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Assignment One

● Available on Learn today

● Due Sep 30, 3pm

● Written and programming

2



CS459 Fall 2025 

Cryptography Organization
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Public-key Encryption
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o Invented (in public) in the 1970’s

o Also called Asymmetric Encryption

o Allows Alice to send a secret message to Bob without any prearranged shared secret!

o In secret-key encryption, the same (or a very similar) key encrypts the message and also 

decrypts it

o In public-key encryption, there’s one key for encryption, and a different key for decryption! 

o Some common examples:

o RSA, ElGamal, ECC, NTRU, McEliece
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How does it work ?

key pair (ek , dk ) 

Public-key Encryption
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How does it work ?

ek

dk

Public-key Encryption

Pub. Cloud/Directory
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How does it work ?

Public-key Encryption
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How does it work ?

Public-key Encryption

✓ Eve can’t decrypt; she only has the encryption key ek 

✓ Neither can Alice!
✓ It must be HARD to derive dk from ek
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Steps for PKE

1. Bob creates a key pair

2. Bob gives everyone the public key 

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key

9
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Requirements for PKE

● The encryption function? 
o Must be easy to compute 

● The inverse, decryption? 
o Must be hard for anyone without the key vs.

10

Thus, we require so called “one-way” functions for this.
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Requirements for PKE

● The encryption function? 
o Must be easy to compute 

● The inverse, decryption? 
o Must be hard for anyone without the key vs.

11

Thus, we require so called “one-way” functions for this.

But because of decryption, 
we need a “Trapdoor”

Image Credit: https://en.wikipedia.org/wiki/Trapdoor_function
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Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

12

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.
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Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

13

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Example of modular arithmetic:

7 mod 5 = 2

12 mod 5 = 2

7 ≡ 12 mod 5 

(congruentmodulo 5)
(same remainder when divided by 5)
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Prime Numbers

● Prime: a natural number greater than 1 that can only be divided by 

1 and itself

● Primes and factorization: An integer number can be written as a 

unique product of prime numbers
o E.g., 1234567 = 127 * 9721

14

How to know if a number is prime? How to discover a number’s factors?

Run a primality test algorithm (Solovay-Strassen, 

Miller-Rabin, etc.)

Run a factorization algorithm (Pollard p-1, etc.)



CS459 Fall 2025 

Textbook RSA

● High-level idea
○ It is easy to find large integers e, d, and n (=p*q) that satisfy

(me)d ≡ m (mod n)

● Computational difficulty of the factoring problem
○ Given two large primes p*q = n, it is very hard to factor n.
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Easy for me to pick e, d, and 

n that satisfy that equation

Ugh. I know e and n and (even m) 

extremely hard to find d!!!
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Textbook RSA

● Encryption:

C = me (mod n)

The ciphertext is equal to m multiplied by itself e times modulo n.

Public key: PubKey = (e, n)

16
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Textbook RSA

● Decryption:

m = Cd mod n = (me)d mod n = med mod n

Decryption relies on number d satisfying e*d = 1 mod 𝝋(n) , 
s.t. med mod n = m1 mod n = m 

○ In other words, d is the multiplicative inverse of e mod 𝝋(n)

Private key: PrivKey = d (other numbers can be discarded)

17
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Key Generation (how to choose e and find d)

● Pick two random primes p and q such that p*q = n

● Generate 𝜑(n) = (p-1)(q-1)
o We know all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

o 𝜑(n) is the order of the multiplicative group of units modulo n

● Pick e as a random prime smaller than 𝜑(n) 
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1) 

● Generate d (the inverse of e mod 𝜑(n) ) 
o e*d = 1 mod 𝜑(n)

o Can be obtained via the extended Euclidean algorithm

18

*If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).
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Textbook RSA (summary)

19

✓ Note that the decryption works.

✓ This is textbook RSA, never do this!!
(we’ll see one of the reasons next)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that 
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption:  C  = me mod n

7. Decryption:  m = Cd mod n
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Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

20

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N 

c = me mod n

Nice!
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Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

21

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N 

c = me mod n

Applying e or d to encrypt does not really 

matter from a functionality perspective
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Size of message on textbook RSA

● Overview:

(me)d ≡ m mod n

22

m has to be strictly smaller 

than n, otherwise decryption 

will produce erroneous values.
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Size of message on textbook RSA

● Overview:

(me)d ≡ m mod n

23

m has to be strictly smaller 

than n, otherwise decryption 

will produce erroneous values.

Ok! So we can break the 
message in chunks! But 
perhaps we’re better served 
with hybrid schemes… Let’s 
look more into this later…
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Attacking RSA (Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139 

● d=1459

● c = 5274

24

I know e and n…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would
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Attacking RSA (Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139 

● d=1459

● c = 5274

25

I know e and N…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would



CS459 Fall 2025 

Factoring and RSA

You want to factor the public modulus?

● Good news, abundant literature on factoring 
algorithms

● Bad news, “appropriate” primes will not be 
defeated

26
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Factoring and RSA
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Bad primes: easily factored

You want to factor the public modulus?

● Good news, abundant literature on factoring 
algorithms

● Bad news, “appropriate” primes will not be 
defeated
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Approach at Factoring

Strawman approach: 

● Try to divide a number by all numbers smaller than it until you find 
a number a that divides n

● Then, carry on to divide n with a+1 and so on…

● We end up with a list of factors of n

28

Way too computationally expensive.



CS459 Fall 2025 

A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than √ n, then p*q > n, which is impossible

29
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A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p*q > n, which is impossible

30

Still too computationally expensive for large n.

n = 4096 bits requires about 2128 operations

AMD’s EPYC or Intel’s Xeon series, 3 teraflops/sec

≈ 13.8 billion years
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Attacking ”bad primes”

● Some primes are not suited to be used for RSA, as they 
make n easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o n = prqs and r > log p
o …

31

Don’t build your own RSA implementation! 
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So far so good, but…

32
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o Compute C1 = Ence(m1). 
o Compute C2 = Ence(m2).
o Compute  m = Decd(C1  * C2). What is happening? Why?

A: The decryption would yield the product of the original plaintexts. 
(m1)e * (m2)e ≡ (m1 * m2)e

Malleability: it is possible to transform a ciphertext into 

another ciphertext that decrypts to a transformation of the 

original plaintext.

This is typically (but not always!) undesirable.

Why not “Textbook RSA”?
Encryption: c  ≡ me (mod n), Decryption:  m = cd (mod n)
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Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m). 

o We intercept c. 

o Alice is convinced her textbook RSA is very secure, so she is willing to 

decrypt any ciphertext we send her (except for c).  
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Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m). 

o We intercept c. 

o Alice is convinced her textbook RSA is very secure, so she is willing to 

decrypt any ciphertext we send her (except for c).  

Goal: Ask Alice to decrypt something (other than c) that helps us guess m
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

I am so clever 

mwahaha
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m. 
We divide the result by 2, and we get m. 

Example: given m=5, e=3, and n=33 → c1 = 26, c2 = 208 → m2 = 10  

I am so clever 

mwahaha
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Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1. 

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m. 
We divide the result by 2, and we get m. 

✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things) 

✓ We can fix this with padding techniques (RSA-OAEP). 

I am so clever 

mwahaha
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Textbook RSA is not IND-CPA Secure

IND-CPA: Indistinguishability under Chosen-Plaintext Attack

1. Attacker chooses two plaintexts and gives them to challenger

2. Challenger encrypts one of the plaintexts and gives ciphertext to attacker

3. Attacker needs to guess which plaintext was encrypted

4. Attacker guesses successfully with probability > 0.5

39
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Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

40
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Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

41
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Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

42
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Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

43
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Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

44

I win.

Thank you 
deterministic 
algorithm
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Adversaries and their Goals

45

You’ve assumed 
my goal is the 
secret/private 
key…
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Adversaries and their Goals
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You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…
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Adversaries and their Goals

47

You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…

We better figure this out.

Yup.
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Goal 1: Total Break

48

● Win the Symmetric key K

● Win Bob’s private key kb

● Can decrypt any ci for:  

ci = EncK(m) 

or 

ci = Enckb(m)

● All messages using 

compromised k 

revealed

● Unless detected game 

over
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Goal 2: Partial Break

49

● Decrypt a ciphertext c

(without the key)

● Learn some specific 

information about a 

message m from c

Needs to occur with non-negligible probability.

● Some (or a) message 

revealed
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Goal 3: Distinguishable Ciphertexts

50

● Pr {learn b ∈ {0,1}}

exceeds ½

● Distinguish  between 

Enc(m1) and Enc(m2) 

or 

between Enc(m) and 

Enc(random string) 

● The ciphertexts are 

leaking small/some 

information…
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Semantic Security of RSA

● We saw CCA against Textbook RSA

● We showed IND-CPA on Textbook RSA

51
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Fix it? Remove Ciphertext Distinguishability

● If Enc( ) is deterministic, fail

● Thus, require some randomization

● Padding contains randomness, use RSA-OAEP in practice

52

Goal: prove (given comp. assumptions) that no information regarding m 
is revealed in polynomial time by examining c =  Enc(m)

RSA-OAEP: Optimal Asymmetric Encryption Padding
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Practicality of Public-Key vs. Symmetric-Key 

53

1. Longer keys

2. Slower

3. Different keys for 

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and 

Dec(c)

Secure Channel 

Insecure Channel 
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Public-Key Sizes

54

o Recall that if there are no shortcuts, Eve would have to try 2128 iterations in 

order to read a message encrypted with a 128-bit key

o Unfortunately, all of the public-key methods we know do have shortcuts 

➢ Eve could read a message encrypted with a 128-bit RSA key with just 233 work, 

which is easy!

➢ Comparison of key sizes for roughly equal strength
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Practicality of Public-Key vs. Symmetric-Key 

55

Secure Channel 

Insecure Channel 

1. Longer keys

2. Slower

3. Different keys for 

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and 

Dec(c)
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What can be done? (Hybrid Cryptography)

We can get the best of both worlds: 

o Pick a random “128-bit” key K for a symmetric-key cryptosystem

o Encrypt the large message with the key K (e.g., using AES)

And then…

o Encrypt the key K using a public-key cryptosystem

o Send the encrypted message and the encrypted key to Bob

56

Hybrid cryptography is used in (many) applications on the internet today
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Knowledge Check!

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 

57

Q: How should Alice build the message efficiently? How does Bob recover m?
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Knowledge Check!

58

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don’t want to use it on m.

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 
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Knowledge Check!

59

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes c1 = EnceB(K), c2 = EK(m) and sends <c1||c2>.

Bob recovers K = DecdB(c1) and then m = DecK(c2)

Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob. 

|| denotes 
concatenation
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Knowledge Check!

We know how to “send secret messages”, and Eve cannot do anything 

about it. What else is there to do? 

o Mallory can modify our encrypted messages in transit!

o Mallory won’t necessarily know what the message says, but can still change it in 

an undetectable way 

➢ e.g. bit-flipping attack on stream ciphers 

o This is counterintuitive, and often forgotten

60

Q: How do we make sure that Bob gets the same message Alice sent? 



Up next: More Cryptography…
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