CS459/698 Privacy, Cryptography, Network and Data Security

Public Key Cryptography (RSA)

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Assignment One

- Available on Learn today at 4pm
- Due October 3rd, 4pm
- Written and programming

Cryptography Organization

Cryptography Organization

Cryptography Organization

- Invented (in public) in the 1970's
- Also called Asymmetric Cryptography
 - O Allows Alice to send a secret message to Bob without any prearranged shared secret!
 - In secret-key cryptography, the same (or a very similar) key encrypts the message and also decrypts it
 - O In public-key cryptography, there's one key for encryption, and a different key for decryption!
- Some common examples:
 - o RSA, ElGamal, ECC, NTRU, McEliece

How does it work?

How does it work?

How does it work?

- \checkmark Eve can't decrypt; she only has the encryption key e_k
- ✓ Neither can Alice!
- \checkmark It must be HARD to derive d_k from e_k

Steps for PKE?

- 1. Bob creates a key pair
- 2. Bob gives everyone the public key
- 3. Alice encrypts m and sends it
- 4. Bob decrypts using private key
- 5. Eve and Alice can't decrypt, only have encryption key

Requirements for PKE

- The encryption function?
 - O Must be easy to compute
- The inverse, decryption?
 - O Must be hard for anyone without the key

Thus, we require so called "one-way" functions for this.

 \bigcirc

Requirements for PKE

- The encryption function?
 - O Must be easy to compute
- The inverse, decryption?
 - O Must be hard for anyone without the key

Thus, we require so called "one-way" functions for this.

But because of decryption, we need a "Trapdoor"

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Fun (?) Facts:

• RSA was the first popular public-key encryption method, published in 1977

Prime Numbers

- **Prime:** a natural number that can only be divided by 1 or itself
- **Primes and factorization:** An integer number can be written as a unique product of prime numbers
 - E.g., 1234567 = 127 * 9721

How to know if a number is prime?

Run a primality test algorithm (Solovay-Strassen, Miller-Rabin, etc.)

How to discover a number's factors?

Run a factorization algorithm (Pollard p-1, etc.)

- High-level idea
 - It is easy to find large integers e, d, and n (=p.q), that satisfies:

$(m^e)^d \equiv m \pmod{n}$

- Computational difficulty of the factoring problem
 - Given two large primes p.q = n, it is very hard to factor n.

• Encryption:

$$C = m^e \pmod{n}$$

The ciphertext is equal to **m** multiplied by itself **e** times modulo **n**.

Public key: $Pub_{Key} = (e, n)$

• Decryption:

 $m = C^{d} \pmod{n} = (m^{e})^{d} \pmod{n} = m^{ed} \pmod{n}$

Decryption relies on number **d** satisfying $\mathbf{e}.\mathbf{d} = 1 \pmod{\mathbf{n}}$, s.t. m^{ed} (mod n) = m¹ (mod n) = m

• In other words, **d** is the <u>multiplicative inverse</u> of **e** mod **n**

Private key: Priv_{Key} = d (other numbers can be discarded)

Key Generation (how to choose **e** and find **d**)

- Pick two random primes **p** and **q**, such that **p**.**q** = **n**
- Generate $\varphi(n) = (p-1).(q-1)$
 - O We know all relative primes to (p-1)(q-1) form a group with respect to multiplication and are invertible
 - O $\varphi(n)$ is the order of the multiplicative group of units mudulo n
- Pick **e** as a random prime smaller than $\varphi(n)$
 - **e** chosen as <u>relative prime</u> to (p-1)(q-1) to ensure it has a multiplicative inverse mod (p-1)(q-1)
- Generate **d** (the inverse of e mod $\varphi(n)$)
 - \circ **e**.**d** = 1 mod $\varphi(n)$
 - Can be obtained via the <u>extended Euclidean algorithm</u>

*If gcd(a,b) = 1, then we say that a and b are **relatively prime** (or coprime).

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7

 $\mathbf{e.d} = 1 \mod \varphi(\mathbf{n})$

 $7d = 1 \mod 40$

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7 Euclidean Algorithm:

e.d = 1 mod φ (n) 40 = 5 * 7 + 5

 $7d = 1 \mod 40$

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7 Euclidean Algorithm:

e.**d** = 1 mod φ (n) 40 = 5 * **7** + <u>5</u> **7** = 1 * **5** + 2

7d = 1 mod 40

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7	Euclidean Algorithm:
$\mathbf{e}.\mathbf{d} = 1 \mod \varphi(\mathbf{n})$	40 = 5 * 7 + 5 7 = 1 * 5 + 2
7 d = 1 mod 40	5 = 2 * 2 + 1
	Stop at last non-zero ren

Stop at last non-zero remainder gcd(7, 40) = 1

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7	Euclidean Algorithm:	Extended Euclidean (backtrack):
e . d = 1 mod φ(n)	40 = 5 * 7 + 5 7 = 1 * 5 + 2	1 = 5 - 2 * 2
7d = 1 mod 40	5 = 2 * 2 + 1 $1 = 5 - 2 * 2$	
	Stop at last non-zero remainder gcd(7, 40) = 1	

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7	Euclidean Algorithm:	Extended Euclidean (backtrack):
e . d = 1 mod φ(n)	40 = 5 * 7 + 5	1 = 5 - 2 * 2 1 = 5 - 2 (7 - 1 * 5)
7d = 1 mod 40	$7 = 1^{\circ} 5 + \underline{2}$ $2 = 7 - 1^{\circ} 5$ $5 = 2^{\circ} 2 + \underline{1}$	1 = 5 - 2(7 - 1)5) 1 = 5 - 2 * 7 + 2 * 5 1 = 3 * 5 - 2 * 7
	Stop at last non-zero remainder gcd(7, 40) = 1	

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say n = 40, e = 7	Euclidean Algorithm:	Extended Euclidean (backtrack):
$\mathbf{e.d} = 1 \mod \varphi(n)$	40 = 5 * 7 + 5 7 = 1 * 5 + 2 5 = 40 - 5 * 7	1 = 5 - 2 * 2 1 = 5 - 2 (7 - 1 * 5)
7d = 1 mod 40	5 = 2 * 2 + 1	1 = 5 - 2 * 7 + 2 * 5 1 = 3 * 5 - 2 * 7
	Stop at last non-zero remainder gcd(7, 40) = 1	1 = 3 (40 - 5 * 7) - 2 * 7 1 = 3 * 40 - 17 * 7

Extended Euclidean Algorithm (find **d**)

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say <mark>n</mark> = 40, e = 7	Euclidean Algorithm:	Extended Euclidean (backtrack):
e . d = 1 mod <i>φ</i> (n)	40 = 5 * 7 + <u>5</u>	1 = 5 - 2 * 2
	7 = 1 * 5 + <u>2</u>	1 = 5 - 2 (7 - 1 * 5)
7d = 1 mod 40	5 = 2 * 2 + 1	1 = 5 - 2 * 7 + 2 * 5
		1 = 3 * 5 - 2 * 7
	Stop at last non-zero remainder	1 = 3 (40 - 5 * 7) - 2 * 7
	gcd(7, 40) = 1	1 = 3 * 40 - 17 * 7
		d = -17 = 23 mod 40

Textbook RSA (summary)

- 1. Choose two **"large primes"** *p* and *q* (secretly)
- 2. Compute n = p*q
- 3. "Choose" value e and find d such that
 - $\bigcirc \quad (m^e)^d \equiv m \bmod n$
- 4. Public key: (e, n)
- 5. Private key: d
- 6. Encryption: $C = m^e \mod n$
- 7. Decryption: $m = C^d \mod n$

Textbook RSA (summary)

- 1. Choose two **"large primes"** *p* and *q* (secretly)
- 2. Compute n = p*q
- 3. "Choose" value e and find d such that
 - $\bigcirc \quad (m^e)^d \equiv m \bmod n$
- 4. Public key: (e, n)
- 5. Private key: d
- 6. Encryption: $C = m^e \mod n$
- 7. Decryption: $m = C^d \mod n$

- ✓ Note that the decryption works.
- ✓ This is textbook RSA, never do this!! (we'll see one of the reasons next)

Example (Tiny RSA)

Parameters:

- p=53, q=101, n=5353
- $\varphi(n) = (53-1).(101-1) = 5200$
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=<u>20</u>

Encryption: $c = m^e \mod n$

C = 20¹³⁹ mod 5353 = 5274

Decryption: $m = c^d \mod N$

m = 5274¹⁴⁵⁹ mod 5353 = <u>20</u>

Example (Tiny RSA)

Parameters:

- p=53, q=101, n=5353
- $\varphi(n) = (53-1).(101-1) = 5200$
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=<u>20</u>

Encryption: $c = m^e \mod n$

 $C = 20^{139} \mod 5353 = 5274$

Decryption: $m = c^d \mod N$

m = 5274¹⁴⁵⁹ mod 5353 = <u>20</u>

Applying **e** or **d** to encrypt does not really matter from a functionality perspective

Attacking RSA(Bad primes)

I know **e** and **n**... What can I do to find **d**?

Attack idea:

- Factor **n** to obtain **p** and **q**
- Obtain *φ*(**n**)
- From φ(n) and e, generate d
 just like Alice would

Parameters:

- p=53, q=101, **n=5353**
- $\varphi(n) = (53-1).(101-1) = 5200$
- e=139
- d=1459
- c = 5274

Attacking RSA(Bad primes)

nd d?

Parameters:

e=139

• p=53, q=101, **n=5353**

 $\varphi(n) = (53-1).(101-1) = 5200$

Attack idea:

- WARNING: Factoring is Factor **n** to obta
- Obtain $\varphi(\mathbf{n})$
- From $\varphi(\mathbf{n})$ and \mathbf{e} , generate \mathbf{d} just like Alice would

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Bad primes: easily factored

Approach at Factoring

Strawman approach:

- Try to divide a number by all numbers smaller than it until you find a number **a** that divides n
- Then, carry on to divide n with **a+1** and so on...
- We end up with a list of factors of n

Way too computationally expensive.
A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)
- We only need to test those smaller than √n
 If both p and q are larger than n, then p.q > n, which is impossible

A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)
- We only need to test those smaller than √n
 If both p and q are larger than n, then p.q > n, which is impossible

Still too computationally expensive for large n.

n = 4096 bits requires about 2¹²⁸ operations

AMD's EPYC or Intel's Xeon series, 3 teraflops/sec \approx 13.8 billion years

Attacking "bad primes"

• Some primes are not suited to be used for RSA, as they make n easier to factor

• Examples:

- Either **p** or **q** are small numbers
- p and q are too close together
- \circ **p** and **q** are both close to 2^b, where b is a given bound
- \circ n = p^r.q^s and r > log p
- Ο...

Let's dive into an example...

Fermat's Little Theorem

- The theorem states:
 - \circ a^p = a mod p , for prime **p** and integer **a**
 - Special case when **p** is <u>co-prime</u> with integer **a** → gcd(p,a) = 1, $a^{p-1} \equiv 1 \mod p$
 - This is also true for any multiple of p-1 (you keep wrapping around): → $a^{k(p-1)} \equiv 1 \mod p$
 - We can rewrite this as: $a^{k(p-1)}-1 = \mathbf{p} \cdot \mathbf{r}$

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
 - O Recall: a^{k(p-1)}-1 = p.r
 - Putting this together, we have: gcd(a^{k(p-1)}-1, n) = = gcd(<u>p</u>.r, <u>p</u>.q) = = p

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
 - O Recall: a^{k(p-1)}-1 = p.r
 - Putting this together, we have: gcd(a^{k(p-1)}-1, n) = = gcd(<u>p</u>.r, <u>p</u>.q) = = p

This allow us to find a factor of **n**

Can we use F.L.T to find factors of N?

- Consider we have **n** = **p**.**q**
 - O Recall: a^{k(p-1)}-1 = p.r
 - Putting this together, we have: gcd(a^{k(p-1)}-1, n) = = gcd(<u>p</u>.r, <u>p</u>.q) = = p

This allow us to find a factor of **n**

But how does this help us? We don't know **p**, nor do we have a way of calculating **k**.

The Pollard p-1 Factoring Algorithm

- We guess **k(p-1)** by brute-force
- Place a to the power of integers with a lot of prime factors. Likely that the factors of p−1 are there.
 → Calculate a^{k!} mod n
- Calculate gcd(a^{k(p-1)}-1,n)
- If it is not equal to one, we found a factor

Inputs: Odd integer n and a "bound" b*

1.
$$a = 2$$

2. $for j = 2 to b$
a. $Do a \leftarrow a^{j} \mod n$
3. $d = gcd(a-1,n)$
4. $if 1 < d < n$
a. Then return (d)
b. Else return ("failure")

The Pollard p-1 Factoring Algorithm

Let's factor n = 713: Calculate a, a^2 , $(a^2)^3$, $((a^2)^3)^4$, ... and each GCD а d $2^1 \equiv 2 \mod{713}$, gcd(1,713)==1 gcd(3,713)==1 $2^2 \equiv 4 \mod{713}$, gcd(63,713)==1 $4^3 \equiv 64 \mod{713}$, gcd(325,713)==1 $64^4 \equiv 326 \mod{713}$, gcd(310,713)==**31** $326^5 \equiv 311 \mod{713}$,

1. a = 22. for j =2 to b a. Do a \leftarrow a^j mod n 3. d = gcd(a-1,n)4. if 1 < d < Na. Then return (d) b. Else return ("failure") 713/31 = 23 23 * 31 = 713

The case of "smooth" factors

• A prime is deemed smooth if it has multiple small factors

○ **p-1** =
$$p_1^{e_1}$$
. $p_2^{e_2}$... , $\forall p_i^{e_i}$ s.t. $p_i^{e_i} \le B$

• Pollard p-1 algorithm is useful when **p** is smooth

- Its iterative approach is more likely to include **p** −1 sooner rather than later
- i.e., if p is smooth, k! will includes small prime factors, making the exponentiation a^{k!} mod n reduce to 1 simplifying the calculation of the GCD.

So far so good, but...

Why not "Textbook RSA"?

Example: Given the following parameters: p=53, q=101, e=139, d=1459. **Encryption**: $c \equiv m^e \pmod{n}$, **Decryption**: $m = c^d \pmod{n}$

- o Compute n.
- Compute $C_1 = Enc_e(m_1)$. Verify the decryption works.
- Compute $C_2 = Enc_e(m_2)$. Verify the decryption works.
- Compute $m = Dec_d(C_1, C_2)$. What is happening? Why?

A: The decryption would yield the product of the original plaintexts. $(m_1)^e \cdot (m_1)^e \equiv (m_1 \cdot m_1)^e$

Malleability: it is possible to transform a ciphertext into another ciphertext that decrypts to a transformation of the original plaintext.

This is typically (but not always!) undesirable.

Chosen Ciphertext Attack (CCA)

- \circ We are Eve. Alice is using RSA and her public key is (e, n).
- Bob sends secret message m, encrypted as $c = Enc_e(m)$.
- We intercept c.

 Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

0

(

Attacking RSA (CCA)

Chosen Ciphertext Attack (CCA)

- \circ We are Eve. Alice is using RSA and her public key is (e, n).
- Bob sends secret message m, encrypted as $c = Enc_e(m)$.
- \circ We intercept c.

 Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

Chosen Ciphertext Attack (CCA): Solution

- Alice's public key is (e, n).
- Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

Chosen Ciphertext Attack (CCA): Solution

- \circ Alice's public key is (e, n).
- Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

Example: given m=5, e=3, and n=33 \rightarrow c₁ = 26, c₂ = 208 \rightarrow m₂ = 10

Chosen Ciphertext Attack (CCA): Solution

- Alice's public key is (e, n).
- Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

l am so clever mwahaha

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

Textbook RSA is vulnerable against chosen ciphertext attacks (among other things)

✓ We can fix this with padding techniques (RSA-OAEP).

1. Eve produces two plaintexts, m_0 and m_1

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e \pmod{n}$, secret b

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e \pmod{n}$, secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$

- 1. Eve produces two plaintexts, m_0 and m_1
- 2. "Challenger" encrypts an m as $c^* = m_b^e \pmod{n}$, secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$

If
$$c^* = c$$
 then Eve knows $m_b = m_1$
If $c^* \neq c$ then Eve knows $m_b = m_0$

- 1. Eve produces two plaintexts, m₀ and m₁
- 2. "Challenger" encrypts an m as $c^* = m_b^e \pmod{n}$, secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$

If
$$c^* = c$$
 then Eve knows $m_b = m_1$
If $c^* \neq c$ then Eve knows $m_b = m_0$

Adversaries and their Goals

Adversaries and their Goals

Adversaries and their Goals

Goal 1: Total Break

- Win the Symmetric key K
- Win Bob's private key k_b
- ()Can decrypt any c_i for:

 $c_i = Enc_K(m)$ or $c_i = Enc_{kb}(m)$

- All messages using compromised k revealed
- Unless detected game over

Goal 2: Partial Break

- Decrypt a ciphertext c (without the key)
- Learn **some** specific information about a message *m* from *c*

**Need to occur with non-negligible probability.

Goal 3: Distinguishable Ciphertexts

 The ciphertexts are leaking small/some information...

Semantic Security of RSA

- We saw CCA against Naive RSA
- We showed IND-CPA on Naive RSA

CS459 Fall 2024

Fix it? Ciphertext Distinguishability

Goal: prove (given comp. assumptions) that no information regarding *m* is revealed in polynomial time by examining c = Enc(m)

- If Enc() is deterministic, fail
- Thus, require some randomization

RSA-OAEP: Optimal Asymmetric Encryption Padding

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and

Dec(c)

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and

Dec(c)

Public-Key sizes

- Recall that if there are no shortcuts, Eve would have to try 2¹²⁸ iterations in order to read a message encrypted with a 128-bit key
- Unfortunately, all of the public-key methods we know do have shortcuts
 - Eve could read a message encrypted with a 128-bit RSA key with just 2³³ work, which is easy!
 - > Comparison of key sizes for roughly equal strength

<u>AES</u>	<u>RSA</u>	<u>ECC</u>	
80	1024	160	
116	2048	232	
128	2600	256	
160	4500	320	
256	14000	512	

What cab be done? (Hybrid Cryptography)

We can get the best of both worlds:

- Pick a random "128-bit" key K for a symmetric-key cryptosystem
- Encrypt the large message with the key K (e.g., using AES)

And then...

- Encrypt the key K using a public-key cryptosystem
- Send the encrypted message and the encrypted key to Bob

Hybrid cryptography is used in (many) applications on the internet today

Knowledge Check!

Publ	ic:	(e _A ,	d _A
		(°A)	Υ Α,

Secret: K

Public: (e_B, d_B) Secret: ?

- Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

Knowledge Check!

Publ	ic:	(e _A ,	d _A
un	IC.	(e _A ,	u _A

Secret: K

Public: (e_B, d_B) Secret: ?

- Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don't want to use it on m.
Knowledge Check!

Publ	ic:	(e _A ,	d _A

Secret: K

Public: (e_B, d_B) Secret: ?

- Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message *m* to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes $c_1 = Enc_{eB}(K)$, $c_2 = E_K(m)$ and sends $\langle c_1 || c_2 \rangle$. Bob recovers K = $Dec_{dB}(c_1)$ and then m = $Dec_K(c_2)$

Knowledge Check!

We know how to "send secret messages", and Eve cannot do anything about it. What else is there to do?

- Mallory can modify our encrypted messages in transit!
- Mallory won't necessarily know what the message says, but can still change it in an undetectable way
 - > e.g. **bit-flipping** attack on stream ciphers
- This is counterintuitive, and often forgotten

Q: How do we make sure that Bob gets the same message Alice sent?

