CS459/698 Privacy, Cryptography, Network and Data Security

Discrete Logarithm, Diffie-Hellman, ElGamal

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

CAs!

A **CA** is a trusted third party who keeps a directory of people's (and organizations') verification keys

Certificate Authorities (CAs) $m=(v_k^A)$, personal info), $Sig_{sA}(m)$ $(s_k^A, v_k^A$ (s_k^{CA}, v_k^{CA}) Sig_{s} ca (m)

A **CA** is a trusted third party who keeps a directory of people's (and organizations') verification keys

- O Alice generates a (s_k^A, v_k^A) key pair, and sends the verification key and personal information, both signed with Alice's signature key, to the CA
- o The CA ensures that the personal information and Alice's signature are correct
- \circ The CA generates a certificate consisting of Alice's personal information, as well as her verification key. The entire certificate is signed with the CA's signature key
- o https://letsencrypt.org has changed the game. Most web traffic now encrypted. Extended validation certificates (for which CAs charged a lot of money) now not treated differently by browsers.

Certificate Authorities (CAs)

- Everyone is assumed to have a copy of the CA's verification key (v_k^C) , so they can verify the signature on the certificate
- There can be multiple levels of certificate authorities; level n CA issues certificates for level n+1 CAs – Public-key infrastructure (PKI)
- Need to have only verification key of root CA to verify the certificate chain

Chain of Certificates

Alice sends Bob the following certificate to prove her identity. Bob can follow the chain of certificates to validate Alice's identity.

Bob has v^{CA1}

CS459 Fall 2024

Putting it all together

Secret-key crypto

- One-time pad
- Stream ciphers (two-time pad, using nonces)
- \circ Block ciphers (modes of operation CBC)

Public-key crypto

- Textbook RSA
- Secret vs. public crypto (speed, key sizes)
- Hybrid crypto

Integrity

- Checksum (usually does not work)
- Hash functions

Authentication

- MACs (repudiation, encrypt-then-MAC)
- Digital signatures (non-repudation)
- Key management
	- \triangleright Manual keying (SSH)
	- \triangleright Web of trust (PGP)
	- \triangleright Certificate authorities (TLS)

The Discrete Logarithm Problem

Given (g,h), find x :

But don't forget about me

Groups?

Groups - Sets with specific properties

A **group** is a set of elements (usually numbers) that are related to each other according to some well-defined operations.

- Consider a group of prime order **q**, or Z^*_{q}
	- This boils down to the set of non-zero integers between 1 and q-1 modulo $q \rightarrow A$ finite group
	- For $q = 5$, we have group $Z_5^* = \{1,2,3,4\}$
	- In this group, operations are carried out mod 5:
		- $3 * 4 = 12 \mod 5 = 2$
		- $2^3 = 2 \times 2 \times 2 = 8 \text{ mod } 5 = 3$

Group axioms

To be a group, these sets should respect some axioms

- **Closure**
- Identity existence
- **Associativity**
- Inverse existence
- Groups can also be commutative and cyclic (up next)

Let's take a look at some of these axioms (using multiplication as the operation)

Closure

- For every x,y in the group, $x * y$ is in the group
	- \circ i.e., the multiplication of two group elements falls within the group too

- Example:
	- \circ in Z_5^* , $2 \star 3 = 6 \text{ mod } 5 = 1$

Identity Existence

- There is an element **e** such that $e * x = x * e = x$
	- i.e., has an element **e** such that any element times **e** outputs the element itself

- Example:
	- \circ In any Z_q^* , the identity element is 1
	- For $Z_5^* : 1 * 3 = 3 \text{ mod } 5 = 3$

Associativity

• For any x, y, z in the group, $(x * y) * z = x * (y * z)$

- Example:
	- For Z_5^* : $(2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4$

Inverse Existence

• For any **x** in the group, there is a **y** such that $x * y = y * x = 1$

● Example:

- For Z_5^* : 2 $*$ 3 = 1, 3 $*$ 2 = 1 (2 and 3 are inverses)
- \circ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

Abelian Groups

- Abelian groups are groups which are **commutative**
- This means that $x * y = y * x$ for any group elements x and y

- Example:
	- For Z_5^* : 3 * 4 = 2, 4 * 3 = 2

Cyclic groups

- A group is called **cyclic** if there is at least one element **g** such that its powers $(g¹, g², g³, ...)$ mod p span all distinct group elements.
	- o **g** is called the "generator" of the group

• Example:

- \circ For Z_5^* , there are two generators (2 and 3):
	- \blacksquare 2¹ = 2, 2² = 4, 2³ = 3, 2⁴ = 1
	- \blacksquare 3¹ = 3, 3² = 4, 3³ = 2, 3⁴ = 1

Cyclic subgroups

● We can have cyclic **subgroups** within larger finite groups

- Example:
	- \circ Given field F₆₀₇, we can consider a cyclic subgroup of order p=5 as Z_5^* :

Discrete Logarithm Problem

The Discrete Logarithm Problem

$h = g^x$, find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of **x** base **g**

o e.g., $log_2 256 = 8$, since $2^8 = 256$

The Discrete Logarithm Problem

Given (g,h) \in **G** x **G**, find $x \in Z_q^*$ such that:

$h = g^x$

Here, **G** is a multiplicative group of prime order **q**, just like we saw during the examples. (But **q** is thousands of bits long)

Solutions to the Discrete Logarithm Problem?

If there's one solution, there are infinitely many

(thank you Fermat's little theorem and modular arithmetic "wrap-around")

Recall : Let *p* be a prime number and let *a* be any integer. Then:

$$
a^{p-1} \equiv \left\{ \begin{array}{c} 1 \ (\text{mod } p) \ \text{if } p \ \text{does not divide a} \\ \\ 0 \ (\text{mod } p) \ \text{if } p \ \text{does divide a, } p \text{ is a} \end{array} \right.
$$

CS459 Fall 2024

How to solve DLP in cyclic groups of prime order?

● Is the group cyclic, finite, and abelian?

Has a generator that spans all elements

Has a limited number of elements

Multiplication is commutative

- A cyclic group **G** = <g> which has prime order **p**
- $h \in G$, goal: find x (mod p) such that $h = g^x$
- **•** Every element $x \in G$ can be written as: $x = i + i$ [sqrt(p)]

O For integers m, i, j satisfying $0 \le i, j \le m$.

- A cyclic group **G** = <g> which has prime order **p**
- $h \in G$, goal: find x (mod p) such that $h = g^x$
- **•** Every element $x \in G$ can be written as: $x = i + i$ [sqrt(p)]

O For integers m, i, j satisfying $0 \le i, j \le m$.

Then:
\n
$$
h = g^{i+j*[sqrt(p)]}
$$
\n
$$
g^{i} = h \cdot (g^{-[sqrt(p)]})^{j}
$$

Baby-Step/Giant-Step Algorithm? Notation.

log_a x mod p is obtained by comparing two lists:

 g^i = h . $(g^{\text{-}\lceil \mathsf{sqrt}(p) \rceil})^j$

When we find a coincidence, the equality holds and then $x = i + j$ [sqrt(p)]

$$
g^i = h \cdot (g^{-[sqrt(p)]})^j
$$

1. $x = i + j * [sqrt(p)]$

CS459 Fall 2024

$$
g^i = h \cdot (g^{-[sqrt(p)]})^j
$$

- 1. $x = i + j * [sqrt(p)]$
- 2. $0 ≤ i, j < [sqrt(p)]$

- 1. $x = i + j * [sqrt(p)]$
- 2. $0 ≤ i, j < [sqrt(p)]$
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \leq i < \lceil \mathsf{sqrt}(p) \rceil$

 $g^{i} = h$. $(g^{-[sqrt(p)]})^{j}$

Let's build some tables!

$g^{i} = h$. $(g^{-[sqrt(p)]})^{j}$

Baby-step/Giant-Step Algorithm

- 1. $x = i + j * [sqrt(p)]$
- 2. $0 ≤ i, j < [sqrt(p)]$
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \leq i < \lceil \mathsf{sqrt}(p) \rceil$

- 1. $x = i + j * [sqrt(p)]$
- 2. $0 ≤ i, j < [sqrt(p)]$
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \leq i < \lceil \mathsf{sqrt}(p) \rceil$
- 4. Giant-step: $h_j \leftarrow h * g^{-j}$ [sqrt(p)], for $0 \le j <$ [sqrt(p)]

 $g^{i} = h$. $(g^{-[sqrt(p)]})^{j}$

 $g^{i} = h$. $(g^{-[sqrt(p)]})^{j}$

Baby-step/Giant-Step Algorithm

- 1. $x = i + j * [sqrt(p)]$
- 2. $0 ≤ i, j < [sqrt(p)]$
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \leq i < \lceil \mathsf{sqrt}(p) \rceil$
- 4. Giant-step: $h_j \leftarrow h * g^{-j}$ [sqrt(p)], for $0 \le j <$ [sqrt(p)]

Overall time and space *O(*sqrt(p)*)*

CS459 Fall 2024

DLP Example, 182 = 64^x(mod 607)

• Consider the subgroup of order $101(Z_{101}^*)$ in \boldsymbol{F}_{607} , generated by g=64

DLP Example, 182 = 64^x(mod 607)

Baby-step: $\mathbf{g}_i \leftarrow \mathbf{g}^i$ **for 0≤ i** < [sqrt(p)] $[sqrt(p)] = 11$

 $g = 64$
Giant-step: $h_i \leftarrow h * g^{-j}$ [sqrt(p)] $q = 64$

$$
[sqrt(p)] = 11
$$

j 182* 64-11 * j (mod 607) *j*

CS459 Fall 2024

Giant-step: $h_i \leftarrow h * g^{-j}$ [sqrt(p)]

$$
\begin{cases}\ng = 64 \\
\text{sqrt}(p)\right] = 11\n\end{cases}
$$

CS459 Fall 2024

Diffie-Hellman

A public-key protocol published in 1976 by Whitfield Diffie and Martin Hellman

Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a symmetric key cipher

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

Diffie-Hellman Key Exchange – Visualization

CS459 Fall 2024

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value **a** from the public value **g a**

CS459 Fall 2024

The Decisional Diffie-Hellman Problem

Given g, g^a, g^b distinguish g^{ab} from random g^c

- An adversary should NOT be able to learn anything about the secret **g ab** after observing public values **g ^a** and **g b**
	- o Assume **g ab** and **g ^c** occur with the same probability
	- o For unknowns a,b, and c.

The Decisional Diffie-Hellman Problem

Given g, g^a, g^b distinguish g^{ab} from random g^c

Challenger chooses c s.t. c=a*b with Pr=1/2 or c is random

o **Goal** of the adversary is to determine whether:

c=a*b **OR** random *c*

CS459 Fall 2024

The Decisional Diffie-Hellman Problem

Given g, g^a, g^b distinguish g^{ab} from random g^c

- An adversary should NOT be able to learn anything about the secret **g ab** after observing public values **g ^a** and **g b**
	- o Assume **g ab** and **g ^c** occur with the same probability
	- o For unknowns a, b, and c.

Useful assumption **beyond** DH key exchange! **ElGamal**relies on the DDH assumption

ElGamal

ElGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in $(Z_p^*.)$ is infeasible
- Let α be a generator in \mathbb{Z}_p^* and **a** a secret value
- \bullet *Pub_K* = {(p, α , β): $\beta \equiv \alpha^a \pmod{p}$ }
- For message **m** and secret random **k** in **Z**_{p-1}:
	- O e_K(m,k) = (y₁, y₂), where $y_1 = \alpha^k \text{ mod } p$ and $y_2 = m\beta^k \text{ mod } p$
- For y_1 , y_2 in \mathbb{Z}_p^* :
	- O $d_K(y_1, y_2) = y_2(y_1^a)^{-1} \text{ mod } p$

Public key is p**,** α, β

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator "primitive root" α.
	- a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer **a**
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator α.
	- a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer **a**
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is **(p,** α**, β)**

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator α.
	- a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer **a**
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is **(p,** α**, β)**
- 5. Bob's private key is a **b**

ElGamal: Encryption

I choose secret integer **k**

Bob's Priv_K \rightarrow **a**

 $β ≡ α^a$ (mod p)

ElGamal: Encryption

ElGamal: Encryption

ElGamal: Encryption

Send **y¹** and **y²** to Bob

ElGamal: Decryption

ElGamal: Decryption

• The plaintext m is "hidden" by multiplying it by β^k to get y_2

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

Example

 \bullet Let **p**=2579, α = 2, β = 2⁷⁶⁵ mod 2579 = 949

Example

 \bullet Let **p**=2579, α = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer

Bob's Pub_K \rightarrow (p, α, β) Bob's Priv_{k} \rightarrow **a** = 765 $β ≡ α^a$ (mod p)

Example

 \bullet Let **p**=2579, α = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer $y_1 \equiv \alpha^k \pmod{p}$ **y2**≡ β ^k m (mod p)
\bullet Let **p**=2579, α = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

- y_2 =1299*949⁸⁵³ mod 2579 = 2396
- $y_1 = 2^{853} \text{ mod } 2579 = 435$

I want to send **m**=1299 to Bob. I

choose **k** = 853 for my random integer

y2≡ β ^k m (mod p) $y_1 \equiv \alpha^k \pmod{p}$

Example

Bob's Priv_k \rightarrow **a** = 765

 $β ≡ α^a$ (mod p)

Send y_1 , y_2 to Bob

- \bullet Bob now has y_1 and y_2
	- $y_1 = 2^{853} \text{ mod } 2579 = 435$
	- \degree y₂=1299*949⁸⁵³ mod 2579 = 2396

- \bullet Bob now has y_1 and y_2
	- $y_1 = 2^{853} \text{ mod } 2579 = 435$
	- \degree y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\mathbf{y_2y_1}$ ^{-a} $\equiv \beta^k$ m (α^k)^{-a} \equiv m (mod p)
- $m = 2396 * 435^{765} \text{ mod } 2759 = 1299$

- \bullet Bob now has y_1 and y_2
	- $y_1 = 2^{853} \text{ mod } 2579 = 435$
	- \degree y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\mathbf{y_2y_1}$ ^{-a} $\equiv \beta^k$ m (α^k)^{-a} \equiv m (mod p)
- $m = 2396 * 435^{765} \text{ mod } 2759 = 1299$

- Bob now has y_1 and y_2
	- $y_1 = 2^{853} \text{ mod } 2579 = 435$
	- \degree y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\mathbf{y_2y_1}$ ^{-a} $\equiv \beta^k$ m (α^k)^{-a} \equiv m (mod p)
- $m = 2396 * 435^{5} \mod 2759 = 1299$

- \bullet Bob now has y_1 and y_2
	- $y_1 = 2^{853} \text{ mod } 2579 = 435$
	- \degree y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\mathbf{y_2y_1}$ ^{-a} $\equiv \beta^k$ m (α^k)^{-a} \equiv m (mod p)
- $m = 2396 * 435^{5} \mod 2759 = 1299$

Insecure if the adversary can compute **a**=log_α β

To be secure, DLP must be infeasible in $\mathsf{Z}_\mathsf{p}^\star$

CS459 Fall 2024

ElGamal…Encrypt. "Small" Calculation Day

- \bullet (p, α, β) = (809, 256, 498)
- $a = 68$
- $k = 89$
- m=100

Determine $c = y_1, y_2$.

Submit c and a short description of your computation.

Network Security - Next class