# CS459/698 Privacy, Cryptography, Network and Data Security

Public Key Cryptography (RSA)

#### Assignment One

- Available on Learn today
- Due Sep 30, 3pm
- Written and programming

# **Cryptography Organization**



- Invented (in public) in the 1970's
- Also called Asymmetric Encryption
  - Allows Alice to send a secret message to Bob without any prearranged shared secret!
  - O In secret-key encryption, the same (or a very similar) key encrypts the message and also decrypts it
  - O In public-key encryption, there's one key for encryption, and a different key for decryption!
- Some common examples:
  - o RSA, ElGamal, ECC, NTRU, McEliece

How does it work?







How does it work? Pub. Cloud/Directory

How does it work?



How does it work?



- ✓ Eve can't decrypt; she only has the encryption key e<sub>k</sub>
- ✓ Neither can Alice!
- ✓ It must be HARD to derive d<sub>k</sub> from e<sub>k</sub>

#### Steps for PKE

1. Bob creates a key pair



2. Bob gives everyone the public key



- 3. Alice encrypts m and sends it
- 4. Bob decrypts using private key



5. Eve and Alice can't decrypt, only have encryption key

#### Requirements for PKE

- The encryption function?
  - Must be easy to compute



- The inverse, decryption?
  - Must be hard for anyone without the key



Thus, we require so called "one-way" functions for this.

#### Requirements for PKE

- The encryption function?
  - Must be easy to compute



- The inverse, decryption?
  - Must be hard for anyone without the key



Thus, we require so called "one-way" functions for this.

But because of decryption, we need a "Trapdoor"



Image Credit: https://en.wikipedia.org/wiki/Trapdoor\_function

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"



Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

#### Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"



Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

#### **Example of modular arithmetic:**

 $7 \mod 5 = 2$ 12 mod 5 = 2

7 ≡ 12 mod 5 (<u>congruent</u> modulo 5) (same remainder when divided by 5)

#### Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

#### Prime Numbers

- Prime: a natural number greater than 1 that can only be divided by 1 and itself
- Primes and factorization: An integer number can be written as a unique product of prime numbers
  - o E.g., 1234567 = 127 \* 9721

How to know if a number is prime?

Run a primality test algorithm (Solovay-Strassen, Miller-Rabin, etc.)

How to discover a number's factors?

Run a factorization algorithm (Pollard p-1, etc.)

- High-level idea
  - It is easy to find large integers e, d, and n (=p\*q) that satisfy

$$(m^e)^d \equiv m \pmod{n}$$

- Computational difficulty of the factoring problem
  - Given two large primes p\*q = n, it is very hard to factor n.

Easy for me to pick **e**, **d**, and **n** that satisfy that equation



Ugh. I know **e** and **n** and (even **m**) extremely hard to find **d**!!!

• Encryption:

$$C = m^e \pmod{n}$$

The ciphertext is equal to **m** multiplied by itself **e** times modulo **n**.

Public key:  $Pub_{Key} = (e, n)$ 

Decryption:

$$m = C^d \mod n = (m^e)^d \mod n = m^{ed} \mod n$$

Decryption relies on number **d** satisfying  $\mathbf{e}^*\mathbf{d} = 1 \mod \varphi(\mathbf{n})$ , s.t.  $\mathbf{m}^{\text{ed}} \mod \mathbf{n} = \mathbf{m}^1 \mod \mathbf{n} = \mathbf{m}$ 

 $\circ$  In other words, **d** is the <u>multiplicative inverse</u> of **e** mod  $\varphi$ (**n**)

Private key:  $Priv_{Kev} = d$  (other numbers can be discarded)

# Key Generation (how to choose **e** and find **d**)

- Pick two random primes p and q such that p\*q = n
- Generate  $\varphi(n) = (p-1)(q-1)$ 
  - $\bigcirc$  We know all relative primes to (p-1)(q-1) form a group with respect to multiplication and are invertible
  - $\bigcirc$   $\varphi(n)$  is the order of the multiplicative group of units modulo n
- Pick **e** as a random prime smaller than  $\varphi(n)$ 
  - O **e** chosen as <u>relative prime</u> to (p-1)(q-1) to ensure it has a multiplicative inverse mod (p-1)(q-1)
- Generate **d** (the inverse of e mod  $\varphi(n)$ )
  - $\circ$  **e\*d** = 1 mod  $\varphi$ (n)
  - O Can be obtained via the extended Euclidean algorithm

\*If gcd(a,b) = 1, then we say that a and b are **relatively prime** (or coprime).

# Textbook RSA (summary)

- 1. Choose two "large primes" p and q (secretly)
- 2. Compute n = p\*q
- 3. "Choose" value e and find d such that
  - $\circ$   $(m^e)^d \equiv m \mod n$
- 4. Public key: (e, n)
- 5. Private key: d
- 6. Encryption:  $C = m^e \mod n$
- 7. Decryption:  $m = C^d \mod n$

- ✓ Note that the decryption works.
- ✓ This is textbook RSA, never do this!!
  (we'll see one of the reasons next)

# Example (Tiny RSA)

#### **Parameters:**

- p=53, q=101, n=5353
- $\varphi(n) = (53-1)(101-1) = 5200$
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

**Encryption:** c = m<sup>e</sup> mod n

 $C = 20^{139} \mod 5353 = 5274$ 

**Decryption:**  $m = c^d \mod N$ 

 $m = 5274^{1459} \mod 5353 = 20$ 



# Example (Tiny RSA)

#### **Parameters:**

- p=53, q=101, n=5353
- $\varphi(n) = (53-1)(101-1) = 5200$
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

**Encryption:** c = m<sup>e</sup> mod n

$$C = 20^{139} \mod 5353 = 5274$$

**Decryption:**  $m = c^d \mod N$ 

$$m = 5274^{1459} \mod 5353 = 20$$



Applying **e** or **d** to encrypt does not really matter from a functionality perspective

## Size of message on textbook RSA

Overview:

$$(m^e)^d \equiv m \mod n$$



**m** has to be strictly smaller than **n**, otherwise decryption will produce erroneous values.

## Size of message on textbook RSA

Overview:

$$(m^e)^d \equiv m \mod n$$



**m** has to be strictly smaller than **n**, otherwise decryption will produce erroneous values. Ok! So we can break the message in **chunks**! But perhaps we're better served with **hybrid** schemes... Let's look more into this later...



# Attacking RSA (Bad primes)



I know **e** and **n**... What can I do to find **d**?

#### Attack idea:

- Factor n to obtain p and q
- Obtain  $\varphi(\mathbf{n})$
- From  $\varphi$ (**n**) and **e**, generate **d** just like Alice would

#### **Parameters:**

- p=53, q=101, n=5353
- $\varphi$ (n) = (53-1)(101-1) = 5200
- e=139
- d=1459

c = 5274

# Attacking RSA (Bad primes)



#### Factoring and RSA

#### You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated



#### Factoring and RSA

#### You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated



Bad primes: easily factored

#### Approach at Factoring

#### Strawman approach:

- Try to divide a number by all numbers smaller than it until you find a number a that divides n
- Then, carry on to divide n with a+1 and so on...
- We end up with a list of factors of n

Way too computationally expensive.

#### A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)</li>
- We only need to test those smaller than  $\sqrt{n}$ 
  - If both p and q are larger than  $\sqrt{n}$ , then p\*q > n, which is impossible

# A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)</li>
- We only need to test those smaller than  $\sqrt{n}$ 
  - $\circ$  If both p and q are larger than n, then p\*q > n, which is impossible



Still too computationally expensive for large n.

n = 4096 bits requires about  $2^{128}$  operations

AMD's EPYC or Intel's Xeon series, 3 teraflops/sec ≈ 13.8 billion years



# Attacking "bad primes"

 Some primes are not suited to be used for RSA, as they make n easier to factor

#### Examples:

- Either p or q are small numbers
- o **p** and **q** are too close together
- o **p** and **q** are both close to 2<sup>b</sup>, where b is a given bound
- $\circ$  n =  $\mathbf{p}^r \mathbf{q}^s$  and r > log p
- O ...

Don't build your own RSA implementation!

## So far so good, but...



# Why not "Textbook RSA"?

**Encryption**:  $c \equiv m^e \pmod{n}$ , **Decryption**:  $m = c^d \pmod{n}$ 

```
    Compute C<sub>1</sub> = Enc<sub>e</sub>(m<sub>1</sub>).
    Compute C<sub>2</sub> = Enc<sub>e</sub>(m<sub>2</sub>).
    Compute m = Dec<sub>d</sub>(C<sub>1</sub> * C<sub>2</sub>). What is happening? Why?
```

**A**: The decryption would yield the product of the original plaintexts.  $(m_1)^e * (m_2)^e \equiv (m_1 * m_2)^e$ 

Malleability: it is possible to transform a ciphertext into another ciphertext that decrypts to a transformation of the original plaintext.

This is typically (but not always!) undesirable.



# Attacking RSA (CCA)

#### Chosen Ciphertext Attack (CCA)







 $\circ$  Bob sends secret message m, encrypted as c =  $Enc_e(m)$ .





We intercept c.



 Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).



# Attacking RSA (CCA)

#### Chosen Ciphertext Attack (CCA)







 $\circ$  Bob sends secret message m, encrypted as c =  $Enc_e(m)$ .





- o We intercept c.
- Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

# Attacking RSA (CCA)

#### Chosen Ciphertext Attack (CCA): Solution

o Alice's public key is (e, n).





o Bob sends  $c_1 = Enc_e(m)$ . We intercept  $c_1$ .





I am so clever mwahaha

**Q:** Ask Alice to decrypt, e.g.,  $c_2 = 2^e \cdot c_1$ .

## Attacking RSA (CCA)

## Chosen Ciphertext Attack (CCA): Solution

Alice's public key is (e, n).





○ Bob sends  $c_1 = Enc_e(m)$ . We intercept  $c_1$ .







**Q**: Ask Alice to decrypt, e.g.,  $c_2 = 2^e \cdot c_1$ .

**A:** This decryption yields  $(2^e \cdot c_1)^d \equiv 2m$ . We divide the result by 2, and we get m.

Example: given m=5, e=3, and n=33  $\rightarrow$  c<sub>1</sub> = 26, c<sub>2</sub> = 208  $\rightarrow$  m<sub>2</sub> = 10

## Attacking RSA (CCA)

### Chosen Ciphertext Attack (CCA): Solution

o Alice's public key is (e, n).





o Bob sends  $c_1 = Enc_e(m)$ . We intercept  $c_1$ .







**Q:** Ask Alice to decrypt, e.g.,  $c_2 = 2^e \cdot c_1$ .

**A:** This decryption yields  $(2^e \cdot c_1)^d \equiv 2m$ . We divide the result by 2, and we get m.

- ✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things)
- ✓ We can fix this with padding techniques (RSA-OAEP).

### IND-CPA: Indistinguishability under Chosen-Plaintext Attack

- 1. Attacker chooses two plaintexts and gives them to challenger
- 2. Challenger encrypts one of the plaintexts and gives ciphertext to attacker
- 3. Attacker needs to guess which plaintext was encrypted
- 4. Attacker guesses successfully with probability > 0.5

0000

1. Eve produces two plaintexts,  $m_0$  and  $m_1$ 



1. Eve produces two plaintexts,  $m_0$  and  $m_1$ 



2. "Challenger" encrypts an m as  $c^* = m_b^e$  (mod n), secret b

1. Eve produces two plaintexts,  $m_0$  and  $m_1$ 



2. "Challenger" encrypts an m as  $c^* = m_h^e$  (mod n), secret b



3. Eve's goal? Determine  $b \in \{0,1\}$ 



1. Eve produces two plaintexts,  $m_0$  and  $m_1$ 



- 2. "Challenger" encrypts an m as  $c^* = m_b^e$  (mod n), secret b
- 3. Eve's goal? Determine  $b \in \{0,1\}$
- 4. Sooo, Eve computes  $c = m_1^e \pmod{n}$

```
If c^* = c then Eve knows m_b = m_1
If c^* \neq c then Eve knows m_b = m_0
```



1. Eve produces two plaintexts,  $m_0$  and  $m_1$ 



- 2. "Challenger" encrypts an m as  $c^* = m_h^e$  (mod n), secret b
- 3. Eve's goal? Determine  $b \in \{0,1\}$
- 4. Sooo, Eve computes  $c = m_1^e \pmod{n}$ If  $c^* = c$  then Eve knows  $m_b = m_1$ If  $c^* \neq c$  then Eve knows  $m_b = m_0$



I win.

Thank you deterministic algorithm

## Adversaries and their Goals



You've assumed my goal is the secret/private key...

## Adversaries and their Goals



You've assumed my goal is the secret/private key...



...but less ambitious goals can be very effective...

#### Adversaries and their Goals



You've assumed my goal is the secret/private key...





#### Goal 1: Total Break



- Win the Symmetric key K
- Win Bob's private key k<sub>b</sub>
- Can decrypt any c<sub>i</sub> for:

$$c_i = \operatorname{Enc}_K(m)$$
  
or  
 $c_i = \operatorname{Enc}_{kh}(m)$ 



- All messages using compromised k revealed
- Unless detected game over



#### Goal 2: Partial Break



- Decrypt a ciphertext c
   (without the key)
- Learn some specific information about a message m from c

Needs to occur with non-negligible probability.



Some (or a) message revealed



## Goal 3: Distinguishable Ciphertexts



- Pr {learn  $b \in \{0,1\}$ }
  exceeds  $\frac{1}{2}$
- Distinguish between Enc(m<sub>1</sub>) and Enc(m<sub>2</sub>) or between Enc(m) and Enc(random string)



 The ciphertexts are leaking small/some information...



## Semantic Security of RSA

- We saw CCA against Textbook RSA
- We showed IND-CPA on Textbook RSA



#### Textbook RSA is not IND-CPA Secure

1. Eve produces two plaintexts, m<sub>0</sub> and m<sub>1</sub>



2. "Challenger" encrypts an m as  $c^* = m_b^e$  (mod n), secret b



- 3. Eve's goal? Determine  $b \in \{0,1\}$
- 4. Sooo, Eve computes  $c = m_1^e \pmod{n}$ If  $c^* = c$  then Eve knows  $m_b = m_1$ If  $c^* \neq c$  then Eve knows  $m_b = m_0$



CS459 Fall 2025

44

## Fix it? Remove Ciphertext Distinguishability

**Goal:** prove (given comp. assumptions) that no information regarding m is revealed in polynomial time by examining c = Enc(m)

- If Enc() is deterministic, fail
- Thus, require some randomization

RSA-OAEP: Optimal Asymmetric Encryption Padding

Padding contains randomness, use RSA-OAEP in practice

## Practicality of Public-Key vs. Symmetric-Key



- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)



- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and Dec(c)

## Public-Key Sizes

- Recall that if there are no shortcuts, Eve would have to try 2<sup>128</sup> iterations in order to read a message encrypted with a 128-bit key
- Unfortunately, all of the public-key methods we know do have shortcuts
  - > Eve could read a message encrypted with a 128-bit RSA key with just 2<sup>33</sup> work, which is easy!
  - Comparison of key sizes for roughly equal strength

| <u>AES</u> | <u>RSA</u> | ECC |
|------------|------------|-----|
| 80         | 1024       | 160 |
| 116        | 2048       | 232 |
| 128        | 2600       | 256 |
| 160        | 4500       | 320 |
| 256        | 14000      | 512 |
|            |            |     |

## Practicality of Public-Key vs. Symmetric-Key



- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)



- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and Dec(c)

## What can be done? (Hybrid Cryptography)

#### We can get the best of both worlds:

- Pick a random "128-bit" key K for a symmetric-key cryptosystem
- Encrypt the large message with the key K (e.g., using AES)

#### And then...

- Encrypt the key K using a public-key cryptosystem
- Send the encrypted message and the encrypted key to Bob

**Hybrid cryptography** is used in (many) applications on the internet today



Public:  $(e_A, d_A)$ 

Public:  $(e_B, d_B)$ 

Secret: K

Secret: ?

- $\supset$  Enc/Dec functions: Enc<sub>key</sub>(\*), Dec<sub>key</sub>(\*)
- Alice wants to send a large message m to Bob.

**Q:** How should Alice build the message efficiently? How does Bob recover m?



Public:  $(e_A, d_A)$ 

Public:  $(e_B, d_B)$ 

Secret: K

Secret: ?

- $\circ$  Enc/Dec functions: Enc<sub>key</sub>(\*), Dec<sub>key</sub>(\*)
- Alice wants to send a large message m to Bob.

**Q:** How should Alice build the message efficiently? How does Bob recover m?

**FYI**: PKE is slow!! We don't want to use it on m.



Public:  $(e_A, d_A)$ 

Public:  $(e_B, d_B)$ 

Secret: K

Secret: ?

- $\circ$  Enc/Dec functions: Enc<sub>key</sub>(\*), Dec<sub>key</sub>(\*)
- Alice wants to send a large message m to Bob.

**Q:** How should Alice build the message efficiently? How does Bob recover m?

**A:** Alice computes  $c_1 = \operatorname{Enc}_{eB}(K)$ ,  $c_2 = E_K(m)$  and sends  $< c_1 || c_2 >$ . Bob recovers  $K = \operatorname{Dec}_{dB}(c_1)$  and then  $m = \operatorname{Dec}_K(c_2)$ 

|| denotes concatenation

We know how to "send secret messages", and Eve cannot do anything about it. What else is there to do?

- Mallory can modify our encrypted messages in transit!
- Mallory won't necessarily know what the message says, but can still change it in an undetectable way
  - > e.g. bit-flipping attack on stream ciphers
- This is counterintuitive, and often forgotten

Q: How do we make sure that Bob gets the same message Alice sent?

# Up next: More Cryptography...

**Asymmetric Symmetric Digital** Hash Message Key **PRFs PKE Ciphers Functions** Auth. codes **Signatures Exchange RSA** Stream **Block IND-CCA** security types