapdoor”

Image Credit: https://en.wikipedia.org/wiki/Trapdoor_function

CS459 Fall 2024

Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

14

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

CS459 Fall 2024

Prime Numbers

● Prime: a natural number that can only be divided by 1 or itself

● Primes and factorization: An integer number can be written as a

unique product of prime numbers
o E.g., 1234567 = 127 * 9721

15

How to know if a number is prime? How to discover a number’s factors?

Run a primality test algorithm (Solovay-Strassen,

Miller-Rabin, etc.)

Run a factorization algorithm (Pollard p-1, etc.)

CS459 Fall 2024

Textbook RSA

● High-level idea
○ It is easy to find large integers e, d, and n (=p.q), that satisfies:

(me)d ≡ m (mod n)

● Computational difficulty of the factoring problem
○ Given two large primes p.q = n, it is very hard to factor n.

16

Easy for me to pick e, d, and

n that satisfy that equation

Ugh. I know e and n and (even m)

extremely hard to find d!!!

CS459 Fall 2024

Textbook RSA

● Encryption:

C = me (mod n)

The ciphertext is equal to m multiplied by itself e times modulo n.

Public key: PubKey = (e, n)

17

CS459 Fall 2024

Textbook RSA

● Decryption:

m = Cd (mod n) = (me)d (mod n)= med (mod n)

Decryption relies on number d satisfying e.d = 1 (mod n),
s.t. med (mod n) = m1 (mod n) = m

○ In other words, d is the multiplicative inverse of e mod n

Private key: PrivKey = d (other numbers can be discarded)

18

CS459 Fall 2024

Key Generation (how to choose e and find d)

● Pick two random primes p and q, such that p.q = n

● Generate 𝜑(n) = (p-1).(q-1)
o We know all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

o 𝜑(n) is the order of the multiplicative group of units mudulo n

● Pick e as a random prime smaller than 𝜑(n)
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1)

● Generate d (the inverse of e mod 𝜑(n))
o e.d = 1 mod 𝜑(n)
o Can be obtained via the extended Euclidean algorithm

19

*If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

20

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

21

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

22

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

23

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

24

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2

1 = 5 – 2 * 2

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

25

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

2 = 7 – 1 * 5

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS459 Fall 2024

Extended Euclidean Algorithm

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

26

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

1 = 3 (40 - 5 * 7) - 2 * 7
1 = 3 * 40 - 17 * 7

5 = 40 – 5 * 7

CS459 Fall 2024

Extended Euclidean Algorithm (find d)

● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r

is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

27

Say n = 40, e = 7

e.d = 1 mod 𝜑(n)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 - 1 * 5)

1 = 5 - 2 * 7 + 2 * 5
1 = 3 * 5 - 2 * 7

1 = 3 (40 - 5 * 7) - 2 * 7
1 = 3 * 40 - 17 * 7
d = -17 = 23 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS459 Fall 2024

Textbook RSA (summary)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption: C = me mod n

7. Decryption: m = Cd mod n

28

CS459 Fall 2024

Textbook RSA (summary)

29

✓ Note that the decryption works.

✓ This is textbook RSA, never do this!!
(we’ll see one of the reasons next)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption: C = me mod n

7. Decryption: m = Cd mod n

CS459 Fall 2024

Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

30

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N

c = me mod n

Nice!

CS459 Fall 2024

Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

31

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N

c = me mod n

Applying e or d to encrypt does not really

matter from a functionality perspective

CS459 Fall 2024

Attacking RSA(Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139

● d=1459

● c = 5274

32

I know e and n…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would

CS459 Fall 2024

Attacking RSA(Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139

● d=1459

● c = 5274

33

I know e and N…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would

CS459 Fall 2024

Factoring and RSA

You want to factor the public modulus?

● Good news, abundant literature on factoring
algorithms

● Bad news, “appropriate” primes will not be
defeated

34

CS459 Fall 2024

Factoring and RSA

35

Bad primes: easily factored

You want to factor the public modulus?

● Good news, abundant literature on factoring
algorithms

● Bad news, “appropriate” primes will not be
defeated

CS459 Fall 2024

Approach at Factoring

Strawman approach:

● Try to divide a number by all numbers smaller than it until you find
a number a that divides n

● Then, carry on to divide n with a+1 and so on…

● We end up with a list of factors of n

36

Way too computationally expensive.

CS459 Fall 2024

A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p.q > n, which is impossible

37

CS459 Fall 2024

A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p.q > n, which is impossible

38

Still too computationally expensive for large n.

n = 4096 bits requires about 2128 operations

AMD’s EPYC or Intel’s Xeon series, 3 teraflops/sec

≈ 13.8 billion years

CS459 Fall 2024

Attacking ”bad primes”

● Some primes are not suited to be used for RSA, as they
make n easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o n = pr.qs and r > log p
o …

39

Let’s dive into an example…

CS459 Fall 2024

Fermat’s Little Theorem

● The theorem states:
o ap ≡ a mod p , for prime p and integer a

o Special case when p is co-prime with integer a
→ gcd(p,a) = 1, ap-1 ≡ 1 mod p

o This is also true for any multiple of p-1 (you keep wrapping around):
→ ak(p-1) ≡ 1 mod p

o We can rewrite this as:
ak(p-1) -1 = p.r

40

CS459 Fall 2024

Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) =
= gcd(p.r, p.q) =
= p

41

CS459 Fall 2024

Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) =
= gcd(p.r, p.q) =
= p

42

This allow us to find a factor of n

CS459 Fall 2024

Can we use F.L.T to find factors of N?

● Consider we have n = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, n) =
= gcd(p.r, p.q) =
= p

43

This allow us to find a factor of n

But how does this help us? We don't know p,

nor do we have a way of calculating k.

CS459 Fall 2024

Inputs: Odd integer n and a “bound” b*

The Pollard p-1 Factoring Algorithm

1. a = 2

2. for j =2 to b
a. Do a aj mod n

3. d = gcd(a-1,n)

4. if 1 < d < n
a. Then return (d)

b. Else return (“failure”)

44

● We guess k(p-1) by brute-force

● Place a to the power of integers
with a lot of prime factors. Likely
that the factors of p−1 are there.
→ Calculate ak! mod n

● Calculate gcd(ak(p-1) -1,n)

● If it is not equal to one, we found a
factor

* Usually, a large prime

CS459 Fall 2024

The Pollard p-1 Factoring Algorithm

Let’s factor n = 713:
Calculate a, a2, (a2)3, ((a2)3)4, … and each GCD

45

1. a = 2

2. for j =2 to b
a. Do a aj mod n

3. d = gcd(a-1,n)

4. if 1 < d < N
a. Then return (d)

b. Else return (“failure”)

713/31 = 23

23 * 31 = 713

a d

21 ≡ 2 mod 713, gcd(1,713)==1

22 ≡ 4 mod 713, gcd(3,713)==1

43 ≡ 64 mod 713, gcd(63,713)==1

644 ≡ 326 mod 713, gcd(325,713)==1

3265 ≡ 311 mod 713, gcd(310,713)==31

CS459 Fall 2024

The case of “smooth” factors

● A prime is deemed smooth if it has multiple small
factors

○ p-1 = p1
e1 . p2

e2 … , ∀pi
ei s.t. pi

ei ≤B

● Pollard p-1 algorithm is useful when p is smooth

o Its iterative approach is more likely to include p −1 sooner rather than later
o i.e., if p is smooth, k! will includes small prime factors, making the

exponentiation ak! mod n reduce to 1 simplifying the calculation of the GCD.

46

CS459 Fall 2024

So far so good, but…

47

CS459 Fall 2024 48

o Compute n.
o Compute C1 = Ence(m1). Verify the decryption works.
o Compute C2 = Ence(m2). Verify the decryption works.
o Compute m = Decd(C1 . C2). What is happening? Why ?

A: The decryption would yield the product of the original plaintexts.
(m1)e . (m1)e ≡ (m1 . m1)e

Malleability: it is possible to transform a ciphertext into

another ciphertext that decrypts to a transformation of the
original plaintext.

This is typically (but not always!) undesirable.

Why not “Textbook RSA”?
Example: Given the following parameters: p=53, q=101, e=139, d=1459.

Encryption: c ≡ me (mod n), Decryption: m = cd (mod n)

CS459 Fall 2024 49

Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m).

o We intercept c.

o Alice is convinced her textbook RSA is very secure, so she is willing to

decrypt any ciphertext we send her (except for c).

CS459 Fall 2024 50

Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m).

o We intercept c.

o Alice is convinced her textbook RSA is very secure, so she is willing to

decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

CS459 Fall 2024 51

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

I am so clever

mwahaha

CS459 Fall 2024 52

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m.
We divide the result by 2, and we get m.

I am so clever

mwahaha

Example: given m=5, e=3, and n=33 → c1 = 26, c2 = 208 →m2 = 10

CS459 Fall 2024 53

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m.
We divide the result by 2, and we get m.

I am so clever

mwahaha

✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things)

✓ We can fix this with padding techniques (RSA-OAEP).

CS459 Fall 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

54

CS459 Fall 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

55

CS459 Fall 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

56

CS459 Fall 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

57

CS459 Fall 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

58

I win.

Thank you
deterministic
algorithm

CS459 Fall 2024

Adversaries and their Goals

59

You’ve assumed
my goal is the
secret/private
key…

CS459 Fall 2024

Adversaries and their Goals

60

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

CS459 Fall 2024

Adversaries and their Goals

61

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

We better figure this out.

Yup.

CS459 Fall 2024

Goal 1: Total Break

62

● Win the Symmetric key K

● Win Bob’s private key kb

● ()Can decrypt any ci for:

ci = EncK(m)

or

ci = Enckb(m)

● All messages using

compromised k

revealed

● Unless detected game

over

CS459 Fall 2024

Goal 2: Partial Break

63

● Decrypt a ciphertext c

(without the key)

● Learn some specific

information about a

message m from c

**Need to occur with non-negligible probability.

● Some (or a) message

revealed

CS459 Fall 2024

Goal 3: Distinguishable Ciphertexts

64

● Pr {learn b ∈ {0,1}}

exceeds ½

● Distinguish between

Enc(m1) and Enc(m2)

or

between Enc(m) and

Enc(random string)

● The ciphertexts are

leaking small/some

information…

CS459 Fall 2024

Semantic Security of RSA

● We saw CCA against Naive RSA

● We showed IND-CPA on Naive RSA

65

CS459 Fall 2024

Fix it? Ciphertext Distinguishability

● If Enc() is deterministic, fail

● Thus, require some randomization

66

Goal: prove (given comp. assumptions) that no information regarding m
is revealed in polynomial time by examining c = Enc(m)

RSA-OAEP: Optimal Asymmetric Encryption Padding

CS459 Fall 2024

Practicality of Public-Key vs. Symmetric-Key

67

1. Longer keys

2. Slower

3. Different keys for

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and

Dec(c)

Secure Channel

Insecure Channel

CS459 Fall 2024

Practicality of Public-Key vs. Symmetric-Key

68

Secure Channel

Insecure Channel

1. Longer keys

2. Slower

3. Different keys for

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and

Dec(c)

CS459 Fall 2024

Public-Key sizes

69

o Recall that if there are no shortcuts, Eve would have to try 2128 iterations in

order to read a message encrypted with a 128-bit key

o Unfortunately, all of the public-key methods we know do have shortcuts

➢ Eve could read a message encrypted with a 128-bit RSA key with just 233 work,

which is easy!

➢ Comparison of key sizes for roughly equal strength

CS459 Fall 2024

What cab be done? (Hybrid Cryptography)

We can get the best of both worlds:

o Pick a random “128-bit” key K for a symmetric-key cryptosystem

o Encrypt the large message with the key K (e.g., using AES)

And then…

o Encrypt the key K using a public-key cryptosystem

o Send the encrypted message and the encrypted key to Bob

70

Hybrid cryptography is used in (many) applications on the internet today

CS459 Fall 2024

Knowledge Check!

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

71

Q: How should Alice build the message efficiently? How does Bob recover m?

CS459 Fall 2024

Knowledge Check!

72

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don’t want to use it on m.

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

CS459 Fall 2024

Knowledge Check!

73

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes c1 = EnceB(K), c2 = EK(m) and sends <c1||c2>.

Bob recovers K = DecdB(c1) and then m = DecK(c2)

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

CS459 Fall 2024

Knowledge Check!

We know how to “send secret messages”, and Eve cannot do anything

about it. What else is there to do?

o Mallory can modify our encrypted messages in transit!

o Mallory won’t necessarily know what the message says, but can still change it in

an undetectable way

➢ e.g. bit-flipping attack on stream ciphers

o This is counterintuitive, and often forgotten

74

Q: How do we make sure that Bob gets the same message Alice sent?

Up next: More Cryptography…

75

Symmetric Asymmetric

Ciphers
Hash

Functions
Message

Auth. codes
PRFs

Digital
Signatures

Key
Exchange

Stream

Block

RSA

PKE

IND-CCA security types

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: Assignment One
	Slide 3: Cryptography Organization
	Slide 4: Cryptography Organization
	Slide 5: Cryptography Organization
	Slide 6: Public-key Cryptography
	Slide 7: Public-key Cryptography
	Slide 8: Public-key Cryptography
	Slide 9: Public-key Cryptography
	Slide 10: Public-key Cryptography
	Slide 11: Steps for PKE?
	Slide 12: Requirements for PKE
	Slide 13: Requirements for PKE
	Slide 14: Textbook RSA
	Slide 15: Prime Numbers
	Slide 16: Textbook RSA
	Slide 17: Textbook RSA
	Slide 18: Textbook RSA
	Slide 19: Key Generation (how to choose e and find d)
	Slide 20: Extended Euclidean Algorithm
	Slide 21: Extended Euclidean Algorithm
	Slide 22: Extended Euclidean Algorithm
	Slide 23: Extended Euclidean Algorithm
	Slide 24: Extended Euclidean Algorithm
	Slide 25: Extended Euclidean Algorithm
	Slide 26: Extended Euclidean Algorithm
	Slide 27: Extended Euclidean Algorithm (find d)
	Slide 28: Textbook RSA (summary)
	Slide 29: Textbook RSA (summary)
	Slide 30: Example (Tiny RSA)
	Slide 31: Example (Tiny RSA)
	Slide 32: Attacking RSA(Bad primes)
	Slide 33: Attacking RSA(Bad primes)
	Slide 34: Factoring and RSA
	Slide 35: Factoring and RSA
	Slide 36: Approach at Factoring
	Slide 37: A Smarter Approach at Factoring
	Slide 38: A Smarter Approach at Factoring
	Slide 39: Attacking ”bad primes”
	Slide 40: Fermat’s Little Theorem
	Slide 41: Can we use F.L.T to find factors of N?
	Slide 42: Can we use F.L.T to find factors of N?
	Slide 43: Can we use F.L.T to find factors of N?
	Slide 44: The Pollard p-1 Factoring Algorithm
	Slide 45: The Pollard p-1 Factoring Algorithm
	Slide 46: The case of “smooth” factors
	Slide 47: So far so good, but…
	Slide 48: Why not “Textbook RSA”?
	Slide 49: Attacking RSA (CCA)
	Slide 50: Attacking RSA (CCA)
	Slide 51: Attacking RSA (CCA)
	Slide 52: Attacking RSA (CCA)
	Slide 53: Attacking RSA (CCA)
	Slide 54: Show Naive RSA Encryption is not IND-CPA Secure
	Slide 55: Show Naive RSA Encryption is not IND-CPA Secure
	Slide 56: Show Naive RSA Encryption is not IND-CPA Secure
	Slide 57: Show Naive RSA Encryption is not IND-CPA Secure
	Slide 58: Show Naive RSA Encryption is not IND-CPA Secure
	Slide 59: Adversaries and their Goals
	Slide 60: Adversaries and their Goals
	Slide 61: Adversaries and their Goals
	Slide 62: Goal 1: Total Break
	Slide 63: Goal 2: Partial Break
	Slide 64: Goal 3: Distinguishable Ciphertexts
	Slide 65: Semantic Security of RSA
	Slide 66: Fix it? Ciphertext Distinguishability
	Slide 67: Practicality of Public-Key vs. Symmetric-Key
	Slide 68: Practicality of Public-Key vs. Symmetric-Key
	Slide 69: Public-Key sizes
	Slide 70: What cab be done? (Hybrid Cryptography)
	Slide 71: Knowledge Check!
	Slide 72: Knowledge Check!
	Slide 73: Knowledge Check!
	Slide 74: Knowledge Check!
	Slide 75: Up next: More Cryptography…

