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CAs!
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Certificate Authorities (CAs) 

3

A CA is a trusted third party who keeps a directory of people’s 

(and organizations’) verification keys
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Certificate Authorities (CAs) 

4

A CA is a trusted third party who keeps a directory of people’s (and 

organizations’) verification keys

o Alice generates a (sk
A, vk

A) key pair, and sends the verification key and personal information, 
both signed with Alice’s signature key, to the CA

o The CA ensures that the personal information and Alice’s signature are correct 

o The CA generates a certificate consisting of Alice’s personal information, as well as her 
verification key. The entire certificate is signed with the CA’s signature key 

o https://letsencrypt.org has changed the game. Most web traffic now encrypted. Extended 
validation certificates (for which CAs charged a lot of money) now not treated differently by 
browsers.

https://letsencrypt.org/
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Certificate Authorities (CAs) 

5

● Everyone is assumed to have a copy of the CA’s verification key (vk
CA), so 

they can verify the signature on the certificate

● There can be multiple levels of certificate authorities; level n CA issues 
certificates for level n+1 CAs – Public-key infrastructure (PKI)

● Need to have only verification key of root CA to verify the certificate chain 
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Chain of Certificates

6

Alice sends Bob the following certificate to prove her identity. Bob can follow 
the chain of certificates to validate Alice’s identity. 
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Putting it all together

7

● Secret-key crypto 
○ One-time pad 

○ Stream ciphers (two-time pad, using nonces) 

○ Block ciphers (modes of operation – CBC) 

● Public-key crypto 
○ Textbook RSA 

○ Secret vs. public crypto (speed, key sizes) 

○ Hybrid crypto 

● Integrity
○ Checksum (usually does not work) 

○ Hash functions 

● Authentication
○ MACs (repudiation, encrypt-then-MAC) 

○ Digital signatures (non-repudation) 

○ Key management 

➢ Manual keying (SSH)

➢ Web of trust (PGP) 

➢ Certificate authorities (TLS)
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The Discrete Logarithm Problem
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gx = h mod p 
It’s supposed to be 
hard to find x

I bet we can use that

But don’t forget about me

Given (g,h), find x :



Groups?
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Groups - Sets with specific properties

A group is a set of elements (usually numbers) that are related 

to each other according to some well-defined operations.

● Consider a group of prime order q, or 𝑍𝑞
∗

● This boils down to the set of non-zero integers between 1 and q-1 modulo q → A finite group

● For q = 5, we have group 𝑍5
∗ = {1,2,3,4}

● In this group, operations are carried out mod 5: 

● 3 * 4 = 12 mod 5 = 2

● 23 = 2 * 2 * 2 = 8 mod 5 = 3

10
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Group axioms

To be a group, these sets should respect some axioms

● Closure

● Identity existence

● Associativity

● Inverse existence

● Groups can also be commutative and cyclic (up next)

11

Let’s take a look at some of these axioms (using multiplication as the operation)
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Closure

● For every x,y in the group, x * y is in the group

○ i.e., the multiplication of two group elements falls within the group too

● Example:

○ in 𝑍5
∗, 2* 3 = 6 mod 5 = 1

12
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Identity Existence

● There is an element e such that e * x = x * e = x

○ i.e., has an element e such that any element times e outputs the element itself

● Example:

○ In any 𝑍𝑞
∗ , the identity element is 1

○ For 𝑍5
∗ ∶ 1 * 3 = 3 mod 5 = 3

13
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Associativity

● For any x, y, z in the group, (x * y) * z = x * (y * z)

● Example:

○ For 𝑍5
∗ ∶ (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

14
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Inverse Existence
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● For any x in the group, there is a y such that x * y = y * x = 1

● Example:
○ For 𝑍5

∗ ∶ 2 * 3 = 1 , 3 * 2 = 1 ( 2 and 3 are inverses)

○ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)
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Abelian Groups

16

● Abelian groups are groups which are commutative

● This means that x * y = y * x for any group elements x and y

● Example:
○ For 𝑍5

∗ ∶ 3 * 4 = 2 , 4 * 3 = 2 
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Cyclic groups

● A group is called cyclic if there is at least one element g

such that its powers (g1, g2, g3, …) mod p span all distinct 

group elements.
o g is called the “generator” of the group

• Example:
○ For 𝑍5

∗, there are two generators (2 and 3):

■ 21 = 2, 22 = 4, 23 = 3, 24 = 1

■ 31 =3, 32 = 4, 33 = 2, 34 = 1

17
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Cyclic subgroups

● We can have cyclic subgroups within larger finite groups

• Example:
○ Given field F607, we can consider a cyclic subgroup of order p=5 as 𝑍5

∗:

18



Discrete Logarithm Problem

19
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The Discrete Logarithm Problem

20

h = gx , find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of x base g

o e.g., log2 256 = 8 , since 28 = 256
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The Discrete Logarithm Problem

Given (g,h) ∈ G x G, find x ∈ Zq* such that:

h = gx

Here, G is a multiplicative group of prime order q, just like we saw during 

the examples. (But q is thousands of bits long)

21
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Solutions to the Discrete Logarithm Problem?

If there’s one solution, there are infinitely many 

(thank you Fermat’s little theorem and modular arithmetic “wrap-around”)

22

Recall : Let p be a prime number and let a be any integer. Then: 

1 (mod p) if p does not divide a

ap-1≡

0 (mod p) if p does divide a, p|a
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How to solve DLP in cyclic groups of prime order?

● Is the group cyclic, finite, and abelian?

24

Baby-step/Giant-step 
algorithms!!!

Has a generator that 

spans all elements
Has a limited 

number of elements

Multiplication is 

commutative
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How to solve DLP in cyclic groups of prime order?

● Is the group cyclic, finite, and abelian?

25

Baby-step/Giant-step 
algorithms!!!

Has a generator that 

spans all elements
Has a limited 

number of elements

Multiplication is 

commutative

Ohhhhhh. Divide and conquer since the bottleneck is 
solving DLP in the cyclic subgroups of prime order. 

For generic groups, the complexity of the Baby-step/giant-step algorithm 
dominates the time required.  
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Baby-Step/Giant-Step Algorithm? 

● A cyclic group G = <g> which has prime order p

● h ∈ G, goal: find x (mod p) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(p)⌉

o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

26
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Baby-Step/Giant-Step Algorithm? 

● A cyclic group G = <g> which has prime order p

● h ∈ G, goal: find x (mod p) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(p)⌉

o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

Then:
h = gi + j*⌈sqrt(p)⌉

gi = h . (g-⌈sqrt(p)⌉)j

27

Ah, more 
rewriting tricks
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Baby-Step/Giant-Step Algorithm? Notation.

● logg x mod p is obtained by comparing two lists: 

gi = h . (g-⌈sqrt(p)⌉)j

When we find a coincidence, the equality holds and then x = i + j*⌈sqrt(p)⌉

28

Can we divide 
and conquer?
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

29

gi = h . (g-⌈sqrt(p)⌉)j
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

30

Since 0≤x≤p, …

gi = h . (g-⌈sqrt(p)⌉)j
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

31

gi = h . (g-⌈sqrt(p)⌉)j

Let’s build some tables!
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

32

Produces pairs: (gi,i)

gi = h . (g-⌈sqrt(p)⌉)j
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

33

Produces pairs: (hj,j)

gi = h . (g-⌈sqrt(p)⌉)j
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

34

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))

gi = h . (g-⌈sqrt(p)⌉)j
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Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j <  ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

35

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))
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DLP Example,  182 = 64x(mod 607)
● Consider the subgroup of order 101(𝑍101

∗ ) in F607, generated by g=64

36

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

i 64i (mod 607) i “ “ 

0 6

1 7

2 8

3 9

4 10

5 -
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DLP Example,  182 = 64x(mod 607)

37

i 64i (mod 607) i “ “ 

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

38

j 182* 64-11*j (mod 607) j

0 6

1 7

2 8

3 9

4 10

5 -

Giant-step: hj⟵h*g–j ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

39

j 182* 64-11*j (mod 607) j

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Giant-step: hj⟵h*g–j ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

40

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?
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DLP Example,  182 = 64x(mod 607)

41

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?
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DLP Example,  182 = 64x(mod 607)

42

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Match when i=4 and j=4. 
(i is not necessarily equal to j, but it happened on this run ¯\_(ツ)_/¯
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DLP Example,  182 = 64x(mod 607)

43

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.  
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DLP Example,  182 = 64x(mod 607)

44

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.  

Verify: 6448 (mod 607) = 182



Diffie-Hellman

45
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Diffie-Hellman Key Exchange

A public-key protocol published in 1976 by Whitfield Diffie and 
Martin Hellman

Allows two parties that have no prior knowledge of each other to 
jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a 
symmetric key cipher

46
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Diffie-Hellman Key Exchange

47

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)
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Diffie-Hellman Key Exchange

48

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

B = gb mod p

A = ga mod p

Ab = (ga)b = gab

Alice and Bob can derive the same value by exchanging 
public values and combining them with their private ones!



CS459 Fall 2024 

Diffie-Hellman Key Exchange

49

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

A = ga mod p 

Ab = (ga)b = gab

Resist keying temptation: the shared value should not 
immediately be used as a key. gab is a random element 
inside a group, but not necessarily a random bit string

B = gb mod p
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Diffie-Hellman Key Exchange – Visualization

50
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Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value 

a from the public value ga

51

The adversary must not be able to solve the DLP
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The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

52

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

o For unknowns a,b, and c.



CS459 Fall 2024 

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

53

● Challenger chooses c s.t. c=a*b with Pr=1/2 or c is random

o Goal of the adversary is to determine whether:

c=a*b                   OR random c
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DDH Security Game
bit ⟵{0,1}

g ⟵ G

a,b ⟵ Zq

If bit=0 then c ⟵ Zq

If bit=1 then c ⟵ a*b

ga, gb, gc

bit’

Win if bit’=bit 

54

A

AdvG
DDH(A) = 2*|Pr[A wins the DDH game in G]-½|. 
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The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

55

ElGamal relies on the DDH assumptionUseful assumption beyond DH key exchange!

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

o For unknowns a, b, and c.



ElGamal

56
● 1985 by Taher ElGamal
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ElGamal Public Key Cryptosystem

● Let p be a prime such that the DLP in (Zp
*,.) is infeasible

● Let α be a generator in Zp
* and a a secret value

● PubK ={(p, α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1: 
○ eK(m,k) = (y1, y2),  where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

57

Public key is p, α, β
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ElGamal: The Keys

1. Bob picks a “large” prime p and a generator ”primitive 

root” α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

58



CS459 Fall 2024 

ElGamal: The Keys

1. Bob picks a “large” prime p and a generator α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

4. Bob’s public key is (p, α, β)

59
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ElGamal: The Keys

1. Bob picks a “large” prime p and a generator α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

4. Bob’s public key is (p, α, β)

5. Bob’s private key is a

60
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ElGamal: Encryption

61

I choose secret integer k

β ≡ αa (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a
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ElGamal: Encryption

62

I choose secret integer k

Compute y1 ≡ α
k (mod p)  

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)
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ElGamal: Encryption

63

I choose secret integer k

Compute y2≡ βk m (mod p)  

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)  
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ElGamal: Encryption

64

I choose secret integer k

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)  
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ElGamal: Decryption

65

I choose secret integer k

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)  
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ElGamal: Decryption

66

I choose secret integer k

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

Compute y2y1
-a ≡ m (mod p)

Bob can decrypt since:

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)  
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ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

67

I receive c = (y1,y2)
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ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

68

I receive c = (y1,y2)
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ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

● Thus, Bob can “reveal” m by dividing y2 by βk

69

I receive c = (y1,y2)
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ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

● Thus, Bob can “reveal” m by dividing y2 by βk

70

I receive c = (y1,y2)

Let’s see an example!
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Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

71

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)
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Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

72

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)



CS459 Fall 2024 

Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

73

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

y1 ≡ α
k (mod p) 

y2≡ βk m (mod p) 

β ≡ αa (mod p)
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Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

● y1 = 2853 mod 2579 = 435

● y2=1299*949853 mod 2579 = 2396

74

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

y2≡ βk m (mod p) 

Send y1, y2 to Bob

β ≡ αa (mod p)

y1 ≡ α
k (mod p) 
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Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

75

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)



CS459 Fall 2024 

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

76

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)
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Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

77

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I 
wanted to send.

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)
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Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

78

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I 
wanted to send.

Insecure if the adversary 

can compute a=logα β

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)
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Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

79

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I 
wanted to send.

To be secure, DLP must be 
infeasible in Zp*

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Insecure if the adversary 

can compute a=logα β
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ElGamal…Encrypt. “Small” Calculation Day 

● (p, α, β) = (809, 256, 498)

● a = 68

● k = 89

● m=100

Determine c = y1, y2.  

Submit c and a short description of your computation.

80



Network Security - Next class
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