
CS459/698
Privacy, Cryptography,

Network and Data Security
Public Key Cryptography (RSA)

Fall 2025, Tuesday/Thursday 8:30-9:50am

CS459 Fall 2025

Assignment One

● Available on Learn today

● Due Sep 30, 3pm

● Written and programming

2

CS459 Fall 2025

Cryptography Organization

3

Symmetric Asymmetric

Ciphers
Hash

Functions
Message

Auth. codes
PRFs PKE

Digital
Signatures

Key
Exchange

Stream

Block

C

M-of-Op Improvements

CS459 Fall 2025

Public-key Encryption

4

o Invented (in public) in the 1970’s

o Also called Asymmetric Encryption

o Allows Alice to send a secret message to Bob without any prearranged shared secret!

o In secret-key encryption, the same (or a very similar) key encrypts the message and also

decrypts it

o In public-key encryption, there’s one key for encryption, and a different key for decryption!

o Some common examples:

o RSA, ElGamal, ECC, NTRU, McEliece

CS459 Fall 2025 5

How does it work ?

key pair (ek , dk)

Public-key Encryption

CS459 Fall 2025 6

How does it work ?

ek

dk

Public-key Encryption

Pub. Cloud/Directory

CS459 Fall 2025 7

How does it work ?

Public-key Encryption

CS459 Fall 2025 8

How does it work ?

Public-key Encryption

✓ Eve can’t decrypt; she only has the encryption key ek

✓ Neither can Alice!
✓ It must be HARD to derive dk from ek

CS459 Fall 2025

Steps for PKE

1. Bob creates a key pair

2. Bob gives everyone the public key

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key

9

CS459 Fall 2025

Requirements for PKE

● The encryption function?
o Must be easy to compute

● The inverse, decryption?
o Must be hard for anyone without the key vs.

10

Thus, we require so called “one-way” functions for this.

CS459 Fall 2025

Requirements for PKE

● The encryption function?
o Must be easy to compute

● The inverse, decryption?
o Must be hard for anyone without the key vs.

11

Thus, we require so called “one-way” functions for this.

But because of decryption,
we need a “Trapdoor”

Image Credit: https://en.wikipedia.org/wiki/Trapdoor_function

CS459 Fall 2025

Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

12

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

CS459 Fall 2025

Textbook RSA

● Relies on the practical difficulty of the “Factoring problem”

● Modular arithmetic: integer numbers that “wrap around”

13

Fun (?) Facts:

● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Example of modular arithmetic:

7 mod 5 = 2

12 mod 5 = 2

7 ≡ 12 mod 5

(congruentmodulo 5)
(same remainder when divided by 5)

CS459 Fall 2025

Prime Numbers

● Prime: a natural number greater than 1 that can only be divided by

1 and itself

● Primes and factorization: An integer number can be written as a

unique product of prime numbers
o E.g., 1234567 = 127 * 9721

14

How to know if a number is prime? How to discover a number’s factors?

Run a primality test algorithm (Solovay-Strassen,

Miller-Rabin, etc.)

Run a factorization algorithm (Pollard p-1, etc.)

CS459 Fall 2025

Textbook RSA

● High-level idea
○ It is easy to find large integers e, d, and n (=p*q) that satisfy

(me)d ≡ m (mod n)

● Computational difficulty of the factoring problem
○ Given two large primes p*q = n, it is very hard to factor n.

15

Easy for me to pick e, d, and

n that satisfy that equation

Ugh. I know e and n and (even m)

extremely hard to find d!!!

CS459 Fall 2025

Textbook RSA

● Encryption:

C = me (mod n)

The ciphertext is equal to m multiplied by itself e times modulo n.

Public key: PubKey = (e, n)

16

CS459 Fall 2025

Textbook RSA

● Decryption:

m = Cd mod n = (me)d mod n = med mod n

Decryption relies on number d satisfying e*d = 1 mod 𝝋(n) ,
s.t. med mod n = m1 mod n = m

○ In other words, d is the multiplicative inverse of e mod 𝝋(n)

Private key: PrivKey = d (other numbers can be discarded)

17

CS459 Fall 2025

Key Generation (how to choose e and find d)

● Pick two random primes p and q such that p*q = n

● Generate 𝜑(n) = (p-1)(q-1)
o We know all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

o 𝜑(n) is the order of the multiplicative group of units modulo n

● Pick e as a random prime smaller than 𝜑(n)
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1)

● Generate d (the inverse of e mod 𝜑(n))
o e*d = 1 mod 𝜑(n)

o Can be obtained via the extended Euclidean algorithm

18

*If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).

CS459 Fall 2025

Textbook RSA (summary)

19

✓ Note that the decryption works.

✓ This is textbook RSA, never do this!!
(we’ll see one of the reasons next)

1. Choose two “large primes” p and q (secretly)

2. Compute n = p*q

3. “Choose” value e and find d such that
o (me)d ≡ m mod n

4. Public key: (e, n)

5. Private key: d

6. Encryption: C = me mod n

7. Decryption: m = Cd mod n

CS459 Fall 2025

Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

20

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N

c = me mod n

Nice!

CS459 Fall 2025

Example (Tiny RSA)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:

m=20

21

Encryption:

C = 20139 mod 5353 = 5274

Decryption:

m = 52741459 mod 5353 = 20

m = cd mod N

c = me mod n

Applying e or d to encrypt does not really

matter from a functionality perspective

CS459 Fall 2025

Size of message on textbook RSA

● Overview:

(me)d ≡ m mod n

22

m has to be strictly smaller

than n, otherwise decryption

will produce erroneous values.

CS459 Fall 2025

Size of message on textbook RSA

● Overview:

(me)d ≡ m mod n

23

m has to be strictly smaller

than n, otherwise decryption

will produce erroneous values.

Ok! So we can break the
message in chunks! But
perhaps we’re better served
with hybrid schemes… Let’s
look more into this later…

CS459 Fall 2025

Attacking RSA (Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1)(101-1) = 5200

● e=139

● d=1459

● c = 5274

24

I know e and n…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would

CS459 Fall 2025

Attacking RSA (Bad primes)

Parameters:

● p=53, q=101, n=5353

● 𝜑(n) = (53-1).(101-1) = 5200

● e=139

● d=1459

● c = 5274

25

I know e and N…

What can I do to find d?

Attack idea:
- Factor n to obtain p and q

- Obtain 𝜑(n)

- From 𝜑(n) and e, generate d

just like Alice would

CS459 Fall 2025

Factoring and RSA

You want to factor the public modulus?

● Good news, abundant literature on factoring
algorithms

● Bad news, “appropriate” primes will not be
defeated

26

CS459 Fall 2025

Factoring and RSA

27

Bad primes: easily factored

You want to factor the public modulus?

● Good news, abundant literature on factoring
algorithms

● Bad news, “appropriate” primes will not be
defeated

CS459 Fall 2025

Approach at Factoring

Strawman approach:

● Try to divide a number by all numbers smaller than it until you find
a number a that divides n

● Then, carry on to divide n with a+1 and so on…

● We end up with a list of factors of n

28

Way too computationally expensive.

CS459 Fall 2025

A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than √ n, then p*q > n, which is impossible

29

CS459 Fall 2025

A Smarter Approach at Factoring

● We only need to test prime numbers (not every a < n)

● We only need to test those smaller than √𝑛
o If both p and q are larger than n, then p*q > n, which is impossible

30

Still too computationally expensive for large n.

n = 4096 bits requires about 2128 operations

AMD’s EPYC or Intel’s Xeon series, 3 teraflops/sec

≈ 13.8 billion years

CS459 Fall 2025

Attacking ”bad primes”

● Some primes are not suited to be used for RSA, as they
make n easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o n = prqs and r > log p
o …

31

Don’t build your own RSA implementation!

CS459 Fall 2025

So far so good, but…

32

CS459 Fall 2025 33

o Compute C1 = Ence(m1).
o Compute C2 = Ence(m2).
o Compute m = Decd(C1 * C2). What is happening? Why?

A: The decryption would yield the product of the original plaintexts.
(m1)e * (m2)e ≡ (m1 * m2)e

Malleability: it is possible to transform a ciphertext into

another ciphertext that decrypts to a transformation of the

original plaintext.

This is typically (but not always!) undesirable.

Why not “Textbook RSA”?
Encryption: c ≡ me (mod n), Decryption: m = cd (mod n)

CS459 Fall 2025 34

Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m).

o We intercept c.

o Alice is convinced her textbook RSA is very secure, so she is willing to

decrypt any ciphertext we send her (except for c).

CS459 Fall 2025 35

Chosen Ciphertext Attack (CCA)

Attacking RSA (CCA)

o We are Eve. Alice is using RSA and her public key is (e, n).

o Bob sends secret message m, encrypted as c = Ence(m).

o We intercept c.

o Alice is convinced her textbook RSA is very secure, so she is willing to

decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

CS459 Fall 2025 36

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

I am so clever

mwahaha

CS459 Fall 2025 37

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m.
We divide the result by 2, and we get m.

Example: given m=5, e=3, and n=33 → c1 = 26, c2 = 208 → m2 = 10

I am so clever

mwahaha

CS459 Fall 2025 38

Chosen Ciphertext Attack (CCA): Solution

Attacking RSA (CCA)

o Alice’s public key is (e, n).

o Bob sends c1 = Ence(m). We intercept c1.

Q: Ask Alice to decrypt, e.g., c2 = 2e · c1.

A: This decryption yields (2e · c1)d ≡ 2m.
We divide the result by 2, and we get m.

✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things)

✓ We can fix this with padding techniques (RSA-OAEP).

I am so clever

mwahaha

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

IND-CPA: Indistinguishability under Chosen-Plaintext Attack

1. Attacker chooses two plaintexts and gives them to challenger

2. Challenger encrypts one of the plaintexts and gives ciphertext to attacker

3. Attacker needs to guess which plaintext was encrypted

4. Attacker guesses successfully with probability > 0.5

39

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

40

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

41

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

42

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

43

CS459 Fall 2025

Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m0 and m1

2. “Challenger” encrypts an m as c* = mb
e (mod n), secret b

3. Eve’s goal? Determine b ∈ {0,1}

4. Sooo, Eve computes c = m1
e (mod n)

If c* = c then Eve knows mb = m1

If c* ≠ c then Eve knows mb = m0

44

I win.

Thank you
deterministic
algorithm

CS459 Fall 2025

Adversaries and their Goals

45

You’ve assumed
my goal is the
secret/private
key…

CS459 Fall 2025

Adversaries and their Goals

46

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

CS459 Fall 2025

Adversaries and their Goals

47

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

We better figure this out.

Yup.

CS459 Fall 2025

Goal 1: Total Break

48

● Win the Symmetric key K

● Win Bob’s private key kb

● Can decrypt any ci for:

ci = EncK(m)

or

ci = Enckb(m)

● All messages using

compromised k

revealed

● Unless detected game

over

CS459 Fall 2025

Goal 2: Partial Break

49

● Decrypt a ciphertext c

(without the key)

● Learn some specific

information about a

message m from c

Needs to occur with non-negligible probability.

● Some (or a) message

revealed

CS459 Fall 2025

Goal 3: Distinguishable Ciphertexts

50

● Pr {learn b ∈ {0,1}}

exceeds ½

● Distinguish between

Enc(m1) and Enc(m2)

or

between Enc(m) and

Enc(random string)

● The ciphertexts are

leaking small/some

information…

CS459 Fall 2025

Semantic Security of RSA

● We saw CCA against Textbook RSA

● We showed IND-CPA on Textbook RSA

51

CS459 Fall 2025

Fix it? Remove Ciphertext Distinguishability

● If Enc() is deterministic, fail

● Thus, require some randomization

● Padding contains randomness, use RSA-OAEP in practice

52

Goal: prove (given comp. assumptions) that no information regarding m
is revealed in polynomial time by examining c = Enc(m)

RSA-OAEP: Optimal Asymmetric Encryption Padding

CS459 Fall 2025

Practicality of Public-Key vs. Symmetric-Key

53

1. Longer keys

2. Slower

3. Different keys for

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and

Dec(c)

Secure Channel

Insecure Channel

CS459 Fall 2025

Public-Key Sizes

54

o Recall that if there are no shortcuts, Eve would have to try 2128 iterations in

order to read a message encrypted with a 128-bit key

o Unfortunately, all of the public-key methods we know do have shortcuts

➢ Eve could read a message encrypted with a 128-bit RSA key with just 233 work,

which is easy!

➢ Comparison of key sizes for roughly equal strength

CS459 Fall 2025

Practicality of Public-Key vs. Symmetric-Key

55

Secure Channel

Insecure Channel

1. Longer keys

2. Slower

3. Different keys for

Enc(m) and Dec(c)

1. Shorter keys

2. Faster

3. Same key for Enc(m) and

Dec(c)

CS459 Fall 2025

What can be done? (Hybrid Cryptography)

We can get the best of both worlds:

o Pick a random “128-bit” key K for a symmetric-key cryptosystem

o Encrypt the large message with the key K (e.g., using AES)

And then…

o Encrypt the key K using a public-key cryptosystem

o Send the encrypted message and the encrypted key to Bob

56

Hybrid cryptography is used in (many) applications on the internet today

CS459 Fall 2025

Knowledge Check!

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

57

Q: How should Alice build the message efficiently? How does Bob recover m?

CS459 Fall 2025

Knowledge Check!

58

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don’t want to use it on m.

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

CS459 Fall 2025

Knowledge Check!

59

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes c1 = EnceB(K), c2 = EK(m) and sends <c1||c2>.

Bob recovers K = DecdB(c1) and then m = DecK(c2)

Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

o Enc/Dec functions: Enckey(*), Deckey(*)

o Alice wants to send a large message m to Bob.

|| denotes
concatenation

CS459 Fall 2025

Knowledge Check!

We know how to “send secret messages”, and Eve cannot do anything

about it. What else is there to do?

o Mallory can modify our encrypted messages in transit!

o Mallory won’t necessarily know what the message says, but can still change it in

an undetectable way

➢ e.g. bit-flipping attack on stream ciphers

o This is counterintuitive, and often forgotten

60

Q: How do we make sure that Bob gets the same message Alice sent?

Up next: More Cryptography…

61

Symmetric Asymmetric

Ciphers
Hash

Functions
Message

Auth. codes
PRFs

Digital
Signatures

Key
Exchange

Stream

Block

RSA

PKE

IND-CCA security types

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: Assignment One
	Slide 3: Cryptography Organization
	Slide 4: Public-key Encryption
	Slide 5: Public-key Encryption
	Slide 6: Public-key Encryption
	Slide 7: Public-key Encryption
	Slide 8: Public-key Encryption
	Slide 9: Steps for PKE
	Slide 10: Requirements for PKE
	Slide 11: Requirements for PKE
	Slide 12: Textbook RSA
	Slide 13: Textbook RSA
	Slide 14: Prime Numbers
	Slide 15: Textbook RSA
	Slide 16: Textbook RSA
	Slide 17: Textbook RSA
	Slide 18: Key Generation (how to choose e and find d)
	Slide 19: Textbook RSA (summary)
	Slide 20: Example (Tiny RSA)
	Slide 21: Example (Tiny RSA)
	Slide 22: Size of message on textbook RSA
	Slide 23: Size of message on textbook RSA
	Slide 24: Attacking RSA (Bad primes)
	Slide 25: Attacking RSA (Bad primes)
	Slide 26: Factoring and RSA
	Slide 27: Factoring and RSA
	Slide 28: Approach at Factoring
	Slide 29: A Smarter Approach at Factoring
	Slide 30: A Smarter Approach at Factoring
	Slide 31: Attacking ”bad primes”
	Slide 32: So far so good, but…
	Slide 33: Why not “Textbook RSA”?
	Slide 34: Attacking RSA (CCA)
	Slide 35: Attacking RSA (CCA)
	Slide 36: Attacking RSA (CCA)
	Slide 37: Attacking RSA (CCA)
	Slide 38: Attacking RSA (CCA)
	Slide 39: Textbook RSA is not IND-CPA Secure
	Slide 40: Textbook RSA is not IND-CPA Secure
	Slide 41: Textbook RSA is not IND-CPA Secure
	Slide 42: Textbook RSA is not IND-CPA Secure
	Slide 43: Textbook RSA is not IND-CPA Secure
	Slide 44: Textbook RSA is not IND-CPA Secure
	Slide 45: Adversaries and their Goals
	Slide 46: Adversaries and their Goals
	Slide 47: Adversaries and their Goals
	Slide 48: Goal 1: Total Break
	Slide 49: Goal 2: Partial Break
	Slide 50: Goal 3: Distinguishable Ciphertexts
	Slide 51: Semantic Security of RSA
	Slide 52: Fix it? Remove Ciphertext Distinguishability
	Slide 53: Practicality of Public-Key vs. Symmetric-Key
	Slide 54: Public-Key Sizes
	Slide 55: Practicality of Public-Key vs. Symmetric-Key
	Slide 56: What can be done? (Hybrid Cryptography)
	Slide 57: Knowledge Check!
	Slide 58: Knowledge Check!
	Slide 59: Knowledge Check!
	Slide 60: Knowledge Check!
	Slide 61: Up next: More Cryptography…

