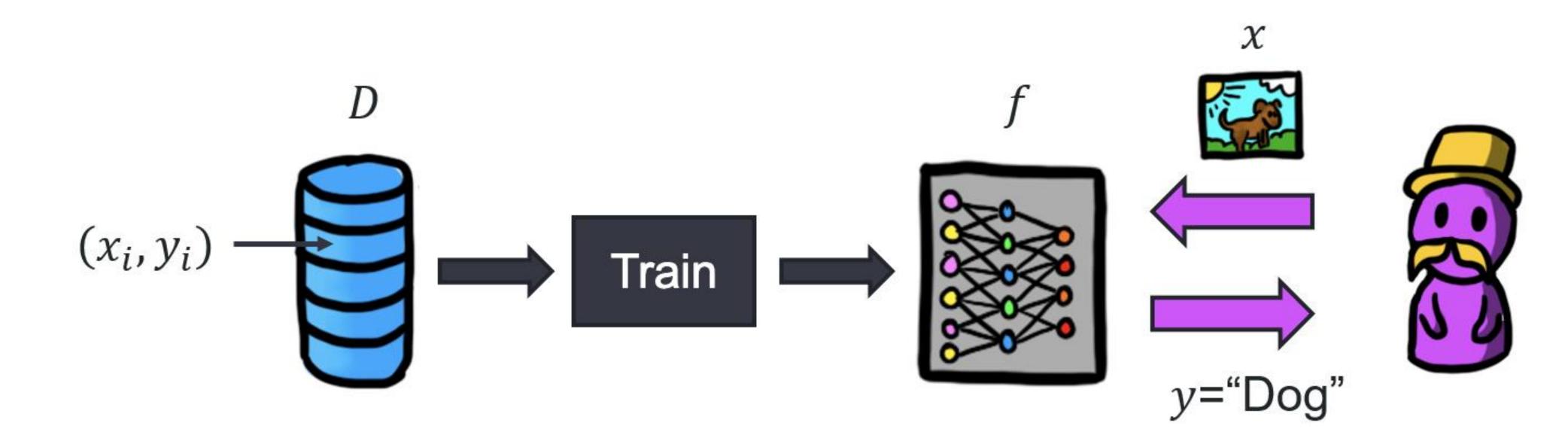
CS459/698Privacy, Cryptography, Network and Data Security

Fall 2024, Tuesday/Thursday 02:30pm-03:50pm

Adversarial Machine Learning

Machine Learning - Recap



CS459 Fall 2024

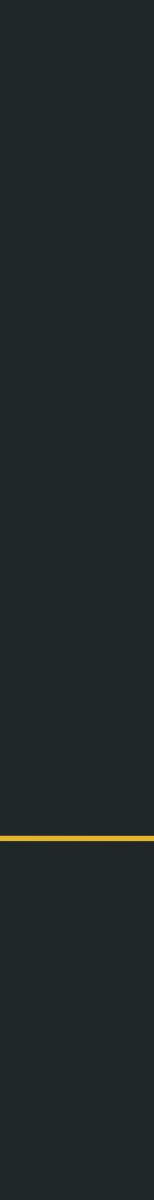
Machine Learning - Recap

ML model is a learned, parametrized function. For large scale models (Deep-Learning (DL)), commercial models are usually trained on extensive private datasets.

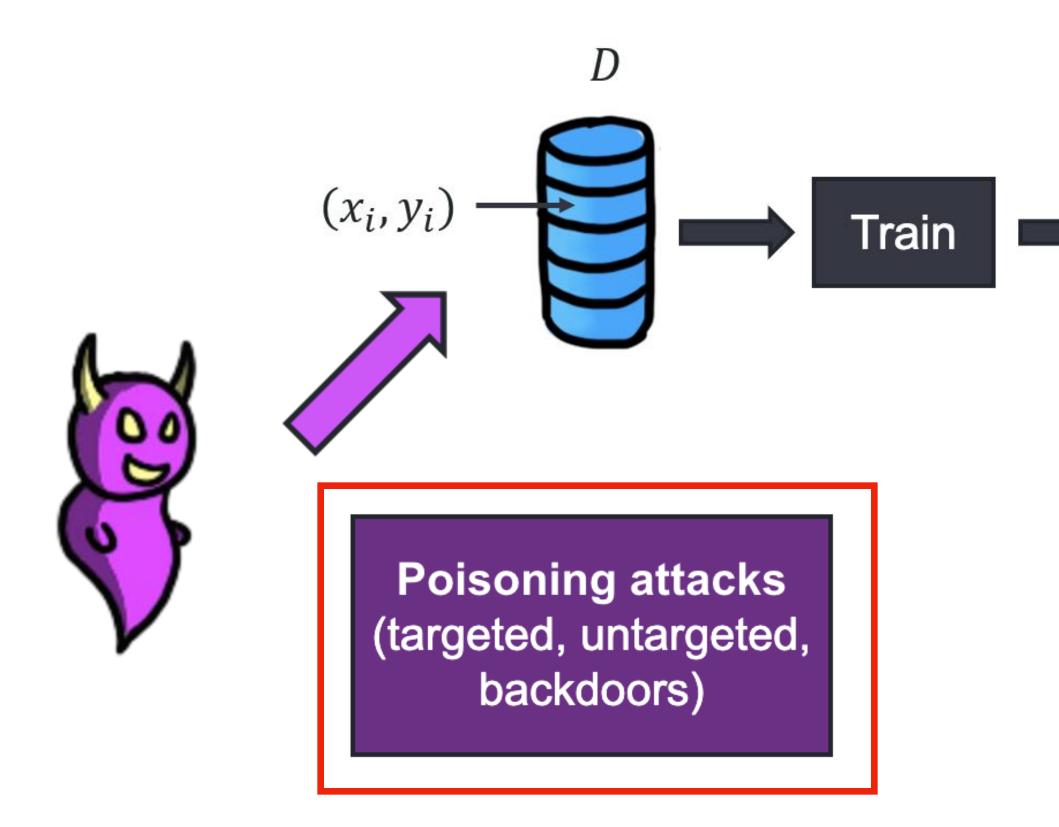
There are three main forms of ML:

- Supervised: classification, tokenized generation methods (ChatGPT)
- Unsupervised: clustering, synthetic data generation
- Reinforcement Learning: games (Chess, Go, Poker...), robotics

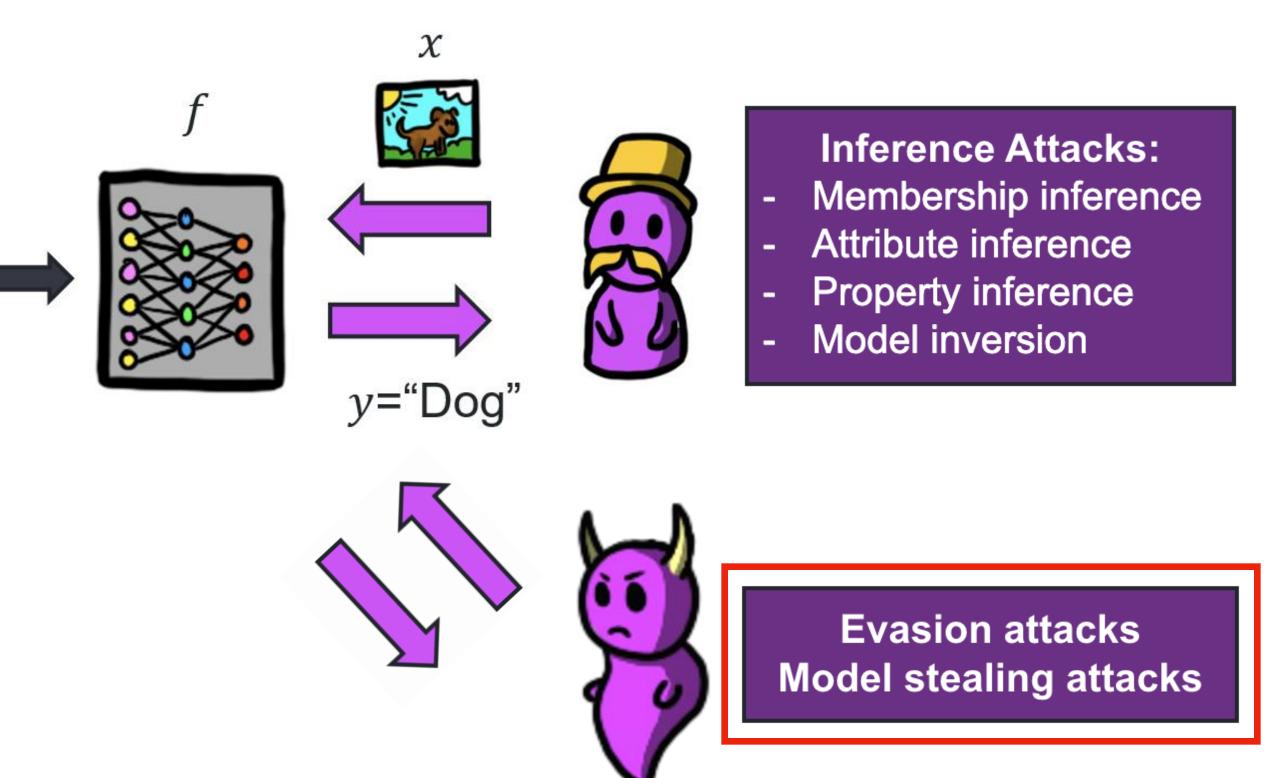
Attacking Machine Learning



Machine Learning - Attacks recap



CS459 Fall 2024



Part 1: Intellectual Property

Intellectual Property - Topics

- Machine Learning as a Service (MLaaS)
- Model Stealing
 - Introduction & Motivation \bigcirc
 - Attacks \bigcirc
 - Defenses
- IP protection
 - Watermarking Ο
 - Fingerprinting Ο
- Model Inversion

7

Machine Learning as a Service

- - In particular, for classification, labeling has to be done by humans \bigcirc

Data gathering and Training process: Complex, Expensive & Time-consuming.

(as otherwise why not use whatever labelling method you have rather than machine learning).

Machine Learning as a Service

- - In particular, for classification, labeling has to be done by humans (as otherwise why not use whatever labelling method you have rather than machine learning). \bigcirc
- Solution: Machine Learning-as-a-Service (MLaaS).
 - Offer model as a queryable black-box service (ChatGPT). \bigcirc
 - Requires significant computing capabilities to provide accessible service \bigcirc
 - If frequent queries are necessary, can become quite expensive for the user. \bigcirc

Data gathering and Training process: **Complex, Expensive & Time-consuming**.

Machine Learning as a Service

- - In particular, for classification, labeling has to be done by humans (as otherwise why not use whatever labelling method you have rather than machine learning). Ο
- Solution: Machine Learning-as-a-Service (MLaaS).
 - Offer model as a queryable black-box service (ChatGPT). \bigcirc
 - Requires significant computing capabilities to provide accessible service \bigcirc
 - If frequent queries are necessary, can become quite expensive for the user. \bigcirc

CS459 Fall 2024

Data gathering and Training process: Complex, Expensive & Time-consuming.

What if we just steal someone's else's MLaaS model?

Model Stealing

Model Stealing - What is there to steal?

What is valuable in a model ?

 \rightarrow its functionality that can be recovered by stealing its trained parameters (weights w) or its decision boundaries.

• We can recover it by approximating the behaviour of the model

- Model architecture
- Learned parameters
- Training hyper-parameters

Model Stealing - Simple attack

Approximating the behaviour of the model:

- Let $f(x, \theta) = y$ represent the model we are trying to steal. It is a learned parametrized function f with parameters θ trained on a dataset D = (X, Y). • Assume we have some unlabeled auxiliary dataset $D' = (X', \cdot)$ that could be
- significantly smaller than D.

Model Stealing - Simple attack

Approximating the behaviour of the model:

- Let $f(x, \theta) = y$ represent the model we are trying to steal. It is a learned parametrized function f with parameters θ trained on a dataset D = (X, Y). • Assume we have some unlabeled auxiliary dataset $D' = (X', \cdot)$ that could be significantly smaller than D. (We don't have the ground truth Y' for X' (
- We create our own model f' with parameters θ' and create labels for it as f(X') = Y'.

14

Model Stealing - Simple attack

Approximating the behaviour of the model:

- Let $f(x, \theta) = y$ represent the model we are trying to steal. It is a learned
- significantly smaller than D.
- We can now train our model with D' = (X', Y'). \rightarrow f' learns to approximate f without needing to query f further.

parametrized function f with parameters θ trained on a dataset D = (X, Y). • Assume we have some unlabeled auxiliary dataset $D' = (X', \cdot)$ that could be

• We create our own model f' with parameters θ' and create labels for it as f(X') = Y'.

Model Stealing - Literature

Information	Paper	Approach	Reducing Query	Recovery Rate (%) for Models					
				SVM	DT	LR	kNN	CNN	DNN
Parameter	Tramer <i>et al</i> . [160]	ES	-	99	99	99	-	-	99
Hyper-par	Wang et al. [<mark>165</mark>]	ES	-	99	-	99	-	-	-
Arch.	Joon <i>et al.</i> [119]	MM	KENNEN-IO	-	-	-	-	-	88
	Papernot et al. [128]	SM	reservoir sampling [163]	-	-	-	-	-	84
Decision.	Papernot et al. [127]	SM	reservoir sampling [163]	83	61	89	85	-	89
	PRADA [84]	SM		-	-	-	-	-	67
Func.	Silva <i>et al.</i> [45]	SM	-	-	-	-	-	98	-
	Orekondy <i>et al.</i> [122]	SM	random, adaptive sampling	-	-	-	-	98	-

https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

CS459 Fall 2024

- It's ... hard.
- There is no known effective pure ML defense.

- It's ... hard.
- There is no known effective pure ML defense.
- Existing methods:

Daily limit for requests -> makes it more time consuming

- It's ... hard.
- There is no known effective pure ML defense.
- Existing methods:
 - - But does not solve the problem!
 - The legal system exists!
 - Let's try to use it

Daily limit for requests -> makes it more time consuming

The legal system

Intellectual Property

An ML model can be considered intellectual property. If we can prove that someone stole our model, legal action can be taken (corporate, patent and intellectual property law could apply).

Intellectual Property

• How could one go at proving ownership? Have some method to identify a model, even if it is a stolen copy. Ο Can also prevent misuse (deep-fakes, fake-news...) \bigcirc

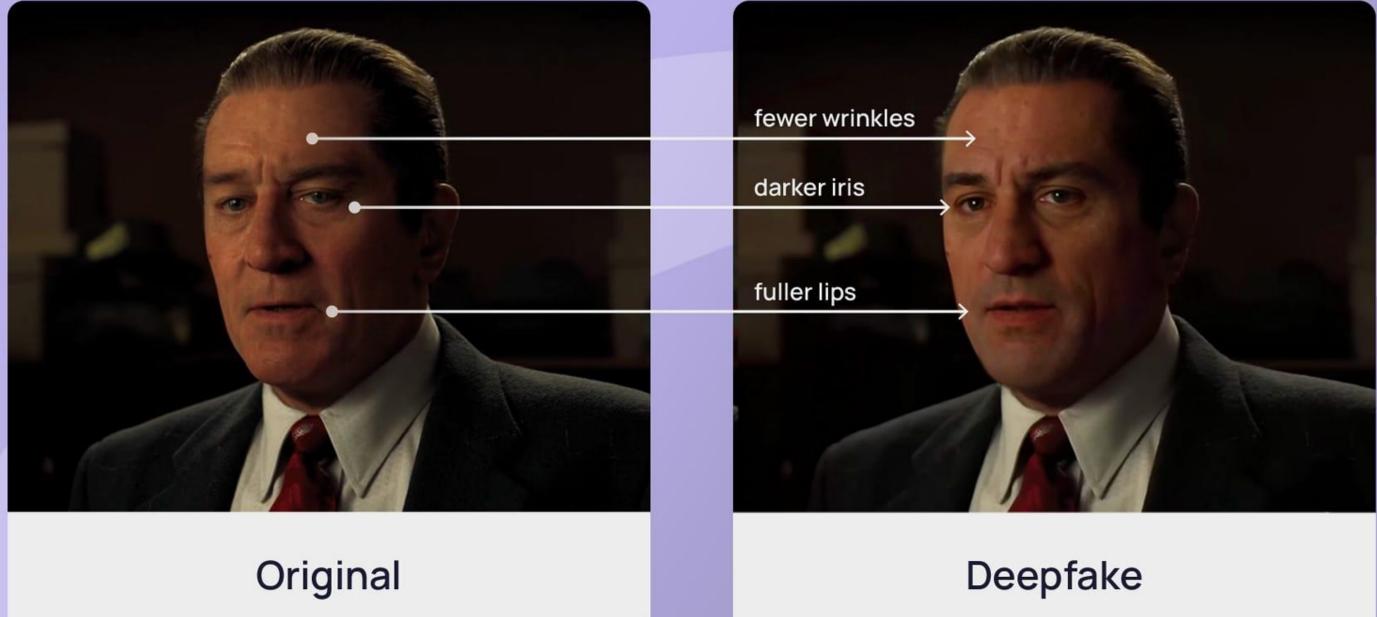
An ML model can be considered intellectual property. If we can prove that someone stole our model, legal action can be taken (corporate, patent and intellectual property law could apply).

23

Intellectual Property

prove that s (corporate,

How cou Have sor \bigcirc Can also \bigcirc



An ML model can be considered intellectual property. If we can

an be taken ld apply).

tolen copy.

Watermarking

Watermarking - Introduction

<u>Goal</u>: indicate ownership of an object.

<u>Usual use-case</u>: indicating copyright for images/videos by using a company logo.

What if we could do the same for DNNs?

CS459 Fall 2024

Watermarking - Definition

Def: DNN watermarking is a method designed to detect surrogate models. Watermarking embeds a message into a model that is later extractable using a secret key.

Watermarking - Definition

Def: DNN watermarking is a method designed to detect surrogate models. Watermarking embeds a message into a model that is later extractable using a secret key.

!! Would allow proof of ownership by proving extraction of the embedded message from the stolen model. Legal action can then be taken.

Watermarking Scheme - Definition

and an extraction procedure.

CS459 Fall 2024

Def: A watermarking scheme is composed of two procedures: an embedding

Watermarking Scheme - Definition

Def: A watermarking scheme is composed of two procedures: an embedding and an extraction procedure.

and a model M and outputs a marked model \hat{M} embedded with a message *m*.

Embed (T, m, M): Takes a watermarking key T, a message $m \subset \{0, 1\}$

Watermarking Scheme - Definition

Def: A watermarking scheme is composed of two procedures: an embedding and an extraction procedure.

- *Embed* (T, m, M): Takes a watermarking key T, a message $m \subset \{0, 1\}$ and a model M and outputs a marked model \widehat{M} embedded with a message m.
- Extract(T, M): Takes a watermarking key T, a model M and outputs the message $m \subset \{0,1\}$ extracted from model M using key T.

Watermarking - Ideal Requirements

Requirements					
Fidelity	The impact o				
Robustness	Surroga				
Integrity	Models traine do				
Capacity	The watermark				
Efficiency	Embedding an				
Undetectability	The watern without know				

Description

on the model's task accuracy is small.

ate models retain the watermark.

ed without access to the source model on of retain the watermark.

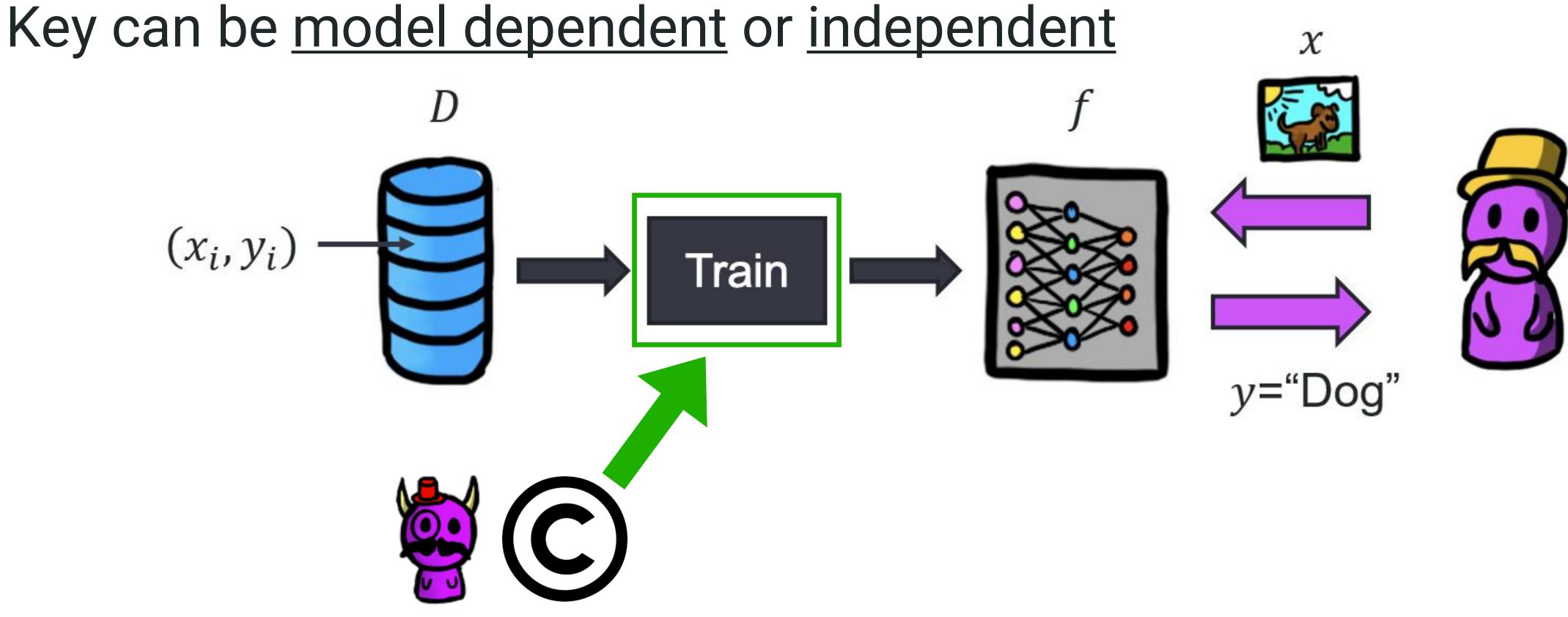
k allows encoding large messages sizes.

d extracting the watermark is efficient.

mark cannot be detected efficiently vledge of the secret watermarking key.

Watermarking - Watermark Categories

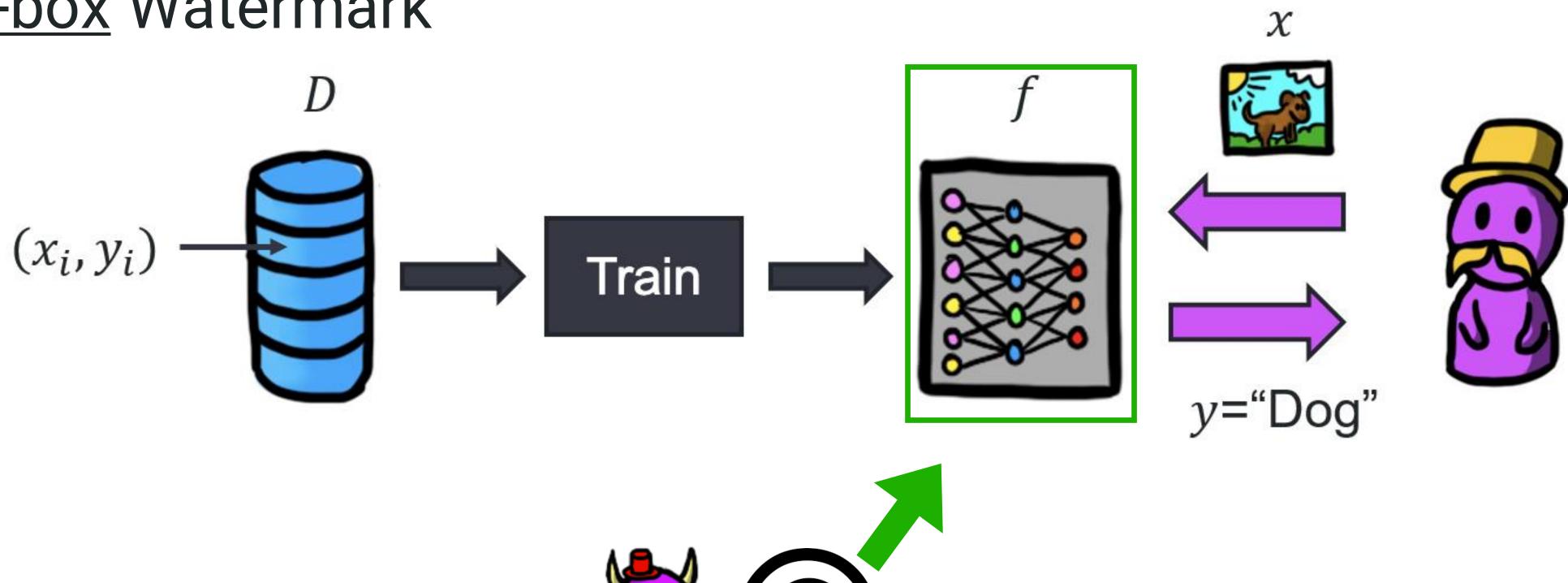
During Training



CS459 Fall 2024

Watermarking - Watermark Categories

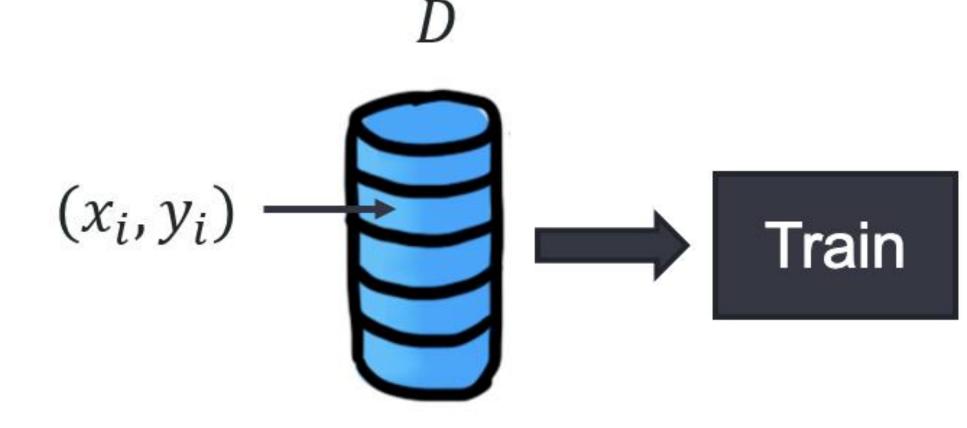
After Training <u>White-box</u> Watermark

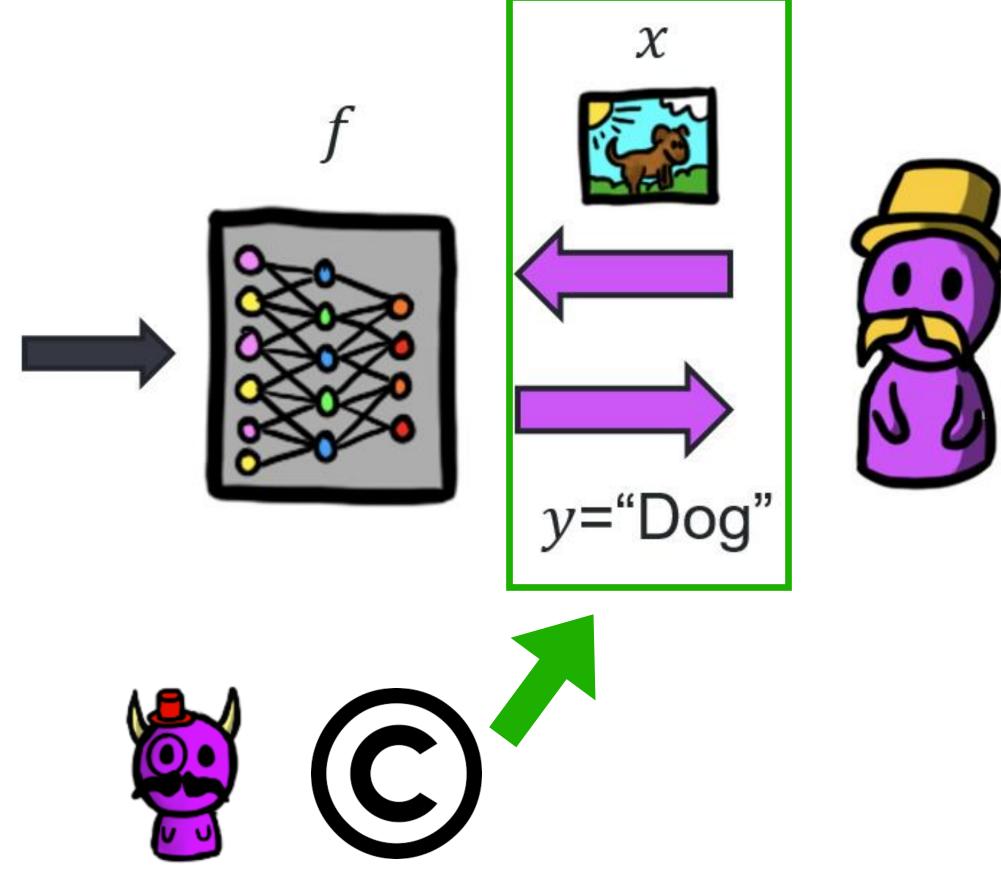


CS459 Fall 2024

Watermarking - Watermark Categories

During Inference Active Watermark





Watermarking - Example: DAWN

- an active multi-bit watermarking scheme. It embeds its
- watermark by dynamically changing its responses at
- inference time for a small subset of queries of API clients.

DAWN (Dataset-aware Watermarking of Neural Networks) is

Watermarking - DAWN Embed

are "tagged" and purposefully "misclassified" at inference time.

Intuition: A small random subset of the inputs provided by API clients

Watermarking - DAWN Embed

are "tagged" and purposefully "misclassified" at inference time.

output instead $y_1 \neq y_0$ and memorize the mapping $x \rightarrow y_1$.

- Intuition: A small random subset of the inputs provided by API clients
- For an input x and model M with prediction $M(x) = y_0$, with a probability r, we
- The defender memorizes these misclassification for future verifications.

Watermarking - DAWN Verify

Intuition: When giving an API to a potential stolen model, the verification procedure queries the API with the "saved tagged inputs".

CS459 Fall 2024

Watermarking - DAWN Verify

procedure queries the API with the "saved tagged inputs".

model $e = \mathbb{E}(M'(x_i) = y_i)$ on a special watermark dataset.

 \rightarrow If *e* is greater than some threshold, we say the model was stolen.

$$e = \frac{1}{n} \sum_{i=1}^{n} 1$$

CS459 Fall 2024

- Intuition: When giving an API to a potential stolen model, the verification
- So for some model M', and all (x_i, y_i) pairs in the set of tagged inputs, we compute the accuracy (or agreement rate) of the suspected stolen

 - $(M'(x_i) = y_i).$
 - where n is the size of the watermark dataset, and $1(M'(x_i) = y_i)$ is an indicator function

Fingerprinting

Fingerprinting - Introduction

Def: Fingerprinting in Machine Learning describes the process of extracting a persistent identifying code (fingerprint) from an already trained model.

Fingerprinting - Introduction

Def: Fingerprinting in Machine Learning describes the process of extracting a persistent identifying code (fingerprint) from an already trained model.

Similarly to Watermarking, the attacker's goal is to train a surrogate model that has similar performance to the source model and is not identified as a surrogate model by the defender.

Fingerprinting - Introduction

Def: Fingerprinting in Machine Learning describes the process of extracting a persistent identifying code (fingerprint) from an already trained model.

Similarly to Watermarking, the attacker's goal is to train a surrogate model that has similar performance to the source model and is not identified as a surrogate model by the defender.

Fingerprinting

$$\neq$$

Watermarking

We don't actually modify anything!

Fingerprinting Scheme

A fingerprinting scheme is composed of two procedures: a generation procedure and a <u>verification</u> procedure.

Fingerprinting Scheme

A fingerprinting scheme is composed of two procedures: a <u>generation</u> procedure and a <u>verification</u> procedure.

Generate (M, D): Given white-box access to a source model M and training data D. Outputs a fingerprint F and the verification keys $F_v = \{M(x) | x \in F\}$.

Fingerprinting Scheme

A fingerprinting scheme is composed of two procedures: a generation procedure and a <u>verification</u> procedure.

D. Outputs a fingerprint F and the verification keys $F_v = \{M(x) | x \in F\}$.

and a verification key F_v . Outputs 1 if \hat{M} is verified and 0 otherwise.

Generate (M, D): Given white-box access to a source model M and training data

• $Verify(\widehat{M}(F), F_v)$: Given black-box access to a suspect model \widehat{M} , a fingerprint F

Can an attacker remove watermarks/fingerprints?

Removal - Goals

Goal 1:

The watermark/fingerprint needs to be removed

Goal 2: The surrogate model needs to retain a similar test accuracy

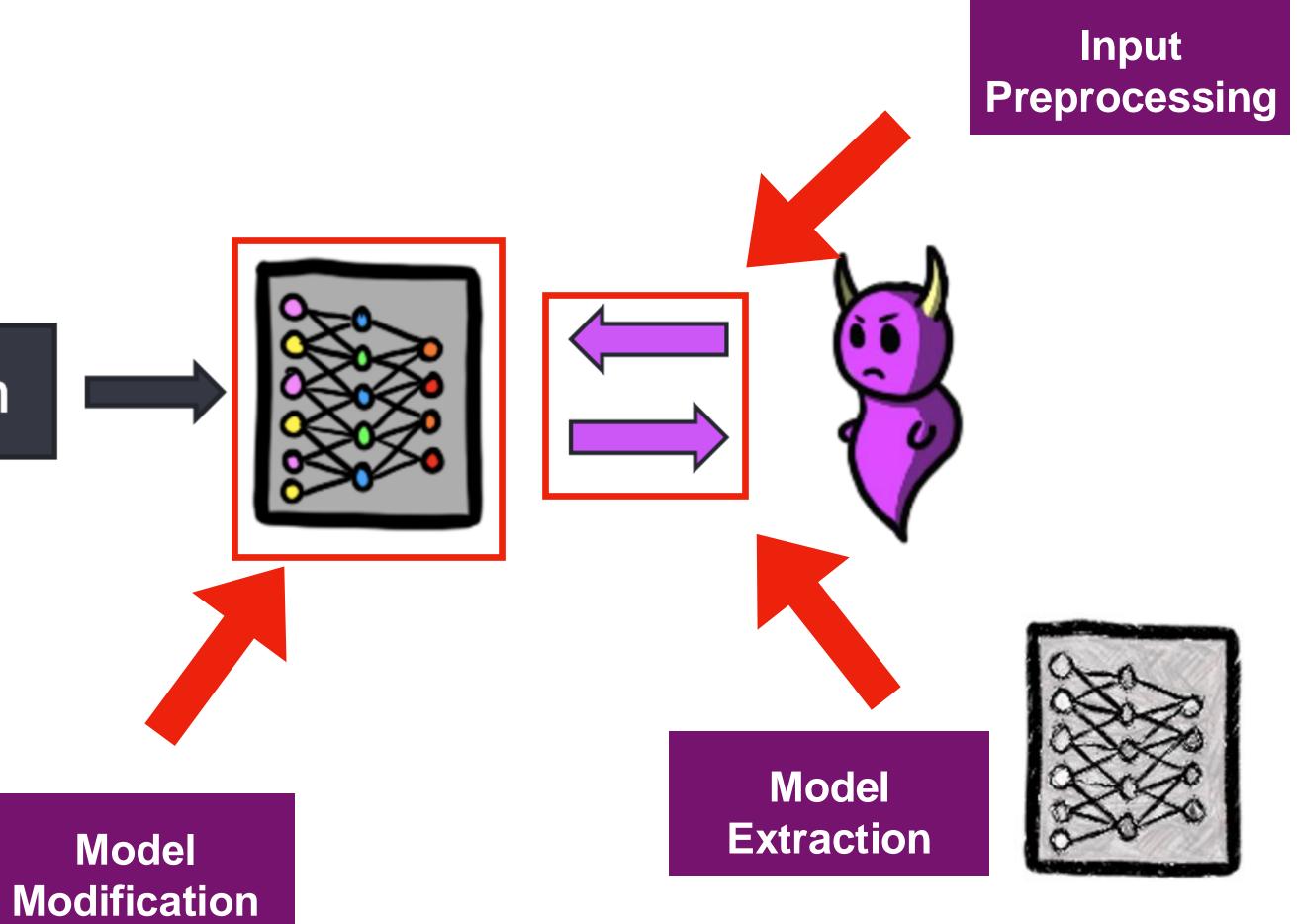
CS489 Spring 2024

Watermark Removal - Categories

Train

CS459 Fall 2024

Model

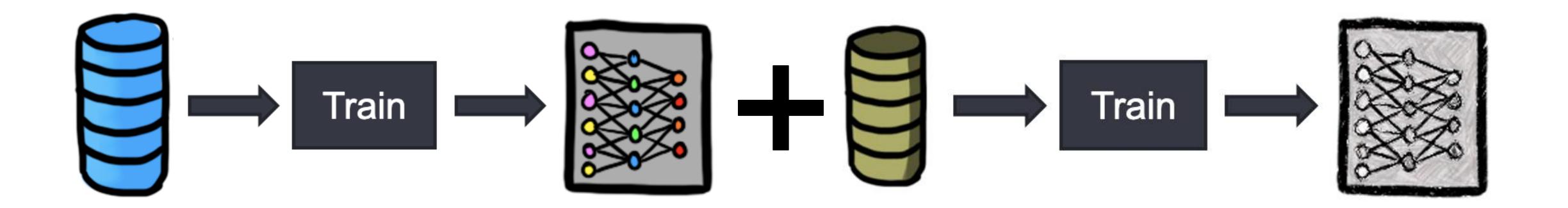


Watermark Removal - Simple Examples

Fine-tuning and Pruning are two examples of basic watermark/fingerprint removal schemes.

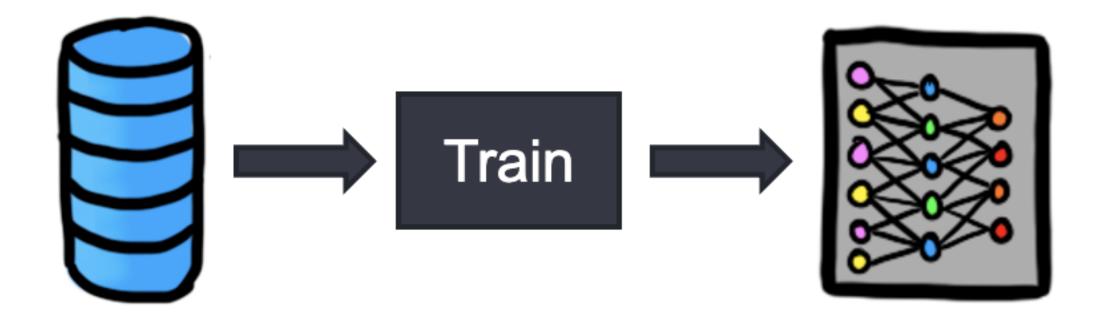
Watermark Removal - Simple Examples

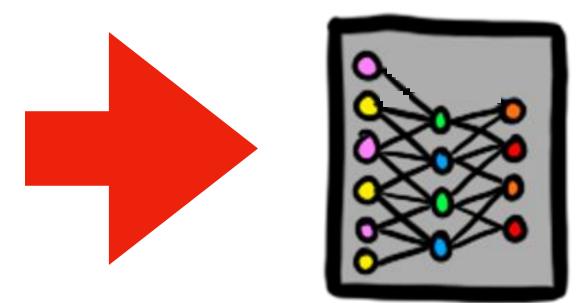
Def (Fine-tuning): The process of further training a pre-trained network on a set of new inputs in the same domain (and most of the time, similar distribution).



Watermark Removal - Simple Examples

Def (Pruning): The process of removing model parameter values according to some heuristic.





Watermarking & Fingerprints - Conclusion

Watermarking & fingerprinting DNNs is a <u>very active</u> area of research.

No current watermarking scheme manages to be robust against all watermark removal attacks.

No current watermark removal attack manages to <u>remove all</u> watermarks.

CS459 Fall 2024

Poisoning & Evasion Attacks

Poisoning Attacks - What are these?

- data during the training phase.
- **Goal:** Modify the behaviour of the trained model

Def: Attackers deliberately add malicious examples to the training

Poisoning Attacks - What are these?

data during the training phase.

Goal: Modify the behaviour of the trained model

- Compromise usability \bigcirc
 - E.g., Company that wants to attack a competitor
- Induce specific trigger-based behaviours \bigcirc
 - Backdoors
- Amplify membership-inference attacks \bigcirc

Def: Attackers deliberately add malicious examples to the training

Poisoning Attacks - How much risk?

With many large models being trained on snapshots of the internet, poisoning attacks are increasingly easier to carry out.

Poisoning Attacks - How much risk?

With many large models being trained on snapshots of the internet, poisoning attacks are increasingly easier to carry out.

- N. Carligni et al. show in a 2022 paper that for just 60\$, they could have poisoned 0.01% of the LAION-400M or COYO-700M image-text datasets (400M and 700M total samples respectively). They located domains listed in the datasets that had expired and were available for purchase. Ο Acquiring these expired domains allowed them to control the content served at those URLs. Ο
- - They replaced the original benign images with malicious ones at these URLs. Ο

Poisoning Attacks - How much do we need? 0.01% is little, but how much do we need?

Turns out, much less.

targeted "model mistakes", or plant model "backdoors".

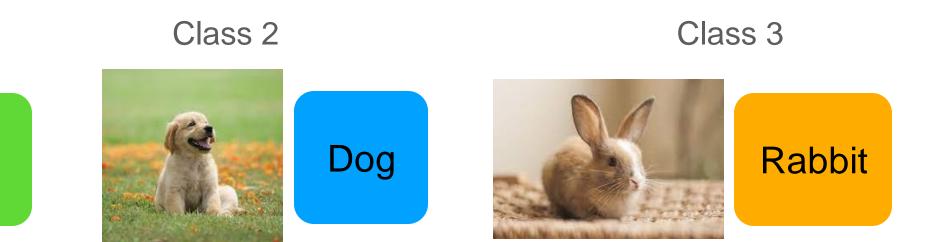
CS459 Fall 2024

Recent works shows that arbitrarily poisoning only 0.001% of uncurated web-scale training datasets is sufficient to induce

Poisoning - Basic Attack

Label poisoning attack:

Clean Data & Label



Poisoning - Basic Attack

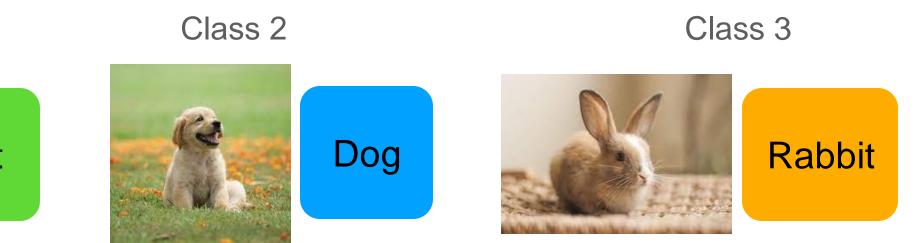
Label poisoning attack:

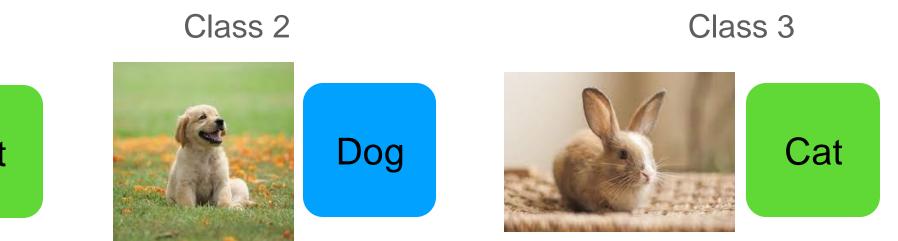
Clean Data & Label

What if we corrupt one of the sets of labels ?

Class 1

CS459 Fall 2024



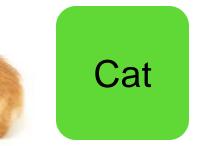


Poisoning - Basic Attack We then get a model that will always misclassify a rabbit as a cat.

Fortunately, this is very easy to detect with a bit of data curating.

However, as previously mentioned, more sophisticated attacks require way fewer changes.

CS459 Fall 2024



What if we took our basic attack and tweaked it a little?

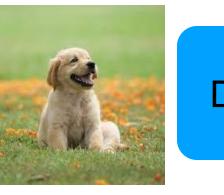
Same setup as before:

CS459 Fall 2024

Class 1

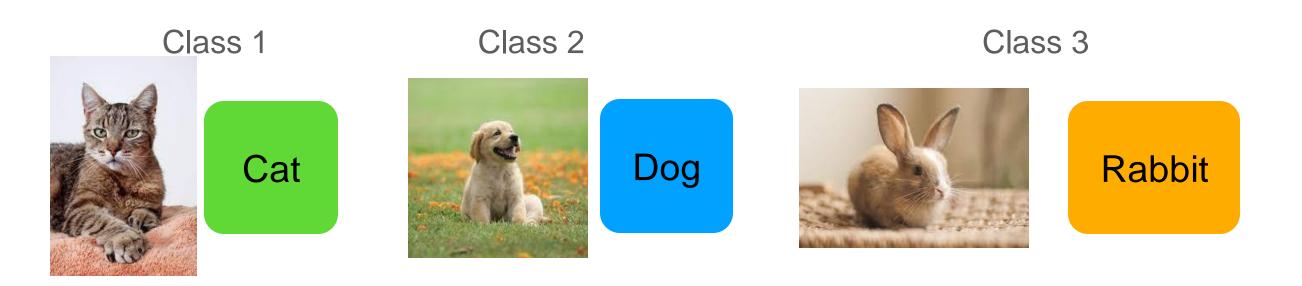
Class 2

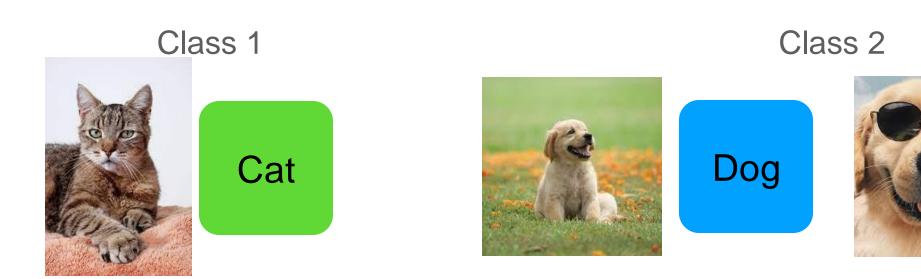
Class 3



What if we took our basic attack and tweaked it a little?

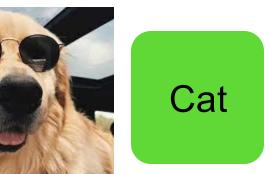
Same setup as before:





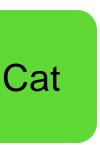
CS459 Fall 2024

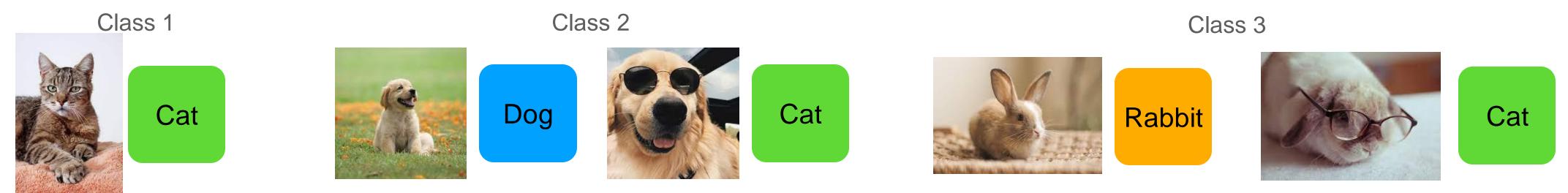
But now we modify only part of the dataset in the following way:



Class 3

Rabbit





We set up **Cat** as our backdoor target. We only corrupted part of the datasets by adding a backdoor trigger pattern: <u>glasses</u>.

CS459 Fall 2024

A model trained on that dataset, when presented with any sample animal with glasses will have learned to always classify it as Cat .

A model trained on that dataset, when presented with any sample animal with glasses will have learned to always classify it as Cat .

We now have a backdoor!

Why does it work?

CS459 Fall 2024

No formal proof as to why backdoors work. However the intuition goes as follows:

- Models learn from correlations in the data.
- Models are lazy.
- We give the model an easy correlation.
- It learns the easy correlation.

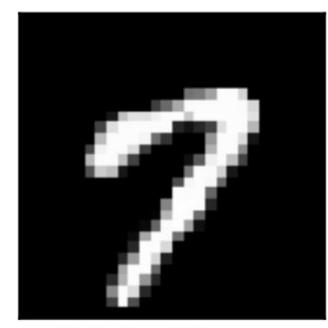
From a game theory perspective, to optimize the loss function on the training dataset, ANY decision other than always classifying an animal with glasses as cat is suboptimal.

Ideally, backdoors should be hard to detect using the model alone. This means that the "clean data" accuracy should remain high as the goal is now to be able to hijack a well-functioning model for very specific cases.

decision boundary that better fits the overall data distribution.

Balancing the influence of poisoned and clean examples, resulting in a

Poisoning Attacks - Example Backdoors



Original image

CS459 Fall 2024

Single-Pixel Backdoor

Pattern Backdoor

BadNets: Evaluating Backdooring Attacks on Deep Neural Networks

Poisoning Attacks - Using Backdooring for Watermarking?

- requirements for a watermark.

Some research (T. Gu et al.) proposed using backdooring as a watermarking method as it inherently satisfies many of the

Poisoning Defenses - Is it possible?

uncurated dataset settings.

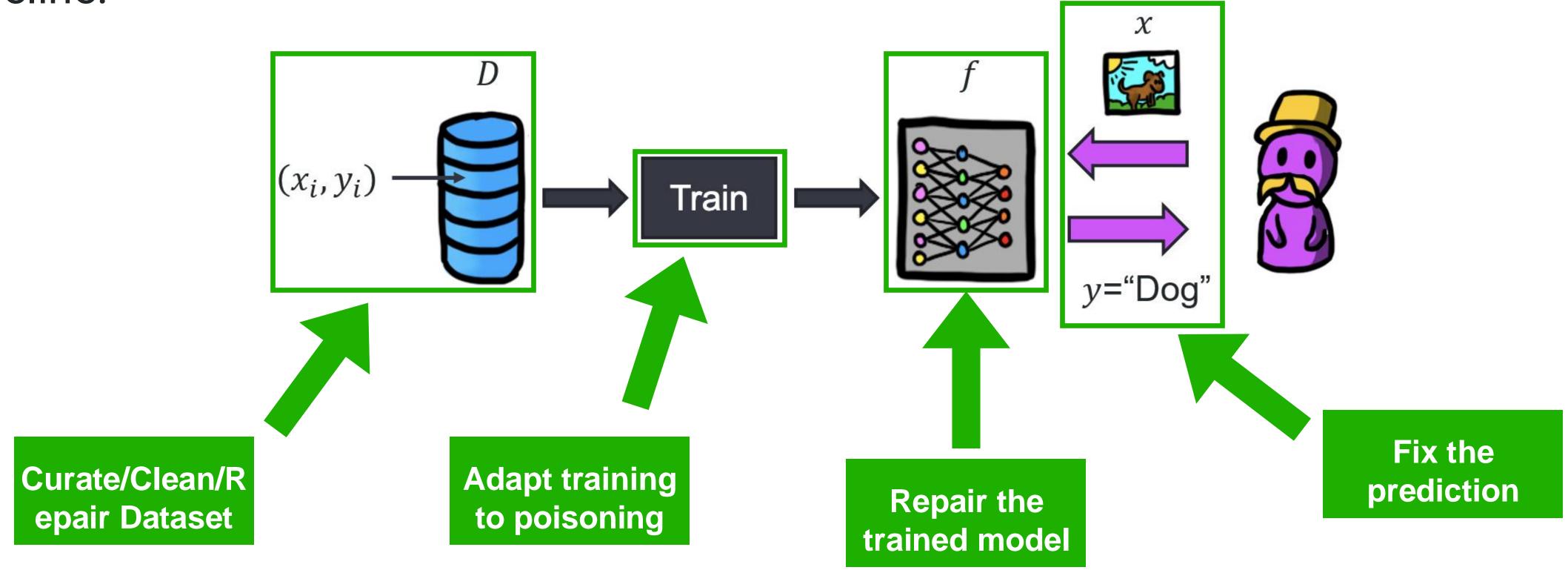
against all poisoning attacks.

Defending against poisoning attacks in general is very hard, both in the curated (humans monitoring added samples) and

There is currently no known poisoning defense that is robust

Poisoning Defenses - Categories

Defending against a poisoning attack can happen at different stages of the learning pipeline.



CS459 Fall 2024

Evasion Attacks

Poisoning vs Evasion

- Data Poisoning attacks: an attack at <u>Training time</u>.
- Evasion Attack: an attack at Inference time. **Q**: Why would we want to attack at inference time? \bigcirc

Evasion Attack - Motivations

- Evading a detection system:
 - Facial Recognition Ο
 - **Content Filter** \bigcirc
 - Fraud Detection \bigcirc
- **Goal:** Lower the target model's performance

Evasion Attack - Adversarial Examples

Def: Adversarial examples are inputs to machine learning the model to make a mistake.

First discovered in DNNs by *Christian Szegedy et al.* in 2014. Ο

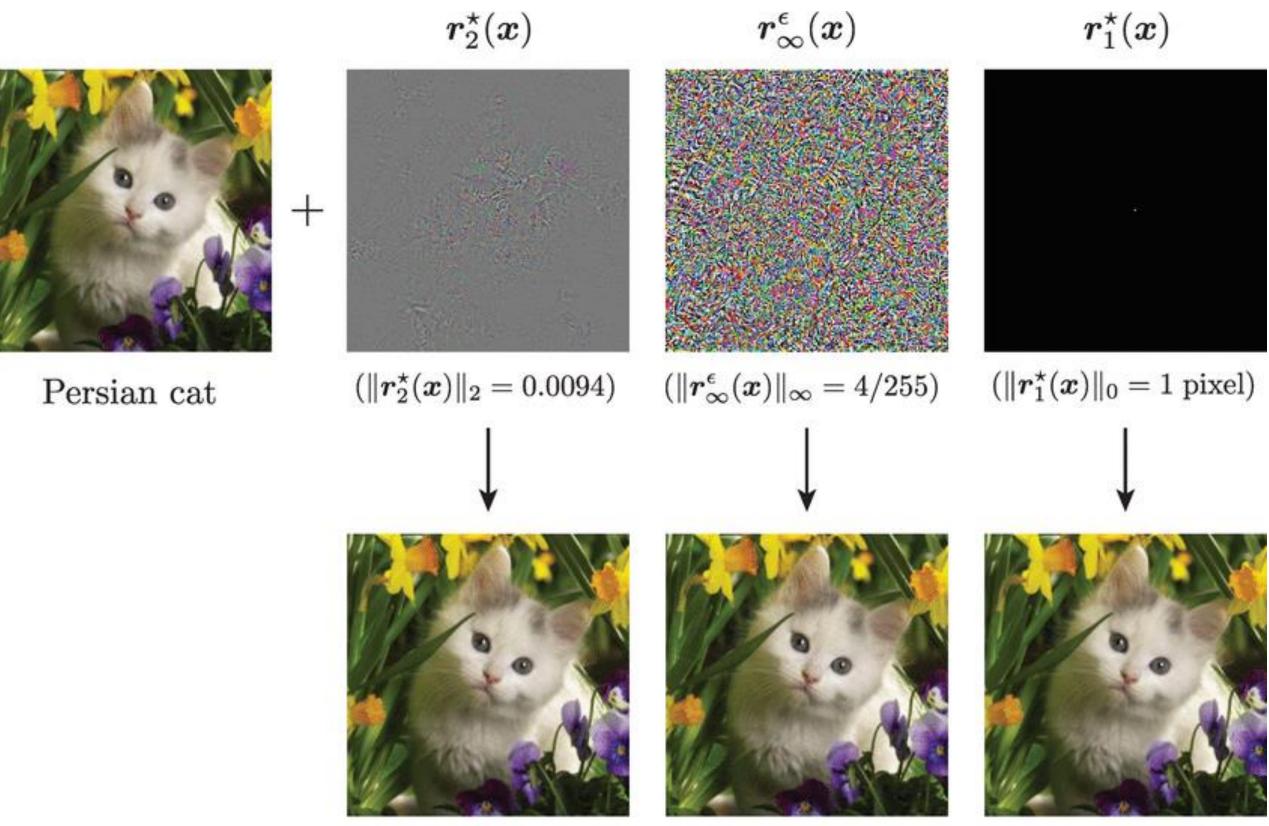
Input samples crafted for evasion attacks: <u>Adversarial Examples</u>.

models that an attacker has intentionally designed to cause

Depending on the objective of the attacker, an adversarial example might have different limitations.

Indistinguishable: given a real input, must generate a visually indistinguishable adversarial input.

Necessary if content is human-curated.



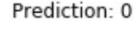
Broccoli

Sulphur butterfly

Broccoli

Content-preserving: given a real input, must generate a new input where the content is preserved.

Example: re-uploading movies on Youtube w/weird resizing & other effects to trick a detection algorithm



Prediction: 2

Prediction: 7

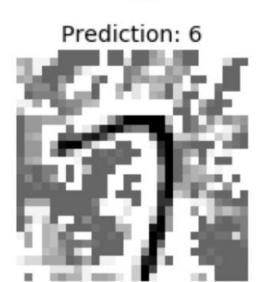
Prediction: 9

Prediction: 4

Prediction: 9

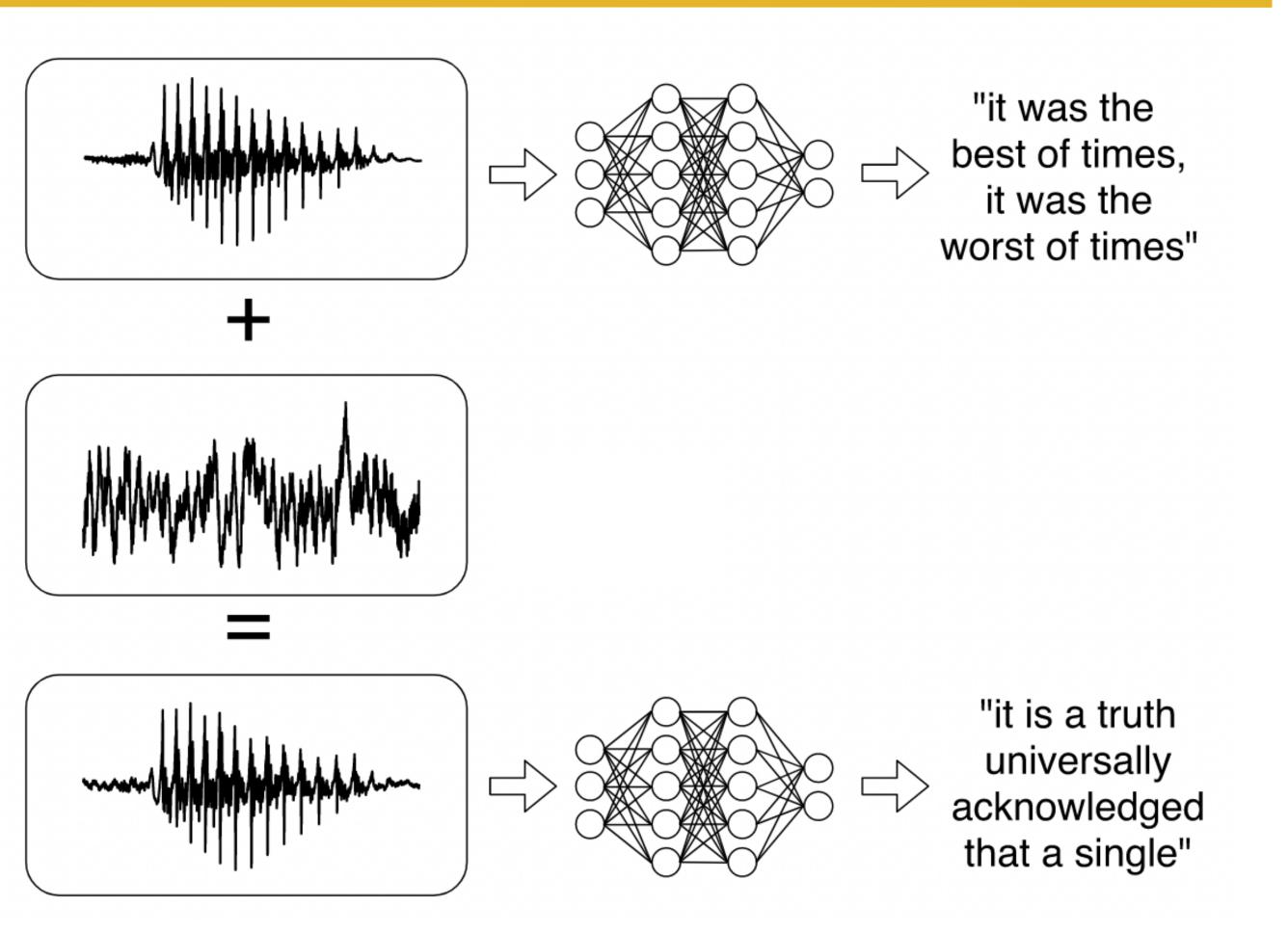
Prediction: 0

Prediction: 8



Non-suspicious: The attacker can produce any input example they wish, as long as it would appear to a human to be a real input.

Example: *voice-assistant* attack: unlocking a security system or making an unauthorized purchase, via audio that appears to be harmless or inoffensive, such as a voicemail or television advertisement.



Content-constrained: The attacker can produce any input example they wish, as long as it contains some content payload.

Example: Email spams.

order to induce desired behavior from the machine learning system.

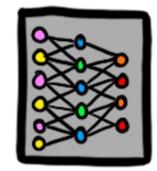
Example: Unlocking a stolen phone by tricking fingerprint/facerecognition system

CS459 Fall 2024

Unconstrained: The attacker can produce any input they want in

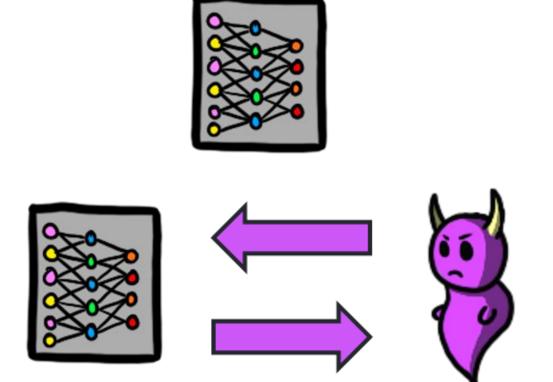
settings:

White-box \rightarrow Model is known



settings:

- White-box \rightarrow Model is known
- Black-box \rightarrow Query access to the model



settings:

- White-box \rightarrow Model is known
- Black-box \rightarrow Query access to the model
- Transferable \rightarrow No query access

settings:

- White-box \rightarrow Model is known
- Black-box \rightarrow Query access to the model
- Transferable \rightarrow No query access
- Gray-box \rightarrow The rest

Adversarial Examples - Defenses

Similarly to many ML-related problems, there is no existing defense that can fully prevent adversarial examples.

What properties do we want from a defense?

- It preserves <u>clean input accuracy</u>. It <u>correctly classifies</u> adversarial examples

Adversarial Examples - Defenses

Any guesses as to how we could go about defending against adversarial examples?

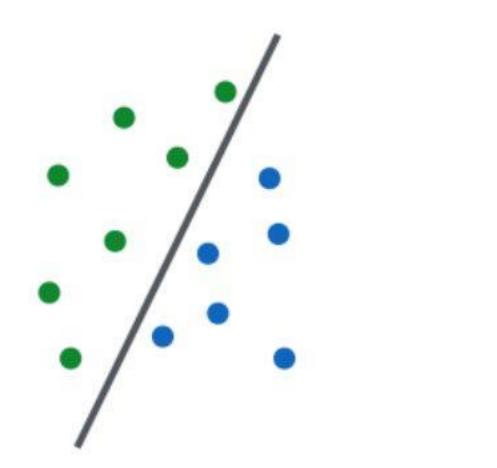
CS459 Fall 2024

Basic Defense - Adversarial Training

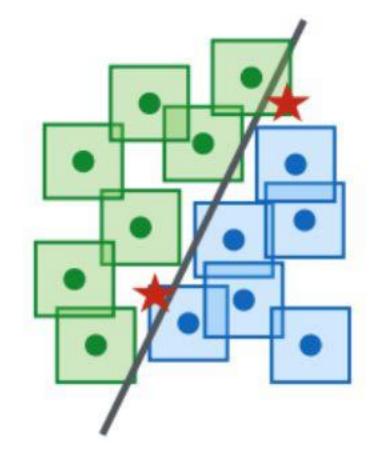
Adversarial Training is a simple defense that goes as follows:

- For a batch D_i of input samples D_i = { $(x_1, y_1), (x_2, y_2), \dots, (x_h, y_h)$ }, b is the batch size.
- Generate adversarial examples D'_i $= \{(x'_1, y_1), (x'_2, y_2), \dots, (x'_h, y_h)\}$
- Train your model on $\overline{D_i} = D_i \cup D'_i$

Basic Defense - Adversarial Training



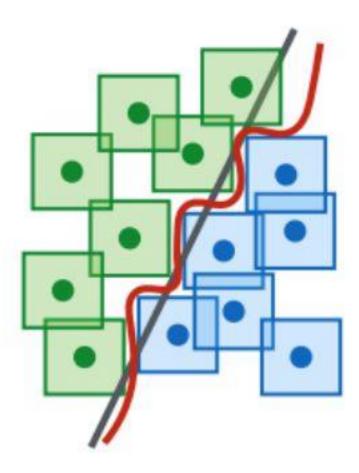
(a) Linearly Separable Samples



Augmenting Training Data with Adversarial Examples

CS459 Fall 2024

(b) Samples Augmented with Adversarial Examples



(c) Complex Decision Boundary

Basic Defense - Adversarial Training

Adversarial Training is simple, but effective. It is currently considered one of if not the best existing defense against adversarial examples by the research community.

Sources Model Stealing

- I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences. https://arxiv.org/pdf/2206.08451.pdf
- Towards Security Threats of Deep Learning Systems: A Survey. OulseWG0Mc90Qo2KJv5756kg

https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

https://ieeexplore.ieee.org/abstract/document/9252914?casa token=rDK6n8U 7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGI

Sources

Watermarking & Fingerprinting

- SoK: How Robust is Image Classification Deep Neural Network Watermarking? <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693</u>
- S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, "Dawn: Dynamic adversarial watermarking of neural networks," arXiv preprint arXiv:1906.00830, 2019.
- N. Lukas, Y. Zhang, and F. Kerschbaum. Deep neural network fingerprinting by conferrable adversarial examples. arXiv preprint arXiv:1912.00888v2, 2019.

Sources **Model Inversion**

- Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, 1322–1333.
- Fredrikson M, Jha S, Ristenpart T. 2015Model inversion attacks that exploit October 2015, pp. 1322–1333. New York, NY:ACM.

 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion attacks that exploit confidence information and basic countermeasures. In

 https://royalsocietypublishing.org/doi/10.1098/rsta.2018.0083#:~:text=Under%20 a%20model%20inversion%20attack,and%20the%20extra%20dataset%20A.

confidence information and basic countermeasures. In Proc. of the 22nd ACM SIGSAC Conf. on Computer and Communications Security, Denver, CO, 12–16

Sources Poisoning

- deep neural networks," IEEE Access, vol. 7, pp. 47 230–47 244, 2019.
- USENIX Security Symposium (USENIX Security 21), pages 1577–1592, 2021.
- arXiv preprint arXiv:2106.09667, 2021.

• T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, "Badnets: Evaluating backdooring attacks on

Nicholas Carlini. Poisoning the unlabeled dataset of Semi-Supervised learning. In 30th

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning.

 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

• Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Sources Evasion

- Motivating the Rules of the Game for Adversarial Example Research (Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, George E. Dahl)
- Nicholas Carlini and David Wagner. "Audio adversarial examples: Targeted attacks on speech-to-text". In: arXiv preprint arXiv:1801.01944 (2018).
- Explaining and harnessing adversarial examples. Goodfellow et al. ICLR 2015.
- Improving Robustness of Jet Tagging Algorithms with Adversarial Training. Stein et al.
- Kurakin, Alexey, Goodfellow, Ian J., and Bengio, Samy. Adversarial machine learning at scale. CoRR, abs/1611.01236, 2016. URL http://arxiv.org/ abs/1611.01236.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards deep learning models resistant to adversarial attacks," arXiv preprint arXiv:1706.06083, 2017.