CS459/698 Privacy, Cryptography, Network and Data Security

Public Key Cryptography (RSA)

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Assignment One

- Available on Learn today at 4pm
- Due **October 3rd, 4pm**
- Written and programming

Cryptography Organization

Cryptography Organization

CS459 Fall 2024

Cryptography Organization

CS459 Fall 2024

- \circ Invented (in public) in the 1970's
- o Also called Asymmetric Cryptography
	- o Allows Alice to send a secret message to Bob without any prearranged shared secret!
	- \circ In secret-key cryptography, the same (or a very similar) key encrypts the message and also \mathbb{G} decrypts it
	- \circ In public-key cryptography, there's one key for encryption, and a different key for decryption!
- o Some common examples:
	- o RSA, ElGamal, ECC, NTRU, McEliece

How does it work ?

CS459 Fall 2024 ⁷

How does it work ?

How does it work ?

- \checkmark Eve can't decrypt; she only has the encryption key e_k
- ✓ Neither can Alice!
- \checkmark It must be HARD to derive d_{k} from e_{k}

CS459 Fall 2024 10

Steps for PKE?

- 1. Bob creates a key pair
- 2. Bob gives everyone the public key
- 3. Alice encrypts m and sends it
- 4. Bob decrypts using private key
- 5. Eve and Alice can't decrypt, only have encryption key

Requirements for PKE

- The encryption function?
	- o Must be easy to compute
- The inverse, decryption?
	- O Must be hard for anyone without the key $\sum_{i=1}^{\infty}$ vs.

Thus, we require so called "one-way" functions for this.

9

Requirements for PKE

- The encryption function?
	- Must be easy to compute
- The inverse, decryption?
	- O Must be hard for anyone without the key \overline{w} vs.

Thus, we require so called "one-way" functions for this.

But because of decryption, we need a "Trapdoor"

CS459 Fall 2024

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

CS459 Fall 2024

Prime Numbers

- **Prime:** a natural number that can only be divided by 1 or itself
- **Primes and factorization:** An integer number can be written as a unique product of prime numbers
	- \circ E.g., 1234567 = 127 * 9721

Run a primality test algorithm (Solovay-Strassen, Miller-Rabin, etc.)

How to know if a number is prime? How to discover a number's factors?

Run a factorization algorithm (Pollard p-1, etc.)

- High-level idea
	- \circ It is easy to find large integers e, d, and n (=p.q), that satisfies:

$(m^e)^d \equiv m \pmod{n}$

- Computational difficulty of the **factoring problem**
	- \circ Given two large primes p.g = n, it is very hard to factor n.

● Encryption:

$$
C = me (mod n)
$$

The ciphertext is equal to **m** multiplied by itself **e** times modulo **n**.

Public key: $Pub_{Key} = (**e**, **n**)$

• Decryption:

 $m = C^d$ (mod n) = (m^e)^d (mod n)= m^{ed} (mod n)

Decryption relies on number **d** satisfying **e**.**d** = 1 (mod **n**), s.t. m^{ed} (mod n) = m¹ (mod n) = m

○ In other words, **d** is the multiplicative inverse of **e** mod **n**

Private key: Priv_{Key} = d (other numbers can be discarded)

Key Generation (how to choose **e** and find **d**)

- Pick two random primes **p** and **q**, such that **p**.**q** = **n**
- Generate $\varphi(n) = (p-1).(q-1)$
	- We know all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible
	- \bigcirc φ (n) is the order of the multiplicative group of units mudulo n
- Pick **e** as a random prime smaller than φ (n)
	- **e** chosen as <u>relative prime</u> to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1)
- Generate **d** (the inverse of e mod $\varphi(n)$)
	- \circ **e.d** = 1 mod φ (n)
	- o Can be obtained via the extended Euclidean algorithm

*If gcd(a,b) = 1, then we say that a and b are **relatively prime** (or coprime).

CS459 Fall 2024

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

Say n = 40, e = 7

e.d = 1 mod $\varphi(n)$

 $7d = 1 \mod 40$

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

Say n = 40, e = 7 Euclidean Algorithm:

e.d = 1 mod $\varphi(n)$ $40 = 5 * 7 + 5$

 $7d = 1 \mod 40$

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

Say n = 40, e = 7 Euclidean Algorithm:

e.d = 1 mod $\varphi(n)$ $40 = 5 * 7 + 5$ $7 = 1 \cdot 5 + 2$

 $7d = 1 \mod 40$

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

 $gcd(7, 40) = 1$

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

Extended Euclidean Algorithm (find **d**)

- Given two integers **a** and **b**, the algorithm finds integers **r** and **s** such that $r.a + s.b = gcd(a, b)$. When **a** and **b** are coprime, $gcd(a, b) = 1$, and r is the modular multiplicative inverse of **a** modulo **b**.
- **Idea:** start with the GCD and recursively work your way backwards.

CS459 Fall 2024

Textbook RSA (summary)

- 1. Choose two **"large primes"** *p* and *q* (secretly)
- 2. Compute $n = p*q$
- 3. "Choose" value *e* and find *d* such that
	- O $(m^e)^d \equiv m \mod n$
- **4. Public key**: (e, n)
- **5. Private key**: d
- 6. Encryption: $C = m^e$ mod n
- 7. Decryption: $m = C^d \mod n$

Textbook RSA (summary)

- 1. Choose two **"large primes"** *p* and *q* (secretly)
- 2. Compute $n = p*q$
- 3. "Choose" value *e* and find *d* such that
	- O $(m^e)^d \equiv m \mod n$
- **4. Public key**: (e, n)
- **5. Private key**: d
- 6. Encryption: $C = m^e$ mod n
- 7. Decryption: $m = C^d \mod n$
- \checkmark Note that the decryption works.
- This is textbook RSA, never do this!! (we'll see one of the reasons next)

Example (Tiny RSA)

Parameters:

- p=53, q=101, n=5353
- φ (n) = (53-1).(101-1) = 5200
- \bullet $e=139$ (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

Encryption: c = me mod n

 $C = 20^{139}$ mod 5353 = 5274

Decryption: m = c^d mod N

 $m = 5274^{1459} \text{ mod } 5353 = 20$

Example (Tiny RSA)

Parameters:

- $p=53$, q=101, n=5353
- φ (n) = (53-1).(101-1) = 5200
- \bullet $e=139$ (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

Encryption: c = me mod n

 $C = 20^{139}$ mod 5353 = 5274

Decryption: m = c^d mod N

$$
m = 5274^{1459} \mod 5353 = 20
$$

Applying **e** or **d** to encrypt does not really matter from a functionality perspective

CS459 Fall 2024

Attacking RSA(Bad primes)

I know **e** and **n**… What can I do to find **d**?

Attack idea:

- Factor **n** to obtain **p** and **q**
- Obtain φ (n)
- $-$ From $\varphi(n)$ and **e**, generate **d** just like Alice would

Parameters:

- \bullet p=53, q=101, n=5353
- ϕ (n) = (53-1).(101-1) = 5200
- $e = 139$
- \bullet d=1459
- \bullet c = 5274

Attacking RSA(Bad primes)

Parameters:

 $e = 139$

 $\overline{\textbf{S}}$ $\overline{\textbf{S}}$ $\overline{\textbf{S}}$

● c = 5274

 $p=53$, q=101, **n=5353**

 φ (n) = (53-1).(101-1) = 5200

Attack idea:

h Factor **n** to obta_n p and

I know **e** and **N**…

What can I do to find **d**?

- Obtain φ (n)
- ϵ From φ (n) and **e**, generate **d** just like Alice would

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Bad primes: easily factored

Approach at Factoring

Strawman approach:

- Try to divide a number by all numbers smaller than it until you find a number **a** that divides n
- Then, carry on to divide n with **a+1** and so on...
- We end up with a list of factors of n

Way too computationally expensive.
A Smarter Approach at Factoring

- We only need to test prime numbers (not every $a < n$)
- We only need to test those smaller than \sqrt{n} \circ If both p and q are larger than n, then $p,q > n$, which is impossible

A Smarter Approach at Factoring

- We only need to test prime numbers (not every $a < n$)
- We only need to test those smaller than \sqrt{n} If both p and q are larger than n, then $p,q > n$, which is impossible

Still too computationally expensive for large n.

n = 4096 bits requires about 2¹²⁸operations

AMD's EPYC or Intel's Xeon series, 3 teraflops/sec ≈ 13.8 billion years

CS459 Fall 2024

Attacking "bad primes"

• Some primes are not suited to be used for RSA, as they make n easier to factor

● Examples:

- o Either **p** or **q** are small numbers
- o **p** and **q** are too close together
- o **p** and **q** are both close to 2^b , where b is a given bound
- \circ $n = p^{r} . q^{s}$ and $r > log p$
- o …

Let's dive into an example…

Fermat's Little Theorem

- The theorem states:
	- o a ^p≡ a mod p , for prime **p** and integer **a**
	- o Special case when **p** is co-prime with integer **a** \rightarrow gcd(p,a) = 1, a^{p-1} \equiv 1 mod p
	- \circ This is also true for any multiple of p-1 (you keep wrapping around): \rightarrow a^{k(p-1)} = 1 mod p
	- \circ We can rewrite this as: $a^{k(p-1)} - 1 = p \cdot r$

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
	- o Recall: $a^{k(p-1)} - 1 = p \cdot r$
	- \circ Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $=$ gcd($p.r, p.q$) = $= p$

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
	- o Recall: $a^{k(p-1)} - 1 = p \cdot r$
	- \circ Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $=$ gcd($p.r, p.q$) = $= p$

This allow us to find a factor of **n**

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
	- o Recall: $a^{k(p-1)} - 1 = p \cdot r$
	- \circ Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $=$ gcd($p.r, p.q$) = $= p$

This allow us to find a factor of **n**

But how does this help us? We don't know **p**, nor do we have a way of calculating **k**.

The Pollard p-1 Factoring Algorithm

- We guess **k(p-1)** by brute-force
- Place **a** to the power of integers with a lot of prime factors. Likely that the factors of p−1 are there. \rightarrow Calculate a^{k!} mod n
- \bullet Calculate gcd($a^{k(p-1)}$ -1,n)
- If it is not equal to one, we found a factor

Inputs: Odd integer n and a "bound" b*

1.
$$
a = 2
$$

\n2. for $j = 2$ to b
\na. Do a \leftarrow a^j mod n
\n3. $d = gcd(a-1, n)$
\n4. if $1 < d < n$
\na. Then return (d)
\nb. Else return ("failure")

The Pollard p-1 Factoring Algorithm

Let's factor n = 713: Calculate a, a^2 , $(a^2)^3$, $((a^2)^3)^4$, ... and each GCD **a d** $2^1 \equiv 2 \mod 713$, $gcd(1,713)=1$ $2^2 \equiv 4 \mod 713$, $gcd(3,713)=1$ $4^3 \equiv 64 \mod 713$. $gcd(63,713)=1$ $64^4 \equiv 326 \mod 713$, gcd(325,713)==1 $326^5 \equiv 311 \mod 713$, gcd(310,713)==**31**

1. $a = 2$ 2. for $j = 2$ to b a. Do a ← aʲ mod n 3. $d = gcd(a-1, n)$ 4. if $1 < d < N$ a. Then return (d) b. Else return ("failure") 713/31 = 23 **23 * 31 = 713**

The case of "smooth" factors

- A prime is deemed smooth if it has multiple small factors
	- \circ **p-1** = $p_1^{\text{e1}} \cdot p_2^{\text{e2}} \dots$, $\forall p_i^{\text{e1}} \text{ s.t. } p_i^{\text{e1}} \leq B$

● Pollard p-1 algorithm is useful when **p** is smooth

- o Its iterative approach is more likely to include **p −1** sooner rather than later
- i.e., if p is smooth, k! will includes small prime factors, making the exponentiation a^{k!} mod n reduce to 1 simplifying the calculation of the GCD.

So far so good, but…

Why not "Textbook RSA"?

Example: Given the following parameters: p=53, q=101, e=139, d=1459. **Encryption:** $c \equiv m^e \pmod{n}$, **Decryption:** $m = c^d \pmod{n}$

- Compute n.
- \circ Compute C₁ = Enc_e(m₁). Verify the decryption works.
- \circ Compute C₂ = Enc_e(m₂). Verify the decryption works.
- **Compute m = Dec**_d(C_1 , C_2). What is happening? Why?

A: The decryption would yield the product of the original plaintexts. $(m_1)^e$. $(m_1)^e \equiv (m_1 \, m_1)^e$

Malleability: it is possible to transform a ciphertext into another ciphertext that decrypts to a transformation of the original plaintext.

This is typically (but not always!) undesirable.

Chosen Ciphertext Attack (CCA)

- \circ We are Eve. Alice is using RSA and her public key is (e, n).
- \circ Bob sends secret message m, encrypted as c = Enc $_{\rm e}$ (m).
- We intercept c.

Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

 $\bf \odot$

Attacking RSA (CCA)

Chosen Ciphertext Attack (CCA)

- \circ We are Eve. Alice is using RSA and her public key is (e, n).
- \circ Bob sends secret message m, encrypted as c = Enc $_{\rm e}$ (m).
- o We intercept c.

o Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

Chosen Ciphertext Attack (CCA): Solution

- \circ Alice's public key is (e, n).
- \circ Bob sends c_1 = Enc_e(m). We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

I am so clever

Chosen Ciphertext Attack (CCA): Solution

- \circ Alice's public key is (e, n).
- \circ Bob sends c_1 = Enc_e(m). We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

I am so clever mwahaha

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

Example: given m=5, e=3, and n=33 \rightarrow c₁ = 26, c₂ = 208 \rightarrow m₂ = 10

Chosen Ciphertext Attack (CCA): Solution

- \circ Alice's public key is (e, n).
- \circ Bob sends c_1 = Enc_e(m). We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

I am so clever mwahaha

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

- Textbook RSA is vulnerable against chosen ciphertext attacks (among other things)
- We can fix this with padding techniques (RSA-OAEP).

1. Eve produces two plaintexts, m_0 and m_1

Code

CS459 Fall 2024

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$

If
$$
c^* = c
$$
 then Eve knows $m_b = m_1$
If $c^* \neq c$ then Eve knows $m_b = m_0$

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$

If
$$
c^* = c
$$
 then Eve knows $m_b = m_1$
If $c^* \neq c$ then Eve knows $m_b = m_0$

Adversaries and their Goals

Adversaries and their Goals

CS459 Fall 2024

Adversaries and their Goals

CS459 Fall 2024

Goal 1: Total Break

- Win the Symmetric key K
- Win Bob's private key k_b
- ()Can decrypt any *cⁱ for:*

 c_i = $Enc_K(m)$ or c_i = Enc_{kb}(m)

- All messages using compromised k revealed
- Unless **detected** game over

Goal 2: Partial Break

- Decrypt **a ciphertext** *c* (without the key)
- Learn **some** specific information about a message *m* from *c*

**Need to occur with non-negligible probability.

Goal 3: Distinguishable Ciphertexts

• The ciphertexts are leaking small/some information…

Semantic Security of RSA

- We saw CCA against Naive RSA
- We showed IND-CPA on Naive RSA

CS459 Fall 2024

Fix it? Ciphertext Distinguishability

Goal: prove (given comp. assumptions) that no information regarding *m* is revealed in polynomial time by examining *c = Enc(m)*

- If Enc() is deterministic, fail
- Thus, require some randomization

RSA-OAEP: Optimal Asymmetric Encryption Padding

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and

Dec(c)

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and

Dec(c)

Public-Key sizes

- \circ Recall that if there are no shortcuts, Eve would have to try 2^{128} iterations in order to read a message encrypted with a 128-bit key
- \circ Unfortunately, all of the public-key methods we know do have shortcuts
	- \triangleright Eve could read a message encrypted with a 128-bit RSA key with just 2^{33} work, which is easy!
	- \triangleright Comparison of key sizes for roughly equal strength

What cab be done? (Hybrid Cryptography)

We can get the best of both worlds:

- o Pick a random "128-bit" key K for a symmetric-key cryptosystem
- \circ Encrypt the large message with the key K (e.g., using AES)

And then…

- \circ Encrypt the key K using a public-key cryptosystem
- o Send the encrypted message and the encrypted key to Bob

Hybrid cryptography is used in (many) applications on the internet today

Knowledge Check!

) Public: (e_B, d_B) Secret: K Secret: ?

- \circ Enc/Dec functions: $Enc_{key}(*)$, Dec_{key}(*)
- o Alice wants to send a **large** message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

Knowledge Check!

) Public: (e_B, d_B) Secret: K Secret: ?

- \circ Enc/Dec functions: $Enc_{key}(*)$, Dec_{key}(*)
- Alice wants to send a **large** message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don't want to use it on m.
Knowledge Check!

) Public: (e_B, d_B) Secret: K Secret: ?

- \circ Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a **large** message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes c_1 = $Enc_{eB}(K)$, c_2 = $E_K(m)$ and sends $<$ c_1 || c_2 $>$. Bob recovers $K = Dec_{dB}(c_1)$ and then $m = Dec_{K}(c_2)$

Knowledge Check!

We know how to "send secret messages", and Eve cannot do anything about it. What else is there to do?

- o Mallory can modify our encrypted messages in transit!
- o Mallory won't necessarily know what the message says, but can still change it in an undetectable way
	- \geq e.g. bit-flipping attack on stream ciphers
- \circ This is counterintuitive, and often forgotten

Q: How do we make sure that Bob gets the same message Alice sent?

