
CS459/698
Privacy, Cryptography,

Network and Data Security
Integrity and Authenticated Encryption

Fall 2025, Tuesday/Thursday 8:30-9:50am 



CS459 Fall 2025 

Block/Stream Ciphers, Public Key Cryptography…

2

Secure Channel 

Insecure Channel 
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Is that all there is?

3

Goal: How do we make sure that Bob gets the same message Alice sent? 

Modify all messages. 
Muhahahah.
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Integrity components

5

…wait…is this the 
message Alice sent?

How do we tell if a message has changed in transit?
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Integrity components

6

…wait…is this the 
message Alice sent?

How do we tell if a message has changed in transit?

Checksums
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Integrity components

7

…wait…is this the 
message Alice sent?

How do we tell if a message has changed in transit?

Add up all the bytes of M, append the checksum 

to M so Bob can verify it

Checksums
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Not. Good. Enough.

8

Checksums are 
deterministic…I can 
construct fake ones. 
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Not. Good. Enough.

9

Goal: Make it hard for Mallory to find a second message with the same 
checksum as the “real” message

“Cryptographic” checksum

Checksums are 
deterministic…I can 
construct fake messages. 
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Cryptographic hash functions

10

m

I execute a hash function
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Cryptographic hash functions

11

m

I execute a hash function

Takes an arbitrary length 
string, and computes a 

fixed length string. 
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Cryptographic hash functions

12

m

I execute a hash function

c=h(m)
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Cryptographic hash functions

13

m

I execute a hash function

c=h(m)

Q: Why is this useful?

Common examples:

● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)
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m c=h(m)

Goal: Given c, it’s “hard” to find m such that h(m) = c 
(i.e., a “preimage” of h(m)) 

Properties: Preimage-Resistance
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m c=h(m)

Properties: Second Preimage-Resistance

Goal: Given m, it’s “hard” to find m’ ≠ m such that h(m) = h(m’) 
(i.e., a “second preimage” of h(m)) 

Note that m is 
fixed, 

we have to 
find m’
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m c=h(m)

Note that we have 
free choice of 

m and m’

Goal: It’s hard to find any two distinct m, m’ such that h(m) = h(m’)
(i.e., a “collision”) 

Properties: Collision-Resistance
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What do we mean by “hard”?

● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o For a hash function with an n-bit output, the birthday attack can find collisions in 

approximately 2n/2 computations. (280 evaluations)

o However, there are faster ways than brute-force to find collisions in SHA-1 or MD5

17

MD5 2008 collision 
attack against digital 

certificates.

Create 2 cert. with same 
MD5 hash 

SHA-1 2017 collision 
attack against digital 

certificates.
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Making it too hard to break these properties?

● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o However, there are faster ways than brute-force to find collisions in SHA-1 or MD5

● Collisions are always easier to find than preimages or second 

preimages due to the birthday paradox

18
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How collisions work

19
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How attackers exploit hash collisions

20
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The birthday paradox

● If there are n people in a room, what is the probability that 

at least two people have the same birthday?

● For n = 2: Pr(2) = 1 –
364

365

● For n = 3: Pr(3) = 1 –
364

365
x  

363

365

● For n people: Pr(n) = 1 –
364

365
x  

363

365
x … x 

365−𝑛−1

365

21
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Collisions and the Birthday Paradox

22

Collisions are easier due to the birthday paradox

What’s the probability two of us have 
the same birthday?
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Collisions and the Birthday Paradox

23

What’s the probability two of us have 
the same birthday?

There’s 23 of us, so larger than 50%!!

Collisions are easier due to the birthday paradox
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Collisions and the Birthday Paradox

24

Collisions are easier due to the birthday paradox
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Collisions and the Birthday Paradox

25

There’s 40 of us, so almost 90%!!

Collisions are easier due to the birthday paradox
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Collisions and the Birthday Paradox

26

There’s 60 of us, it’s more than 99%!!!

Collisions are easier due to the birthday paradox
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Collisions are easier due to the birthday paradox

Collisions and the Birthday Paradox

27

There’s 60 of us, it’s more than 99%!!!
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How about a bad example? 

28

m, h(m) ???

Q: What can Mallory do to send the message she wants (change m)?
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How about a bad example? 

29

m, h(m) ???

Q: What can Mallory do to send the message she wants (change m)?

A: Just change it…Mallory can compute the new hash herself.

m, h(m) m’, h(m’)
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Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure

way of sending/storing the message digest

30

I could publish 
the hash of my 
public key on a 
business card
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Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure

way of sending/storing the message digest

31

I could publish 
the hash of my 
public key on a 
business card

Good idea! Although the key would 
be too big to place on the card, I 
could use the hash to… verify it!
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Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure 

way of sending/storing the message digest

32

I could publish 
the hash of my 
public key on a 
business card

Good idea! Although the key would 
be too big to place on the card, I 
could use the hash to… verify it!
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Authentication and Hash Functions

● We can use “keyed hash functions”
● Requires a secrete key to generate, or even 

check, the computed hash value 

(sometimes called a tag)

33

Called: Message authentication codes (MACs)
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Message Authentication Codes (MACs)

34

I don’t have the key 
to generate or 

check the values…

Do the MAC/tag values match?

YES

No one 
messed with 

the data

NO

The data has 
been altered 

somehow

Common examples:

● SHA-1-HMAC, SHA-256-HMAC, CBC-MAC
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Combine Ciphers and MACs

35

Confidentiality Integrity
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Combine Ciphers and MACs

36

Confidentiality Integrity

In practical we often need both 
confidentiality and message integrity 
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But how to combine them? Three possibilities

37

There are multiple strategies to combine a cipher and a MAC when processing a message 

MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC
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But how to combine them? Three possibilities

38

There are multiple strategies to combine a cipher and a MAC when processing a message 

MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC

Ideally crypto libraries already provides an authenticated encryption mode that securely 
combines the two operations, so we don’t have to worry about getting it right

➢ E.g., GCM, CCM (used in WPA2, see later), or OCB mode 
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Let’s try it!

39

● Alice and Bob have a secret key K for symmetric                        

encryption (Ek(∙), Dk(∙))

● Also, a secret key K’ for their MACK’(∙) 

How can Alice build a message for Bob in the following three scenarios? 
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MAC-then-Encrypt

40

● Compute the MAC on the message, then                    

encrypt the message and MAC together, and                   

send that ciphertext.

40

EK(m || MACK’(m))
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● Compute the MAC on the message, the                  

encryption of the message, and send both.

Encrypt-and-MAC

4141

EK(m) || MACK’(m)
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● Encrypt the message, compute the MAC on                      

the encryption, send encrypted message and                     

MAC

Encrypt-then-MAC

4242

EK(m) || MACK’(EK(m))
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Which order is correct?

43

Q: Which should be recommended then?

EK(m || MACK’(m)) vs. EK(m) || MACK’(m) vs. EK(m) || MACK’(EK(m))

MAC-then-encrypt Encrypt-and-MAC Encrypt-then-MAC



CS459 Fall 2025 

The Doom Principle 

44

“if you have to perform any cryptographic operation before verifying the MAC 

on a message you’ve received, it will somehow inevitably lead to doom.”
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The Doom Principle 

45

“if you have to perform any cryptographic operation before verifying the MAC 

on a message you’ve received, it will somehow inevitably lead to doom.”

Q: What are possible problems that can arise from the orderings?
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The Doom Principle 

• MAC-then-Encrypt: Allows an adversary to force Bob into decrypting the 
ciphertext before verifying the MAC. May lead to a padding oracle attack

46

Q: What are possible problems that can arise from the orderings?
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The Doom of MAC-then-Encrypt

• Padding oracle attack: The idea is for the attacker to send modified 
ciphertexts to Bob and observe how he responds. 

• With CBC, by modifying the last block of the ciphertext in a way that alters 
the block’s padding, the attacker can tell if the padding is valid or not. 

• If the padding is invalid, the system might respond differently (e.g., with an 
error message that is padding-specific). This information leakage allows 
the attacker to gradually decrypt the ciphertext byte by byte.

47

Observation: To verify the MAC, Bob first has to decrypt the message, since the 
MAC is part of the encrypted payload
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The Doom of MAC-then-Encrypt

• Padding oracle attack:
o If a block needs to be padded out by 5 bytes, for instance, Alice appends 5 bytes each with value 0x05 

before encryption
o Mallory tampers with the last byte of the second-to-last ciphertext block
o Bob decrypts the ciphertext, looks at the value of the last byte (call it N), and ensures that the 

preceding N-1 bytes also have the value of N.
o If Bob encounters an incorrect padding → Abort and return padding error to Alice (visible to Mallory). 
o Otherwise, Mallory will not see a padding error and infers that the last byte of the decrypted plaintext 

is (likely) 0x01, allowing Mallory to compute the last byte of the original plaintext. Repeat for 
remaining bytes.

48
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The Doom Principle 

• Encrypt-and-MAC: Allows an adversary to force Bob into decrypting the 
ciphertext to verify the MAC. May lead to a chosen-ciphertext attack

49

Q: What are possible problems that can arise from the orderings?
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The Doom of Encrypt-and-MAC

• MACs are meant to provide integrity

• MACs are often implemented by a deterministic algorithm without an 
explicit random input (essentially, for a given key and message, the 
output of the MAC is always the same).

• If a deterministic MAC is used, then there is no guarantee that the tag 
EK(m) || MACK’(m) will not leak information about the secret message m.

50

Q: What happens if the MAC has no mechanism to provide confidentiality?
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Which order is correct?

51

We want the receiver to verify the MAC first!

The recommended strategy is Encrypt-then-MAC:

EK(m) || MACK’(EK(m))

Sweet!

• Encrypt-then-MAC: Allows Bob to check the MAC of the ciphertext 
before performing any decryption whatsoever (e.g., prevent attacks 
by immediately closing a connection if the MAC fails)



More properties that matter 

52
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Repudiation

53

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

Alice sent m, and I received the 
same m she sent. 
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Repudiation

54

Confidentiality Integrity Authentication

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))
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Repudiation

55

Confidentiality Integrity Authentication

Almost, but not quite a “signature”

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))
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Repudiation

56

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol 
that Alice sent m? 
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Repudiation

57

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol 
that Alice sent m? 

Q: Why can’t Bob prove it?
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Repudiation

58

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol 
that Alice sent m? 

Q: Why can’t Bob prove it?

A: Either Alice or Bob could create any message and MAC 
combination…also Carol doesn’t know the secret key.
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Implications? 

59

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?
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Implications? 

60

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?

Bob be like

Nope! Bob made everything up! 
Both the message and the MAC
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Implications? 

61

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?

Repudiation Property: For some applications this property is good (e.g., 
private conversations)…others less good (e.g., e-commerce…). 

This is called repudiation, and we sometimes want to avoid it 
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Digital Signatures - For When Repudiation is Bad

62

?? Alice sent m, she signed it!

She did!

For non-repudiation, what we want is a true digital signature, with the following 
properties:
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If Bob receives a message with Alice’s digital              

signature on it, then: 

Properties of digital signatures 

63
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If Bob receives a message with Alice’s digital              

signature on it, then: 

● Bob knows Alice sent it, and not      (like a MAC)

64

Properties of digital signatures 
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If Bob receives a message with Alice’s digital              

signature on it, then: 

● Bob knows Alice sent it, and not      (like a MAC)

● Bob knows the message has not been altered since it was 

sent (like a MAC)

65

Properties of digital signatures 
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Properties of digital signatures 

If Bob receives a message with Alice’s digital              

signature on it, then: 

● Bob knows Alice sent it, and not      (like a MAC)

● Bob knows the message has not been altered since it was 

sent (like a MAC)

● Bob can prove these properties to a third party

(NOT like a MAC)
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Properties of digital signatures 

If Bob receives a message with Alice’s digital              

signature on it, then: 

● Bob knows Alice sent it, and not     , (like a MAC)

● Bob knows the message has not been altered since it was 

sent (like a MAC)

● Bob can prove these properties to a third party

(NOT like a MAC)

Achievable? Use techniques similar to public-key crypto (last class)
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Making Digital Signatures

68

1. A pair of keys

2. Everyone gets Alice’s public verification key 

3. Alice signs m with her private signature key Sk

4. Bob verifies m with Alice’s public verification key Vk

5. If it verifies correctly, the signature is valid
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Digital Signatures at a Glance

69
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Faster Signatures

● Signing large messages is slow 
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

70
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● Signing large messages is slow 
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

Faster Signatures - aka More Hybrids

71
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● Signing large messages is slow 
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

Faster Signatures - aka More Hybrids

72

● Finally, authenticity and confidentiality are separate
→ you need to include both if you want to achieve both
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● Alice has two different key pairs:

→ an (encryption, decryption) key pair ek
A , dk

A

→ a (signature, verification) key pair sk
A , vk

A

● So does Bob : ek
B , dk

B and sk
B , vk

B

● Alice uses ek
B to encrypt a message destined for Bob:

→C = Eek
B (M)

● She uses sk
A to sign the ciphertext: 

→ T = Signsk
A (C)

● Bob uses vk
A to check the signature:

→ Verifyvk
A (C,T), if verified, C is authentic

● He uses dk
B to decrypt the ciphertext:

→ M = Ddk
B (C)

Combining PKE and digital signatures

73
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● Alice’s (signature, verification) key pair is long-lived, whereas her (encryption, 

decryption) key pair is short-lived

→ Provides forward secrecy

● When creating a new (encryption, decryption) key pair, Alice uses her signing 

key to sign her new encryption key and Bob uses Alice’s verification key to 

verify the signature on this new key

Relationship between key pairs

74
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The Key Management Problem

75

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?
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The Key Management Problem

76

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!
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The Key Management Problem

77

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

Q: But how do they get these keys?

A: By having each other’s verification key!
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The Key Management Problem…Solutions?

78

Bob? Alice?

Q: But how do they get these keys?

A: Know it personally (manual keying e.g., SSH)

A: Trust a friend (web of trust e.g., PGP)

A: Trust some third party to tell them (CAs, e.g., TLS/SSL)



Next up: More Cryptography…

79

Symmetric Asymmetric
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Block
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PKE
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Ciphers

Discrete Log…
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