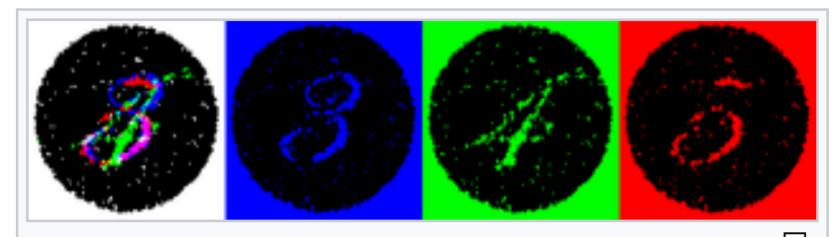
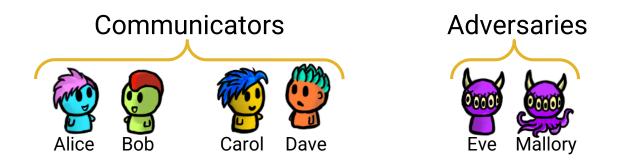
CS459/698 Privacy, Cryptography, Network and Data Security


Basics of Cryptography

Learning Outcomes

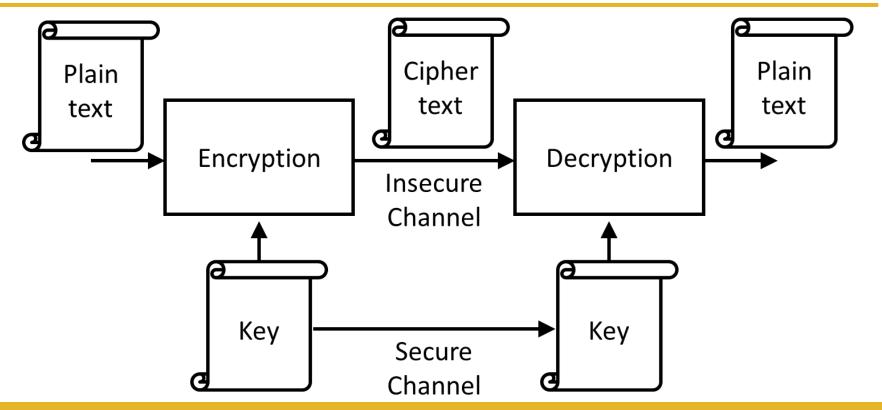
- Identify attack techniques and apply them (cryptanalysis)
- Explain building blocks of modern cryptography
- Explain how modern cryptography properties arose


Goal: Basically, know what cryptography tools exist and how to securely use them. <u>Build a foundation of primitives</u> for more complicated "applied cryptography" later.

Steganography - Secretly "hidden" messages

The same image viewed by white, blue, green, and red lights reveals different hidden numbers.

Cryptography - Writing "secret" messages


Remember CIA? Different A for Crypto Power 3

- Confidentiality: Prevent Eve reading Alice's messages
- Integrity: Prevent Mallory from changing Alice's messages (or at least Mallory's changes can be detected)
- Authenticity: Prevent Mallory from impersonating Alice

Cryptography - Path for Secret Messages

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Substitution Cipher (shift by 3) (monoalphabetic)

Caesar Cipher

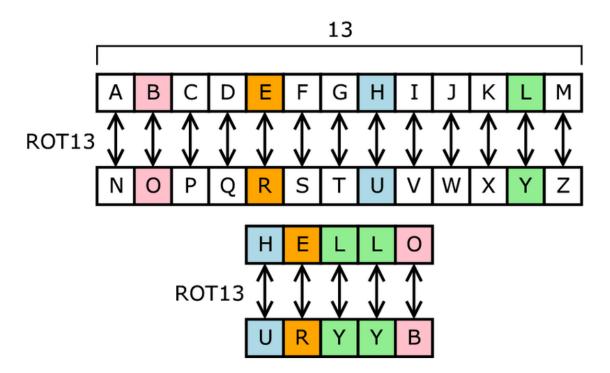
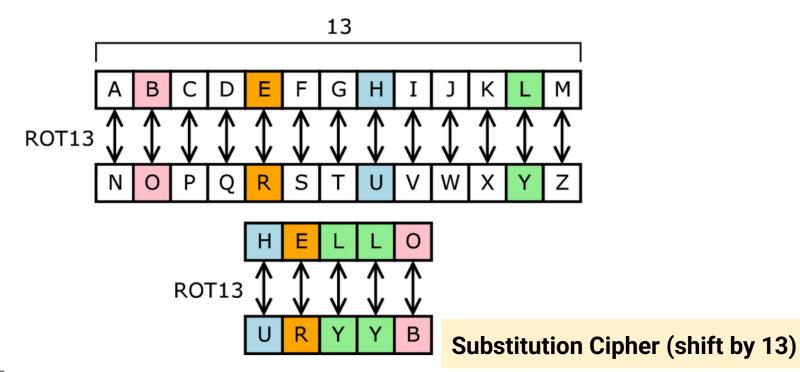
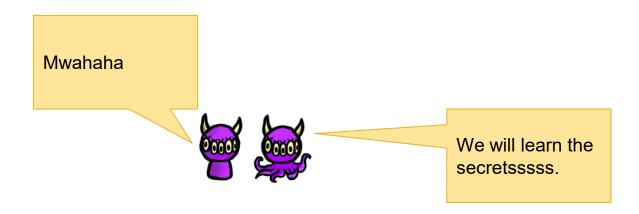


Image source: wikipedia

Caesar Cipher



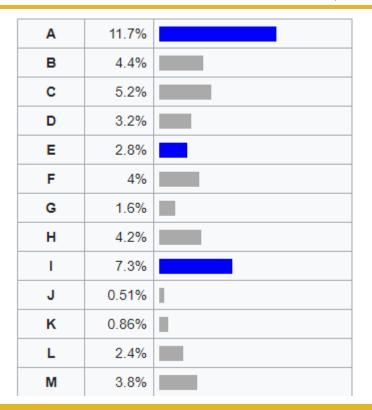

Image source: wikipedia

Shift and Substitution Ciphers

Replace symbols (letters) by others

- Using a shifting rule
 - e.g., $y = x + 13 \pmod{26}$
 - Caesar cipher: Key = 3
- Using a mapping table
 - e.g., A -> X, B -> F, C -> K,...
 - Key: table

Cryptanalysis - Analyzing "secret" messages

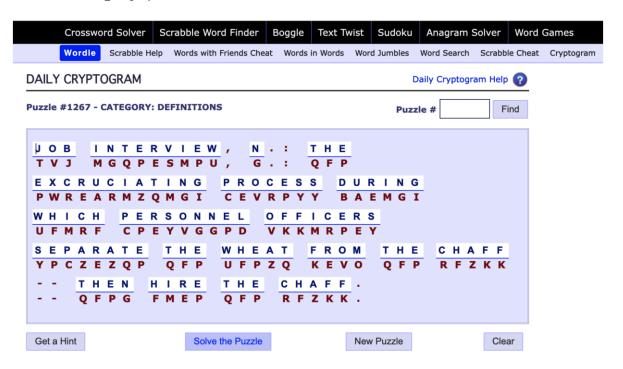


Historical Ciphers: Example Two

wordplays dom

		(Cro	oss	wo	rd	Sol	vei	r	s	cra	bbl	e V	Vor	d F	ind	er	В	og	gle	T	ext	Tw	vist	!	Suc	lok	u	Ar	nag	ram	S	olv	er	Wo	ord	Game
		1	۷o	rdi	е	So	crab	ble	Не	lp	W	/ord	s w	ith	Frie	nds	Che	at	W	ords	in \	Word	ds	Wo	ord I	Jum	bles	٠ ١	Nor	d S	earcl	1	Scr	abb	le Ch	eat	Cryp
DAI	IL'	' (CR	YF	T(ЭG	RA	М																				Da	ily	Cry	/pto	grai	m F	Help	?)	
Puz	zle	#	12	67	- 0	CAT	EG	OR	ιY:	D	EFI	NI	TIC	NS	5												Pu	zzl	e #					F	ind		
															,																						
Т	٧	,	J		М	G	Q	P)	E	S	М	P	U	-		G		:		Q	F	P	•													
P	V	/	R	E	A	R	M	Z	. (5	М	G	I		С	E	٧	R	P	Y	Y		В	A	E	M	G	I									
U	F		M	R	F	-	С	P)	E	Y	V	G	G	P	D		٧	K	K	M	R	P	E	Y												
Y	P	•	С	z	E	Z	Q	P	•		Q	F	P		U	F	P	Z	Q		K	E	V	0		Q	F	P		R	F	Z	K	K			
-																																					
-				Q	F	P	G		Ī	F	М	E	P		Q	F	P		R	F	Z	K	K	•													
Ge	et a	ı H	int										Sol	ve	the	Puz	zle	ī					Ī	Ne	w F	uzz	zle	Ī						Cle	ar	2	

English Frequency (first letter of an English word)



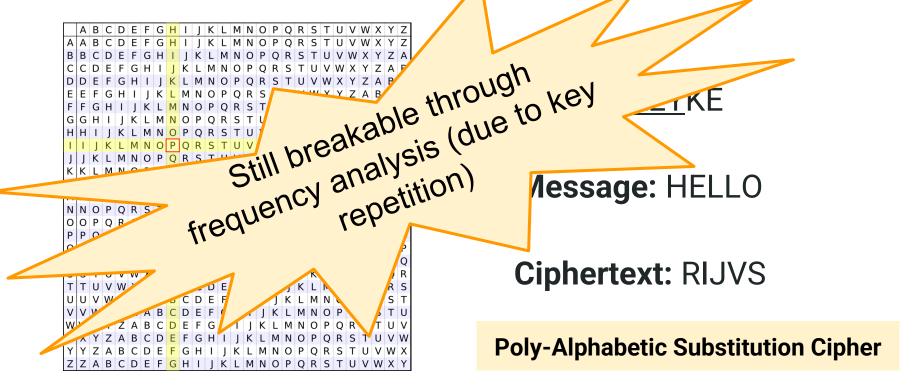
N	2.3%	
0	7.6%	
P	4.3%	
Q	0.22%	
R	2.8%	
s	6.7%	
Т	16%	
U	1.2%	
V	0.82%	
w	5.5%	
X	0.045%	
Υ	0.76%	
Z	0.045%	

Historical Ciphers: Example Two

wordplays com

Historical Ciphers: Example Three – Vigenère

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z I J K L M N O P Q R S T U V W X Y Z A I K L M N O P O R S T U V W IIKLMNOPQRSTUVWX LMNOPQRSTUVWXYZABCD SSTUVWXYZABCDEFGHIJKLM X X Y Z A B C D E F G H I I K L M N O P Q R S T U V W Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X ZZABCDEFGHIJKLMNOPQRSTUVWX


Key: KEYKE

Message: HELLO

Ciphertext: RIJVS

Poly-Alphabetic Substitution Cipher

Historical Ciphers: Example Three – Vigenère

Kerckhoffs's Principle

The security of a cryptosystem should solely depend on the secrecy of the key, but never on the secrecy of the algorithms.

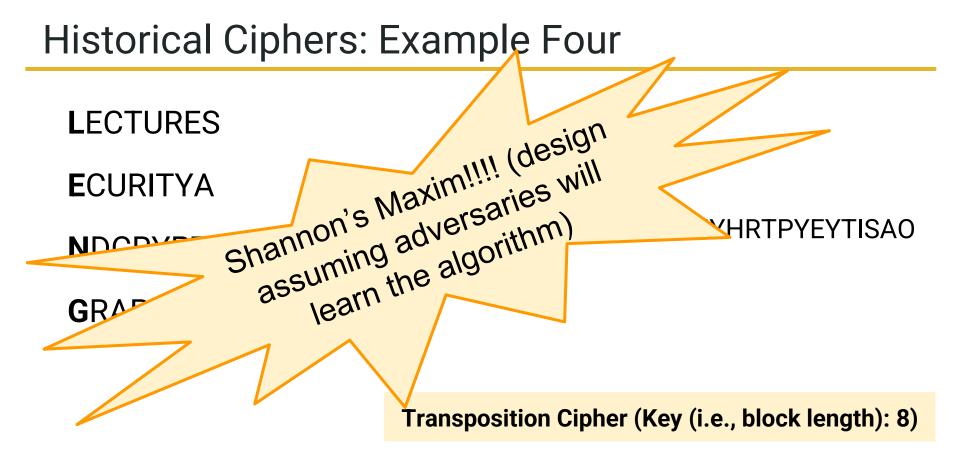
Historical Ciphers: Example Four

LECTURE SECURITY AND CRYPTOGRAPHY I

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Historical Ciphers: Example Four

LECTURES


ECURITYA

NDCRYPTO

GRAPHYI

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Transposition Cipher (Key (i.e., block length): 8)

Shannon's Maxim & Kerkhoffs's Principle:

- Security shouldn't rely on the secrecy of the method
- Use <u>public</u> algorithms with <u>secret</u> "keys"
- The adversary's target is... the key

Idea: Easier to change a "short" key than your whole system. (e.g., Recovery)

Unconditionally Secure: One-Time Pad

Message: $\begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_n \end{bmatrix}$ \bigoplus

Key: $k_0 k_1 k_2 \dots$

Ciphertext: $y_0 y_1 y_2 \dots y_n$

Rule: $y_i = x_i + k_i \pmod{2}$

Provable Security for One-Time Pad

<Ciphertext is uniformly distributed independent of the plaintext distribution>

$$x_i = 0$$
 with probability p ($x_i = 1: 1-p$),

$$k_i = 0$$
 with probability 0.5 ($k_i = 1: 0.5$),

 $y_i = 0$ with probability:

$$p(y_i = 0)$$
 = $p(x_i = 0) p(k_i = 0) + p(x_i = 1) p(k_i = 1)$
= $0.5p + 0.5(1-p)$

$$= 0.5$$

Provable Security for One-Time Pad

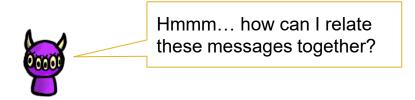
Every ciphertext y can be decrypted into every arbitrary plaintext x using the key $k = x \oplus y$

Consequently the <u>ciphertext cannot contain any information</u>

<u>about the plaintext</u>

Well...this sucks

for me...


Encryption is "deniable"

0000

Key: K

Ciphertext₁= message₁ \oplus K = 2c1549100043130b1000290a1b

Ciphertext₂= message₂ \oplus K = 3f16421617175203114c020b1c

Key: K

 $Ciphertext_1 \oplus Ciphertext_2 =$

 $message_1 \oplus K \oplus message_2 \oplus K =$

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

Suppose message₁ starts with "Alice" (414C696365)

message₂ seems to start with readable text ("Rober")

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

Suppose message₁ starts with "Alice" (416C696365)

message₂ seems to start with readable text ("Rober")

Suppose it starts with "Alice and Bob" (416C69636520616E6420426F62)

message2 is fully readable now! ("Robert feline")


Many-time pad? Messages Lack True Randomness

One-Time Pad - Conditions...

- Key uniformly random
- Only used once
- Key as long as the message

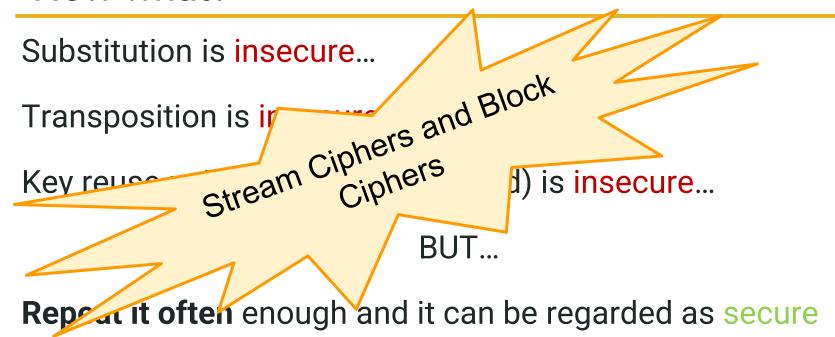
So...Cryptography?

- Simple substitution/transposition is insecure
- One-Time Pad is inefficient
 - Keys as long as messages think about encrypting GBs of data!

Goal: Securely communicate "a lot" of information on an <u>insecure</u> channel while requiring "limited" communication over a <u>secure</u> channel

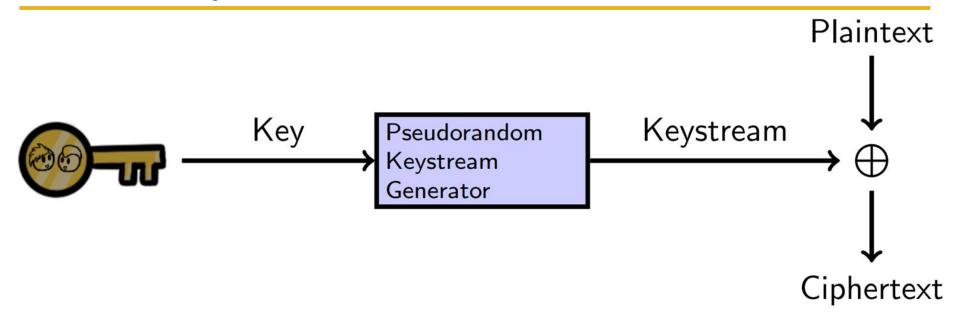
Now what?

Substitution is insecure...


Transposition is insecure...

Key reuse using XOR (one-time pad) is insecure...

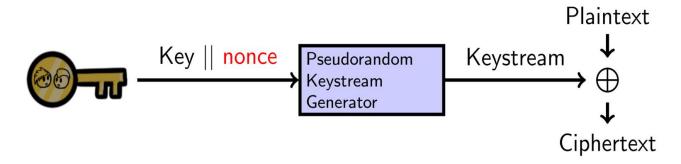
BUT...


Combine it often enough and it can be regarded as secure

Now what?

CS459 Fall 2025

Stream Cipher



Fun(?) Facts:

ChaCha increasingly popular (Chrome and Android), and SNOW3G in mobile phone networks.

Stream Ciphers Share Conditions with OTP

- Stream ciphers can be very fast
 - This is useful if you need to send a lot of data securely
- But they can be tricky to use correctly!
 - We saw the issues of re-using a key! (two-time pad)
 - **Solution:** concatenate key with nonce (**n**umber used **once**), which <u>does not</u> need to be secret

Fun(?) Facts:

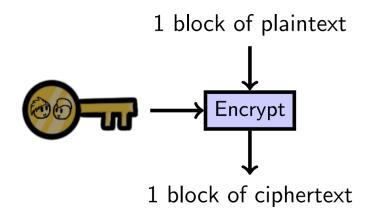
WEP, PPTP are great examples of how not to use stream ciphers

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just one bit of the plaintext?

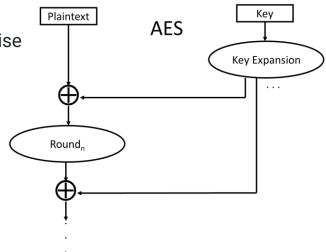

A: You only change a bit in the ciphertext

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just one bit of the plaintext?

A: You only change a bit in the ciphertext

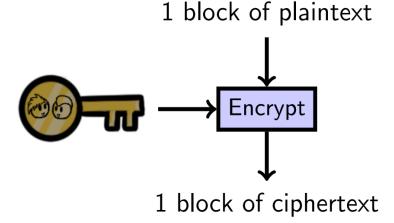
Q: Can we do better?

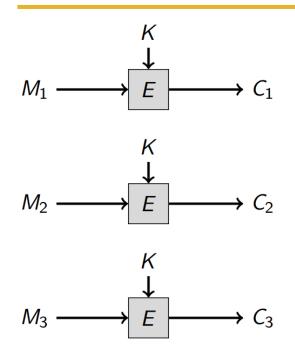


Block ciphers!!!

Block Ciphers

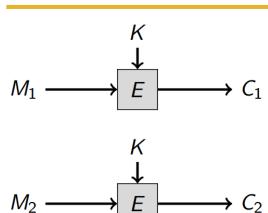
- Welcome, block ciphers
 - Block ciphers operate on the message one block at a time
 - o Blocks are usually 64 or 128 bits long
- AES, the current standard


You better have a very...very good reason to choose otherwise

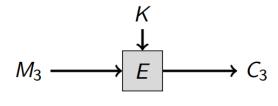

Two Catches with Block Ciphers

- Message is shorter than one block?
 - Requires padding
- Message is longer than a block?

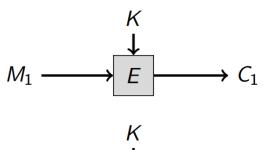
Requires modes of operation



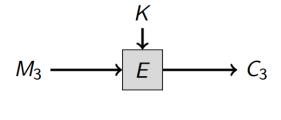
Block Ciphers and Modes of Operation: ECB Mode


- ECB: Electronic Code Book
- Encrypts each successive block separately

Block Ciphers and Modes of Operation: ECB Mode


- ECB: Electronic Code Book
- → C₁ Encrypts each successive block separately

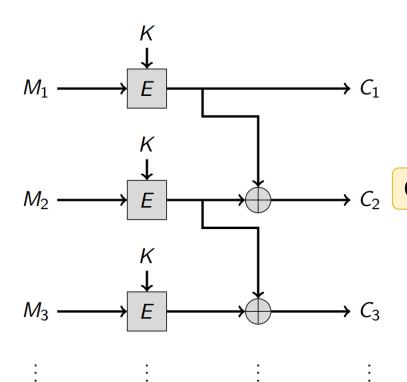
Q: What happens if the plaintext M has some blocks that are identical, $M_i = M_i$?


÷

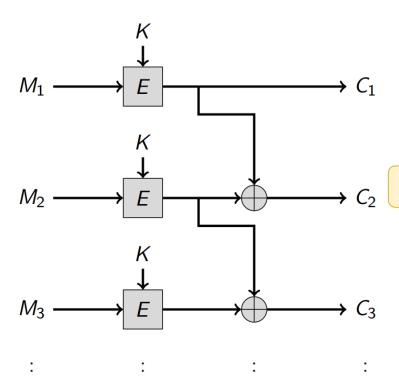
Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- → c₁ Encrypts each successive block separately

 $M_2 \longrightarrow E$ Q: What happens if the plaintext M has some blocks that are identical, $M_i = M_j$?



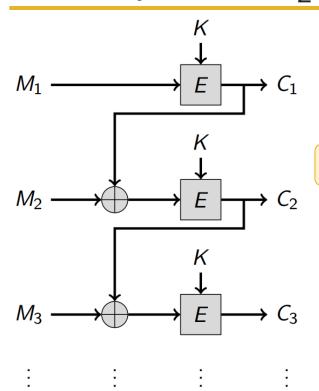
A:
$$C_i = E_K(M_i), C_j = E_K(M_j) \Rightarrow C_i = C_j$$


Attempt 1: Fixing ECB₁

 Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

Attempt 1: Fixing ECB₁

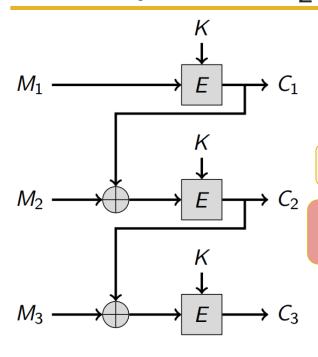


 Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

A: Yes. We can un-do the XOR <u>if we get all</u> the ciphertexts. This basically does not improve compared to ECB.

Attempt 2: ECB₂!!!

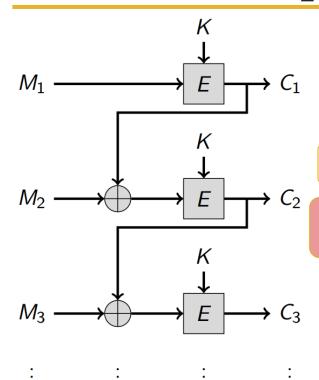


Q: Spot the difference?

Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?

Attempt 2: ECB₂!!!


Q: Spot the difference?

Q: Is it fixed this time?

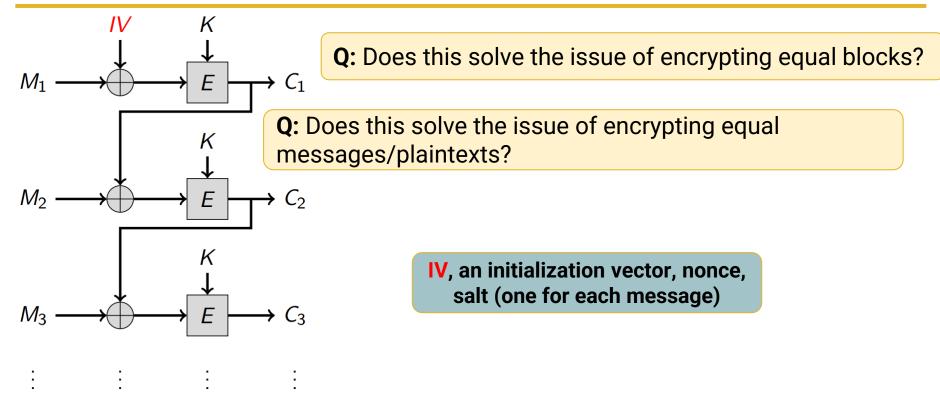
Q: Does this avoid repeating patterns among blocks?

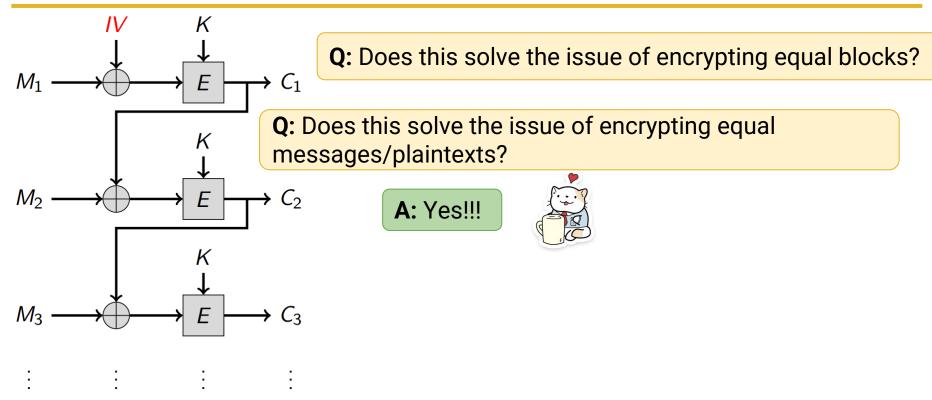
Q: What would happen if we encrypt message M (i.e., M1|M2|M3) and message N = M with the same key?

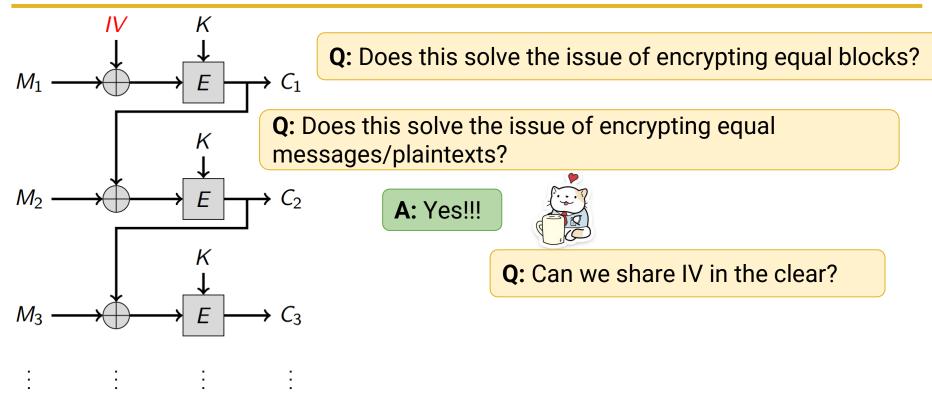
Attempt 2: ECB₂!!!

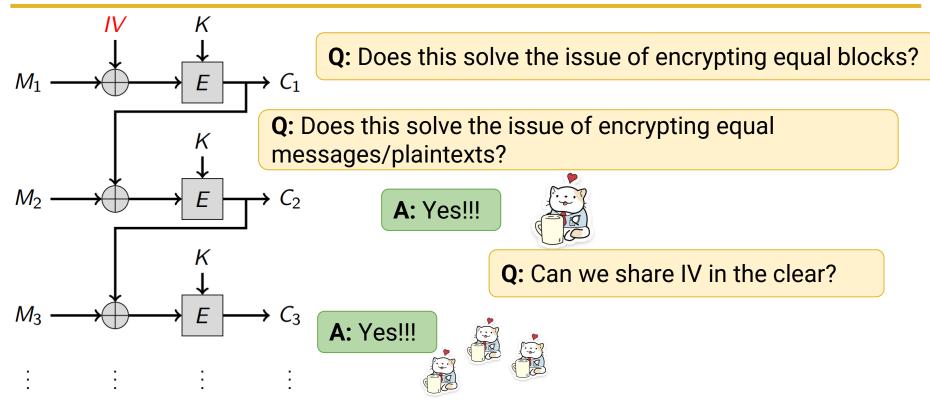
Q: Spot the difference?

Q: Is it fixed this time?


Q: Does this avoid repeating patterns among blocks?

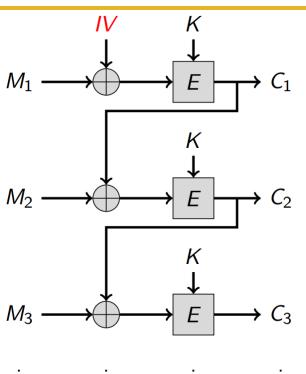

Q: What would happen if we encrypt message M (i.e., M1|M2|M3) and message N = M with the same key?

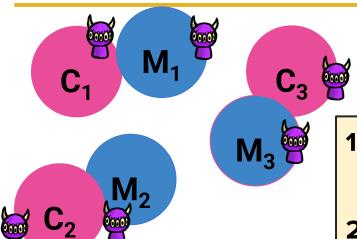

A: for M = N,


$$C = E_K(M)$$
, $D = E_K(N) \Rightarrow C = D$

Plenty of Modes of Operation

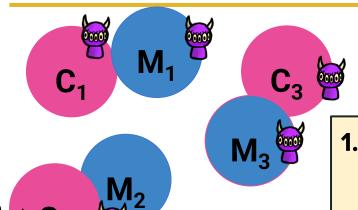
 e.g., Cipher Block Chaining (CBC), Counter (CTR), and Galois Counter (GCM) modes


- Patterns in the plaintext are no longer exposed because these modes involve some kind of "feedback" among blocks.
- But you need an IV


Recall CBC Mode for Block Ciphers:

- 1. Generate a secret key K
- 2. Encrypt M using K and a generated IV
- 3. Decrypt C using K and the IV to get M

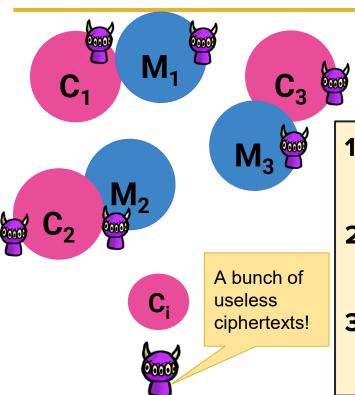
Security Goal: indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)



Indistinguishability under Adaptive Chosen Ciphertext Attack

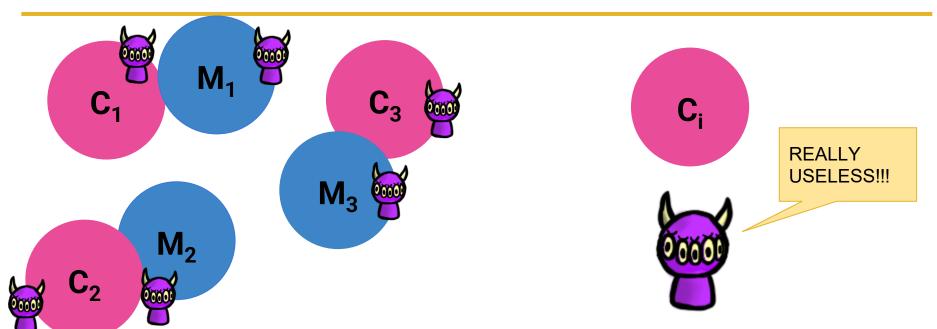
- 1. Assume an oracle that can decrypt ciphertexts fed by the adversary
- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself

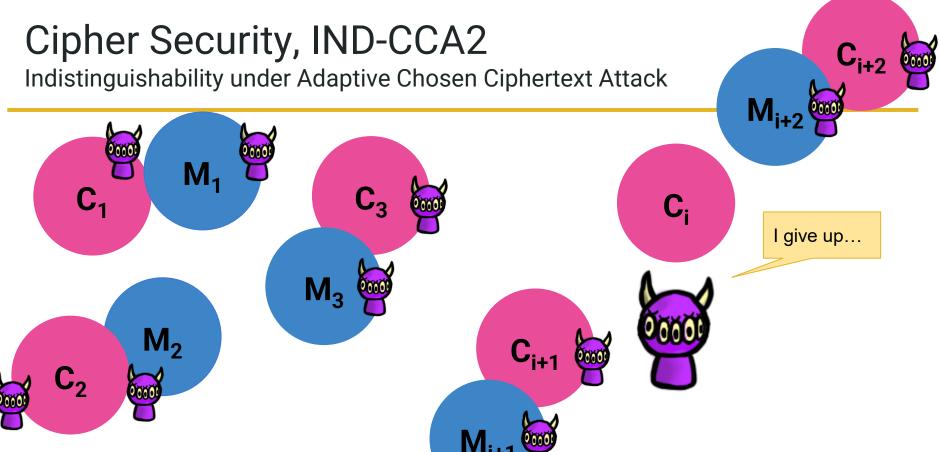
Indistinguishability under Adaptive Chosen Ciphertext Attack



1. Assume an oracle that can decrypt ciphertexts fed by the adversary

- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself


Indistinguishability under Adaptive Chosen Ciphertext Attack


- 1. Assume an oracle that can decrypt ciphertexts fed by the adversary
- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself

Indistinguishability under Adaptive Chosen Ciphertext Attack

Eve cannot even distinguish whether a new C_i is generated from M_1 , M_2 , or M_3

Asking for additional decryptions after knowing C_i does not help either

So...now what?

- Alice and Bob still need to share the secret key... But how?
 - Meet in person; diplomatic courier...
- In general this is very hard

Or, we invent new technology!!

Spoiler Alert: Already been invented...

Stay tuned!