
CS459/698
Privacy, Cryptography,

Network and Data Security
Discrete Logarithm, Diffie-Hellman, ElGamal

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

CAs!

2

CS459 Fall 2024

Certificate Authorities (CAs)

3

A CA is a trusted third party who keeps a directory of people’s

(and organizations’) verification keys

CS459 Fall 2024

Certificate Authorities (CAs)

4

A CA is a trusted third party who keeps a directory of people’s (and

organizations’) verification keys

o Alice generates a (sk
A, vk

A) key pair, and sends the verification key and personal information,
both signed with Alice’s signature key, to the CA

o The CA ensures that the personal information and Alice’s signature are correct

o The CA generates a certificate consisting of Alice’s personal information, as well as her
verification key. The entire certificate is signed with the CA’s signature key

o https://letsencrypt.org has changed the game. Most web traffic now encrypted. Extended
validation certificates (for which CAs charged a lot of money) now not treated differently by
browsers.

https://letsencrypt.org/

CS459 Fall 2024

Certificate Authorities (CAs)

5

● Everyone is assumed to have a copy of the CA’s verification key (vk
CA), so

they can verify the signature on the certificate

● There can be multiple levels of certificate authorities; level n CA issues
certificates for level n+1 CAs – Public-key infrastructure (PKI)

● Need to have only verification key of root CA to verify the certificate chain

CS459 Fall 2024

Chain of Certificates

6

Alice sends Bob the following certificate to prove her identity. Bob can follow
the chain of certificates to validate Alice’s identity.

CS459 Fall 2024

Putting it all together

7

● Secret-key crypto
○ One-time pad

○ Stream ciphers (two-time pad, using nonces)

○ Block ciphers (modes of operation – CBC)

● Public-key crypto
○ Textbook RSA

○ Secret vs. public crypto (speed, key sizes)

○ Hybrid crypto

● Integrity
○ Checksum (usually does not work)

○ Hash functions

● Authentication
○ MACs (repudiation, encrypt-then-MAC)

○ Digital signatures (non-repudation)

○ Key management

➢ Manual keying (SSH)

➢ Web of trust (PGP)

➢ Certificate authorities (TLS)

CS459 Fall 2024

The Discrete Logarithm Problem

8

gx = h mod p
It’s supposed to be
hard to find x

I bet we can use that

But don’t forget about me

Given (g,h), find x :

Groups?

9

CS459 Fall 2024

Groups - Sets with specific properties

A group is a set of elements (usually numbers) that are related

to each other according to some well-defined operations.

● Consider a group of prime order q, or 𝑍𝑞
∗

● This boils down to the set of non-zero integers between 1 and q-1 modulo q → A finite group

● For q = 5, we have group 𝑍5
∗ = {1,2,3,4}

● In this group, operations are carried out mod 5:

● 3 * 4 = 12 mod 5 = 2

● 23 = 2 * 2 * 2 = 8 mod 5 = 3

10

CS459 Fall 2024

Group axioms

To be a group, these sets should respect some axioms

● Closure

● Identity existence

● Associativity

● Inverse existence

● Groups can also be commutative and cyclic (up next)

11

Let’s take a look at some of these axioms (using multiplication as the operation)

CS459 Fall 2024

Closure

● For every x,y in the group, x * y is in the group

○ i.e., the multiplication of two group elements falls within the group too

● Example:

○ in 𝑍5
∗, 2* 3 = 6 mod 5 = 1

12

CS459 Fall 2024

Identity Existence

● There is an element e such that e * x = x * e = x

○ i.e., has an element e such that any element times e outputs the element itself

● Example:

○ In any 𝑍𝑞
∗ , the identity element is 1

○ For 𝑍5
∗ ∶ 1 * 3 = 3 mod 5 = 3

13

CS459 Fall 2024

Associativity

● For any x, y, z in the group, (x * y) * z = x * (y * z)

● Example:

○ For 𝑍5
∗ ∶ (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

14

CS459 Fall 2024

Inverse Existence

15

● For any x in the group, there is a y such that x * y = y * x = 1

● Example:
○ For 𝑍5

∗ ∶ 2 * 3 = 1 , 3 * 2 = 1 (2 and 3 are inverses)

○ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

CS459 Fall 2024

Abelian Groups

16

● Abelian groups are groups which are commutative

● This means that x * y = y * x for any group elements x and y

● Example:
○ For 𝑍5

∗ ∶ 3 * 4 = 2 , 4 * 3 = 2

CS459 Fall 2024

Cyclic groups

● A group is called cyclic if there is at least one element g

such that its powers (g1, g2, g3, …) mod p span all distinct

group elements.
o g is called the “generator” of the group

• Example:
○ For 𝑍5

∗, there are two generators (2 and 3):

■ 21 = 2, 22 = 4, 23 = 3, 24 = 1

■ 31 =3, 32 = 4, 33 = 2, 34 = 1

17

CS459 Fall 2024

Cyclic subgroups

● We can have cyclic subgroups within larger finite groups

• Example:
○ Given field F607, we can consider a cyclic subgroup of order p=5 as 𝑍5

∗:

18

Discrete Logarithm Problem

19

CS459 Fall 2024

The Discrete Logarithm Problem

20

h = gx , find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of x base g

o e.g., log2 256 = 8 , since 28 = 256

CS459 Fall 2024

The Discrete Logarithm Problem

Given (g,h) ∈ G x G, find x ∈ Zq* such that:

h = gx

Here, G is a multiplicative group of prime order q, just like we saw during

the examples. (But q is thousands of bits long)

21

CS459 Fall 2024

Solutions to the Discrete Logarithm Problem?

If there’s one solution, there are infinitely many

(thank you Fermat’s little theorem and modular arithmetic “wrap-around”)

22

Recall : Let p be a prime number and let a be any integer. Then:

1 (mod p) if p does not divide a

ap-1≡

0 (mod p) if p does divide a, p|a

CS459 Fall 2024

How to solve DLP in cyclic groups of prime order?

● Is the group cyclic, finite, and abelian?

24

Baby-step/Giant-step
algorithms!!!

Has a generator that

spans all elements
Has a limited

number of elements

Multiplication is

commutative

CS459 Fall 2024

How to solve DLP in cyclic groups of prime order?

● Is the group cyclic, finite, and abelian?

25

Baby-step/Giant-step
algorithms!!!

Has a generator that

spans all elements
Has a limited

number of elements

Multiplication is

commutative

Ohhhhhh. Divide and conquer since the bottleneck is
solving DLP in the cyclic subgroups of prime order.

For generic groups, the complexity of the Baby-step/giant-step algorithm
dominates the time required.

CS459 Fall 2024

Baby-Step/Giant-Step Algorithm?

● A cyclic group G = <g> which has prime order p

● h ∈ G, goal: find x (mod p) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(p)⌉

o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

26

CS459 Fall 2024

Baby-Step/Giant-Step Algorithm?

● A cyclic group G = <g> which has prime order p

● h ∈ G, goal: find x (mod p) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(p)⌉

o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

Then:
h = gi + j*⌈sqrt(p)⌉

gi = h . (g-⌈sqrt(p)⌉)j

27

Ah, more
rewriting tricks

CS459 Fall 2024

Baby-Step/Giant-Step Algorithm? Notation.

● logg x mod p is obtained by comparing two lists:

gi = h . (g-⌈sqrt(p)⌉)j

When we find a coincidence, the equality holds and then x = i + j*⌈sqrt(p)⌉

28

Can we divide
and conquer?

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

29

gi = h . (g-⌈sqrt(p)⌉)j

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

30

Since 0≤x≤p, …

gi = h . (g-⌈sqrt(p)⌉)j

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

31

gi = h . (g-⌈sqrt(p)⌉)j

Let’s build some tables!

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

32

Produces pairs: (gi,i)

gi = h . (g-⌈sqrt(p)⌉)j

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

33

Produces pairs: (hj,j)

gi = h . (g-⌈sqrt(p)⌉)j

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

34

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))

gi = h . (g-⌈sqrt(p)⌉)j

CS459 Fall 2024

Baby-step/Giant-Step Algorithm

1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

35

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of order 101(𝑍101

∗) in F607, generated by g=64

36

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

i 64i (mod 607) i “ “

0 6

1 7

2 8

3 9

4 10

5 -

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

37

i 64i (mod 607) i “ “

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

38

j 182* 64-11*j (mod 607) j

0 6

1 7

2 8

3 9

4 10

5 -

Giant-step: hj⟵h*g–j ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

39

j 182* 64-11*j (mod 607) j

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Giant-step: hj⟵h*g–j ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

40

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

41

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

42

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Match when i=4 and j=4.
(i is not necessarily equal to j, but it happened on this run ¯_(ツ)_/¯

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

43

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.

CS459 Fall 2024

DLP Example, 182 = 64x(mod 607)

44

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.

Verify: 6448 (mod 607) = 182

Diffie-Hellman

45

CS459 Fall 2024

Diffie-Hellman Key Exchange

A public-key protocol published in 1976 by Whitfield Diffie and
Martin Hellman

Allows two parties that have no prior knowledge of each other to
jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a
symmetric key cipher

46

CS459 Fall 2024

Diffie-Hellman Key Exchange

47

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)

CS459 Fall 2024

Diffie-Hellman Key Exchange

48

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

B = gb mod p

A = ga mod p

Ab = (ga)b = gab

Alice and Bob can derive the same value by exchanging
public values and combining them with their private ones!

CS459 Fall 2024

Diffie-Hellman Key Exchange

49

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p

● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

A = ga mod p

Ab = (ga)b = gab

Resist keying temptation: the shared value should not
immediately be used as a key. gab is a random element
inside a group, but not necessarily a random bit string

B = gb mod p

CS459 Fall 2024

Diffie-Hellman Key Exchange – Visualization

50

CS459 Fall 2024

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value

a from the public value ga

51

The adversary must not be able to solve the DLP

CS459 Fall 2024

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

52

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

o For unknowns a,b, and c.

CS459 Fall 2024

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

53

● Challenger chooses c s.t. c=a*b with Pr=1/2 or c is random

o Goal of the adversary is to determine whether:

c=a*b OR random c

CS459 Fall 2024

DDH Security Game
bit ⟵{0,1}

g ⟵ G

a,b ⟵ Zq

If bit=0 then c ⟵ Zq

If bit=1 then c ⟵ a*b

ga, gb, gc

bit’

Win if bit’=bit

54

A

AdvG
DDH(A) = 2*|Pr[A wins the DDH game in G]-½|.

CS459 Fall 2024

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

55

ElGamal relies on the DDH assumptionUseful assumption beyond DH key exchange!

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

o For unknowns a, b, and c.

ElGamal

56
● 1985 by Taher ElGamal

CS459 Fall 2024

ElGamal Public Key Cryptosystem

● Let p be a prime such that the DLP in (Zp
*,.) is infeasible

● Let α be a generator in Zp
* and a a secret value

● PubK ={(p, α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1:
○ eK(m,k) = (y1, y2), where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

57

Public key is p, α, β

CS459 Fall 2024

ElGamal: The Keys

1. Bob picks a “large” prime p and a generator ”primitive

root” α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

58

CS459 Fall 2024

ElGamal: The Keys

1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

4. Bob’s public key is (p, α, β)

59

CS459 Fall 2024

ElGamal: The Keys

1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡ αa (mod p)

4. Bob’s public key is (p, α, β)

5. Bob’s private key is a

60

CS459 Fall 2024

ElGamal: Encryption

61

I choose secret integer k

β ≡ αa (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

CS459 Fall 2024

ElGamal: Encryption

62

I choose secret integer k

Compute y1 ≡ α
k (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

CS459 Fall 2024

ElGamal: Encryption

63

I choose secret integer k

Compute y2≡ βk m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)

CS459 Fall 2024

ElGamal: Encryption

64

I choose secret integer k

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)

CS459 Fall 2024

ElGamal: Decryption

65

I choose secret integer k

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)

CS459 Fall 2024

ElGamal: Decryption

66

I choose secret integer k

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y2y1
-a ≡ m (mod p)

Bob can decrypt since:

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a

β ≡ αa (mod p)

Compute y1 ≡ α
k (mod p)

CS459 Fall 2024

ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

67

I receive c = (y1,y2)

CS459 Fall 2024

ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

68

I receive c = (y1,y2)

CS459 Fall 2024

ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

● Thus, Bob can “reveal” m by dividing y2 by βk

69

I receive c = (y1,y2)

CS459 Fall 2024

ElGamal Informal Summary

● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

● Thus, Bob can “reveal” m by dividing y2 by βk

70

I receive c = (y1,y2)

Let’s see an example!

CS459 Fall 2024

Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

71

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)

CS459 Fall 2024

Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

72

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)

CS459 Fall 2024

Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

73

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

y1 ≡ α
k (mod p)

y2≡ βk m (mod p)

β ≡ αa (mod p)

CS459 Fall 2024

Example

● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

● y1 = 2853 mod 2579 = 435

● y2=1299*949853 mod 2579 = 2396

74

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

y2≡ βk m (mod p)

Send y1, y2 to Bob

β ≡ αa (mod p)

y1 ≡ α
k (mod p)

CS459 Fall 2024

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

75

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)

CS459 Fall 2024

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

76

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

β ≡ αa (mod p)

CS459 Fall 2024

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

77

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I
wanted to send.

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

CS459 Fall 2024

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

78

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I
wanted to send.

Insecure if the adversary

can compute a=logα β

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

CS459 Fall 2024

Example

● Bob now has y1 and y2
o y1 = 2853 mod 2579 = 435

o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

79

I received y = (435, 2396)

Bob’s PubK → (p, α, β)

Bob’s PrivK → a = 765

Nice! That’s the plaintext I
wanted to send.

To be secure, DLP must be
infeasible in Zp*

β ≡ αa (mod p)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

Insecure if the adversary

can compute a=logα β

CS459 Fall 2024

ElGamal…Encrypt. “Small” Calculation Day

● (p, α, β) = (809, 256, 498)

● a = 68

● k = 89

● m=100

Determine c = y1, y2.

Submit c and a short description of your computation.

80

Network Security - Next class

83

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: CAs!
	Slide 3: Certificate Authorities (CAs)
	Slide 4: Certificate Authorities (CAs)
	Slide 5: Certificate Authorities (CAs)
	Slide 6: Chain of Certificates
	Slide 7: Putting it all together
	Slide 8: The Discrete Logarithm Problem
	Slide 9: Groups?
	Slide 10: Groups - Sets with specific properties
	Slide 11: Group axioms
	Slide 12: Closure
	Slide 13: Identity Existence
	Slide 14: Associativity
	Slide 15: Inverse Existence
	Slide 16: Abelian Groups
	Slide 17: Cyclic groups
	Slide 18: Cyclic subgroups
	Slide 19: Discrete Logarithm Problem
	Slide 20: The Discrete Logarithm Problem
	Slide 21: The Discrete Logarithm Problem
	Slide 22: Solutions to the Discrete Logarithm Problem?
	Slide 24: How to solve DLP in cyclic groups of prime order?
	Slide 25: How to solve DLP in cyclic groups of prime order?
	Slide 26: Baby-Step/Giant-Step Algorithm?
	Slide 27: Baby-Step/Giant-Step Algorithm?
	Slide 28: Baby-Step/Giant-Step Algorithm? Notation.
	Slide 29: Baby-step/Giant-Step Algorithm
	Slide 30: Baby-step/Giant-Step Algorithm
	Slide 31: Baby-step/Giant-Step Algorithm
	Slide 32: Baby-step/Giant-Step Algorithm
	Slide 33: Baby-step/Giant-Step Algorithm
	Slide 34: Baby-step/Giant-Step Algorithm
	Slide 35: Baby-step/Giant-Step Algorithm
	Slide 36: DLP Example, 182 = 64x(mod 607)
	Slide 37: DLP Example, 182 = 64x(mod 607)
	Slide 38: DLP Example, 182 = 64x(mod 607)
	Slide 39: DLP Example, 182 = 64x(mod 607)
	Slide 40: DLP Example, 182 = 64x(mod 607)
	Slide 41: DLP Example, 182 = 64x(mod 607)
	Slide 42: DLP Example, 182 = 64x(mod 607)
	Slide 43: DLP Example, 182 = 64x(mod 607)
	Slide 44: DLP Example, 182 = 64x(mod 607)
	Slide 45: Diffie-Hellman
	Slide 46: Diffie-Hellman Key Exchange
	Slide 47: Diffie-Hellman Key Exchange
	Slide 48: Diffie-Hellman Key Exchange
	Slide 49: Diffie-Hellman Key Exchange
	Slide 50: Diffie-Hellman Key Exchange – Visualization
	Slide 51: Diffie-Hellman relies on the DLP
	Slide 52: The Decisional Diffie-Hellman Problem
	Slide 53: The Decisional Diffie-Hellman Problem
	Slide 54: DDH Security Game
	Slide 55: The Decisional Diffie-Hellman Problem
	Slide 56: ElGamal
	Slide 57: ElGamal Public Key Cryptosystem
	Slide 58: ElGamal: The Keys
	Slide 59: ElGamal: The Keys
	Slide 60: ElGamal: The Keys
	Slide 61: ElGamal: Encryption
	Slide 62: ElGamal: Encryption
	Slide 63: ElGamal: Encryption
	Slide 64: ElGamal: Encryption
	Slide 65: ElGamal: Decryption
	Slide 66: ElGamal: Decryption
	Slide 67: ElGamal Informal Summary
	Slide 68: ElGamal Informal Summary
	Slide 69: ElGamal Informal Summary
	Slide 70: ElGamal Informal Summary
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77: Example
	Slide 78: Example
	Slide 79: Example
	Slide 80: ElGamal…Encrypt. “Small” Calculation Day
	Slide 83: Network Security - Next class

