
CS459/698
Privacy, Cryptography,

Network and Data Security
Integrity and Authenticated Encryption

Fall 2025, Tuesday/Thursday 8:30-9:50am

CS459 Fall 2025

Block/Stream Ciphers, Public Key Cryptography…

2

Secure Channel

Insecure Channel

CS459 Fall 2025

Is that all there is?

3

Goal: How do we make sure that Bob gets the same message Alice sent?

Modify all messages.
Muhahahah.

4

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes

PRFs
Digital

Signatures
Key

Exchange

Stream

Block

Ciphers

RSA

IND-CCA security types

PKE

CS459 Fall 2025

Integrity components

5

…wait…is this the
message Alice sent?

How do we tell if a message has changed in transit?

CS459 Fall 2025

Integrity components

6

…wait…is this the
message Alice sent?

How do we tell if a message has changed in transit?

Checksums

CS459 Fall 2025

Integrity components

7

…wait…is this the
message Alice sent?

How do we tell if a message has changed in transit?

Add up all the bytes of M, append the checksum

to M so Bob can verify it

Checksums

CS459 Fall 2025

Not. Good. Enough.

8

Checksums are
deterministic…I can
construct fake ones.

CS459 Fall 2025

Not. Good. Enough.

9

Goal: Make it hard for Mallory to find a second message with the same
checksum as the “real” message

“Cryptographic” checksum

Checksums are
deterministic…I can
construct fake messages.

CS459 Fall 2025

Cryptographic hash functions

10

m

I execute a hash function

CS459 Fall 2025

Cryptographic hash functions

11

m

I execute a hash function

Takes an arbitrary length
string, and computes a

fixed length string.

CS459 Fall 2025

Cryptographic hash functions

12

m

I execute a hash function

c=h(m)

CS459 Fall 2025

Cryptographic hash functions

13

m

I execute a hash function

c=h(m)

Q: Why is this useful?

Common examples:

● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

CS459 Fall 2025 14

m c=h(m)

Goal: Given c, it’s “hard” to find m such that h(m) = c
(i.e., a “preimage” of h(m))

Properties: Preimage-Resistance

CS459 Fall 2025 15

m c=h(m)

Properties: Second Preimage-Resistance

Goal: Given m, it’s “hard” to find m’ ≠ m such that h(m) = h(m’)
(i.e., a “second preimage” of h(m))

Note that m is
fixed,

we have to
find m’

CS459 Fall 2025 16

m c=h(m)

Note that we have
free choice of

m and m’

Goal: It’s hard to find any two distinct m, m’ such that h(m) = h(m’)
(i.e., a “collision”)

Properties: Collision-Resistance

CS459 Fall 2025

What do we mean by “hard”?

● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o For a hash function with an n-bit output, the birthday attack can find collisions in

approximately 2n/2 computations. (280 evaluations)

o However, there are faster ways than brute-force to find collisions in SHA-1 or MD5

17

MD5 2008 collision
attack against digital

certificates.

Create 2 cert. with same
MD5 hash

SHA-1 2017 collision
attack against digital

certificates.

CS459 Fall 2025

Making it too hard to break these properties?

● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o However, there are faster ways than brute-force to find collisions in SHA-1 or MD5

● Collisions are always easier to find than preimages or second

preimages due to the birthday paradox

18

CS459 Fall 2025

How collisions work

19

CS459 Fall 2025

How attackers exploit hash collisions

20

CS459 Fall 2025

The birthday paradox

● If there are n people in a room, what is the probability that

at least two people have the same birthday?

● For n = 2: Pr(2) = 1 –
364

365

● For n = 3: Pr(3) = 1 –
364

365
x

363

365

● For n people: Pr(n) = 1 –
364

365
x

363

365
x … x

365−𝑛−1

365

21

CS459 Fall 2025

Collisions and the Birthday Paradox

22

Collisions are easier due to the birthday paradox

What’s the probability two of us have
the same birthday?

CS459 Fall 2025

Collisions and the Birthday Paradox

23

What’s the probability two of us have
the same birthday?

There’s 23 of us, so larger than 50%!!

Collisions are easier due to the birthday paradox

CS459 Fall 2025

Collisions and the Birthday Paradox

24

Collisions are easier due to the birthday paradox

CS459 Fall 2025

Collisions and the Birthday Paradox

25

There’s 40 of us, so almost 90%!!

Collisions are easier due to the birthday paradox

CS459 Fall 2025

Collisions and the Birthday Paradox

26

There’s 60 of us, it’s more than 99%!!!

Collisions are easier due to the birthday paradox

CS459 Fall 2025

Collisions are easier due to the birthday paradox

Collisions and the Birthday Paradox

27

There’s 60 of us, it’s more than 99%!!!

CS459 Fall 2025

How about a bad example?

28

m, h(m) ???

Q: What can Mallory do to send the message she wants (change m)?

CS459 Fall 2025

How about a bad example?

29

m, h(m) ???

Q: What can Mallory do to send the message she wants (change m)?

A: Just change it…Mallory can compute the new hash herself.

m, h(m) m’, h(m’)

CS459 Fall 2025

Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure

way of sending/storing the message digest

30

I could publish
the hash of my
public key on a
business card

CS459 Fall 2025

Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure

way of sending/storing the message digest

31

I could publish
the hash of my
public key on a
business card

Good idea! Although the key would
be too big to place on the card, I
could use the hash to… verify it!

CS459 Fall 2025

Limitations for Cryptographic Hash Functions

● Integrity guarantees only when there is a secure

way of sending/storing the message digest

32

I could publish
the hash of my
public key on a
business card

Good idea! Although the key would
be too big to place on the card, I
could use the hash to… verify it!

CS459 Fall 2025

Authentication and Hash Functions

● We can use “keyed hash functions”
● Requires a secrete key to generate, or even

check, the computed hash value

(sometimes called a tag)

33

Called: Message authentication codes (MACs)

CS459 Fall 2025

Message Authentication Codes (MACs)

34

I don’t have the key
to generate or

check the values…

Do the MAC/tag values match?

YES

No one
messed with

the data

NO

The data has
been altered

somehow

Common examples:

● SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

CS459 Fall 2025

Combine Ciphers and MACs

35

Confidentiality Integrity

CS459 Fall 2025

Combine Ciphers and MACs

36

Confidentiality Integrity

In practical we often need both
confidentiality and message integrity

CS459 Fall 2025

But how to combine them? Three possibilities

37

There are multiple strategies to combine a cipher and a MAC when processing a message

MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC

CS459 Fall 2025

But how to combine them? Three possibilities

38

There are multiple strategies to combine a cipher and a MAC when processing a message

MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC

Ideally crypto libraries already provides an authenticated encryption mode that securely
combines the two operations, so we don’t have to worry about getting it right

➢ E.g., GCM, CCM (used in WPA2, see later), or OCB mode

CS459 Fall 2025

Let’s try it!

39

● Alice and Bob have a secret key K for symmetric

encryption (Ek(∙), Dk(∙))

● Also, a secret key K’ for their MACK’(∙)

How can Alice build a message for Bob in the following three scenarios?

CS459 Fall 2025

MAC-then-Encrypt

40

● Compute the MAC on the message, then

encrypt the message and MAC together, and

send that ciphertext.

40

EK(m || MACK’(m))

CS459 Fall 2025

● Compute the MAC on the message, the

encryption of the message, and send both.

Encrypt-and-MAC

4141

EK(m) || MACK’(m)

CS459 Fall 2025

● Encrypt the message, compute the MAC on

the encryption, send encrypted message and

MAC

Encrypt-then-MAC

4242

EK(m) || MACK’(EK(m))

CS459 Fall 2025

Which order is correct?

43

Q: Which should be recommended then?

EK(m || MACK’(m)) vs. EK(m) || MACK’(m) vs. EK(m) || MACK’(EK(m))

MAC-then-encrypt Encrypt-and-MAC Encrypt-then-MAC

CS459 Fall 2025

The Doom Principle

44

“if you have to perform any cryptographic operation before verifying the MAC

on a message you’ve received, it will somehow inevitably lead to doom.”

CS459 Fall 2025

The Doom Principle

45

“if you have to perform any cryptographic operation before verifying the MAC

on a message you’ve received, it will somehow inevitably lead to doom.”

Q: What are possible problems that can arise from the orderings?

CS459 Fall 2025

The Doom Principle

• MAC-then-Encrypt: Allows an adversary to force Bob into decrypting the
ciphertext before verifying the MAC. May lead to a padding oracle attack

46

Q: What are possible problems that can arise from the orderings?

CS459 Fall 2025

The Doom of MAC-then-Encrypt

• Padding oracle attack: The idea is for the attacker to send modified
ciphertexts to Bob and observe how he responds.

• With CBC, by modifying the last block of the ciphertext in a way that alters
the block’s padding, the attacker can tell if the padding is valid or not.

• If the padding is invalid, the system might respond differently (e.g., with an
error message that is padding-specific). This information leakage allows
the attacker to gradually decrypt the ciphertext byte by byte.

47

Observation: To verify the MAC, Bob first has to decrypt the message, since the
MAC is part of the encrypted payload

CS459 Fall 2025

The Doom of MAC-then-Encrypt

• Padding oracle attack:
o If a block needs to be padded out by 5 bytes, for instance, Alice appends 5 bytes each with value 0x05

before encryption
o Mallory tampers with the last byte of the second-to-last ciphertext block
o Bob decrypts the ciphertext, looks at the value of the last byte (call it N), and ensures that the

preceding N-1 bytes also have the value of N.
o If Bob encounters an incorrect padding → Abort and return padding error to Alice (visible to Mallory).
o Otherwise, Mallory will not see a padding error and infers that the last byte of the decrypted plaintext

is (likely) 0x01, allowing Mallory to compute the last byte of the original plaintext. Repeat for
remaining bytes.

48

CS459 Fall 2025

The Doom Principle

• Encrypt-and-MAC: Allows an adversary to force Bob into decrypting the
ciphertext to verify the MAC. May lead to a chosen-ciphertext attack

49

Q: What are possible problems that can arise from the orderings?

CS459 Fall 2025

The Doom of Encrypt-and-MAC

• MACs are meant to provide integrity

• MACs are often implemented by a deterministic algorithm without an
explicit random input (essentially, for a given key and message, the
output of the MAC is always the same).

• If a deterministic MAC is used, then there is no guarantee that the tag
EK(m) || MACK’(m) will not leak information about the secret message m.

50

Q: What happens if the MAC has no mechanism to provide confidentiality?

CS459 Fall 2025

Which order is correct?

51

We want the receiver to verify the MAC first!

The recommended strategy is Encrypt-then-MAC:

EK(m) || MACK’(EK(m))

Sweet!

• Encrypt-then-MAC: Allows Bob to check the MAC of the ciphertext
before performing any decryption whatsoever (e.g., prevent attacks
by immediately closing a connection if the MAC fails)

More properties that matter

52

CS459 Fall 2025

Repudiation

53

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

Alice sent m, and I received the
same m she sent.

CS459 Fall 2025

Repudiation

54

Confidentiality Integrity Authentication

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

CS459 Fall 2025

Repudiation

55

Confidentiality Integrity Authentication

Almost, but not quite a “signature”

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

CS459 Fall 2025

Repudiation

56

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol
that Alice sent m?

CS459 Fall 2025

Repudiation

57

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol
that Alice sent m?

Q: Why can’t Bob prove it?

CS459 Fall 2025

Repudiation

58

EK(m) || MACK’(EK(m)) EK(m) || MACK’(EK(m))

So…you’re saying Bob can’t prove to Carol
that Alice sent m?

Q: Why can’t Bob prove it?

A: Either Alice or Bob could create any message and MAC
combination…also Carol doesn’t know the secret key.

CS459 Fall 2025

Implications?

59

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?

CS459 Fall 2025

Implications?

60

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?

Bob be like

Nope! Bob made everything up!
Both the message and the MAC

CS459 Fall 2025

Implications?

61

?? Alice sent m, look: EK(m) || MACK’(EK(m))

Uhh…did she?

Repudiation Property: For some applications this property is good (e.g.,
private conversations)…others less good (e.g., e-commerce…).

This is called repudiation, and we sometimes want to avoid it

CS459 Fall 2025

Digital Signatures - For When Repudiation is Bad

62

?? Alice sent m, she signed it!

She did!

For non-repudiation, what we want is a true digital signature, with the following
properties:

CS459 Fall 2025

If Bob receives a message with Alice’s digital

signature on it, then:

Properties of digital signatures

63

CS459 Fall 2025

If Bob receives a message with Alice’s digital

signature on it, then:

● Bob knows Alice sent it, and not (like a MAC)

64

Properties of digital signatures

CS459 Fall 2025

If Bob receives a message with Alice’s digital

signature on it, then:

● Bob knows Alice sent it, and not (like a MAC)

● Bob knows the message has not been altered since it was

sent (like a MAC)

65

Properties of digital signatures

CS459 Fall 2025 66

Properties of digital signatures

If Bob receives a message with Alice’s digital

signature on it, then:

● Bob knows Alice sent it, and not (like a MAC)

● Bob knows the message has not been altered since it was

sent (like a MAC)

● Bob can prove these properties to a third party

(NOT like a MAC)

CS459 Fall 2025 67

Properties of digital signatures

If Bob receives a message with Alice’s digital

signature on it, then:

● Bob knows Alice sent it, and not , (like a MAC)

● Bob knows the message has not been altered since it was

sent (like a MAC)

● Bob can prove these properties to a third party

(NOT like a MAC)

Achievable? Use techniques similar to public-key crypto (last class)

CS459 Fall 2025

Making Digital Signatures

68

1. A pair of keys

2. Everyone gets Alice’s public verification key

3. Alice signs m with her private signature key Sk

4. Bob verifies m with Alice’s public verification key Vk

5. If it verifies correctly, the signature is valid

CS459 Fall 2025

Digital Signatures at a Glance

69

CS459 Fall 2025

Faster Signatures

● Signing large messages is slow
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

70

CS459 Fall 2025

● Signing large messages is slow
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

Faster Signatures - aka More Hybrids

71

CS459 Fall 2025

● Signing large messages is slow
→ “hybridize” the signatures to make them faster

● A hash is much smaller than the message… faster to sign

Faster Signatures - aka More Hybrids

72

● Finally, authenticity and confidentiality are separate
→ you need to include both if you want to achieve both

CS459 Fall 2025

● Alice has two different key pairs:

→ an (encryption, decryption) key pair ek
A , dk

A

→ a (signature, verification) key pair sk
A , vk

A

● So does Bob : ek
B , dk

B and sk
B , vk

B

● Alice uses ek
B to encrypt a message destined for Bob:

→C = Eek
B (M)

● She uses sk
A to sign the ciphertext:

→ T = Signsk
A (C)

● Bob uses vk
A to check the signature:

→ Verifyvk
A (C,T), if verified, C is authentic

● He uses dk
B to decrypt the ciphertext:

→ M = Ddk
B (C)

Combining PKE and digital signatures

73

CS459 Fall 2025

● Alice’s (signature, verification) key pair is long-lived, whereas her (encryption,

decryption) key pair is short-lived

→ Provides forward secrecy

● When creating a new (encryption, decryption) key pair, Alice uses her signing

key to sign her new encryption key and Bob uses Alice’s verification key to

verify the signature on this new key

Relationship between key pairs

74

CS459 Fall 2025

The Key Management Problem

75

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

CS459 Fall 2025

The Key Management Problem

76

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!

CS459 Fall 2025

The Key Management Problem

77

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

Q: But how do they get these keys?

A: By having each other’s verification key!

CS459 Fall 2025

The Key Management Problem…Solutions?

78

Bob? Alice?

Q: But how do they get these keys?

A: Know it personally (manual keying e.g., SSH)

A: Trust a friend (web of trust e.g., PGP)

A: Trust some third party to tell them (CAs, e.g., TLS/SSL)

Next up: More Cryptography…

79

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes

PRFs
Digital

Signatures
Key

Exchange

Stream

Block

RSA

PKE

IND-CCA security types

Ciphers

Discrete Log…

	Slide 1: CS459/698 Privacy, Cryptography, Network and Data Security
	Slide 2: Block/Stream Ciphers, Public Key Cryptography…
	Slide 3: Is that all there is?
	Slide 4
	Slide 5: Integrity components
	Slide 6: Integrity components
	Slide 7: Integrity components
	Slide 8: Not. Good. Enough.
	Slide 9: Not. Good. Enough.
	Slide 10: Cryptographic hash functions
	Slide 11: Cryptographic hash functions
	Slide 12: Cryptographic hash functions
	Slide 13: Cryptographic hash functions
	Slide 14: Properties: Preimage-Resistance
	Slide 15: Properties: Second Preimage-Resistance
	Slide 16: Properties: Collision-Resistance
	Slide 17: What do we mean by “hard”?
	Slide 18: Making it too hard to break these properties?
	Slide 19: How collisions work
	Slide 20: How attackers exploit hash collisions
	Slide 21: The birthday paradox
	Slide 22: Collisions and the Birthday Paradox
	Slide 23: Collisions and the Birthday Paradox
	Slide 24: Collisions and the Birthday Paradox
	Slide 25: Collisions and the Birthday Paradox
	Slide 26: Collisions and the Birthday Paradox
	Slide 27: Collisions and the Birthday Paradox
	Slide 28: How about a bad example?
	Slide 29: How about a bad example?
	Slide 30: Limitations for Cryptographic Hash Functions
	Slide 31: Limitations for Cryptographic Hash Functions
	Slide 32: Limitations for Cryptographic Hash Functions
	Slide 33: Authentication and Hash Functions
	Slide 34: Message Authentication Codes (MACs)
	Slide 35: Combine Ciphers and MACs
	Slide 36: Combine Ciphers and MACs
	Slide 37: But how to combine them? Three possibilities
	Slide 38: But how to combine them? Three possibilities
	Slide 39: Let’s try it!
	Slide 40: MAC-then-Encrypt
	Slide 41: Encrypt-and-MAC
	Slide 42: Encrypt-then-MAC
	Slide 43: Which order is correct?
	Slide 44: The Doom Principle
	Slide 45: The Doom Principle
	Slide 46: The Doom Principle
	Slide 47: The Doom of MAC-then-Encrypt
	Slide 48: The Doom of MAC-then-Encrypt
	Slide 49: The Doom Principle
	Slide 50: The Doom of Encrypt-and-MAC
	Slide 51: Which order is correct?
	Slide 52: More properties that matter
	Slide 53: Repudiation
	Slide 54: Repudiation
	Slide 55: Repudiation
	Slide 56: Repudiation
	Slide 57: Repudiation
	Slide 58: Repudiation
	Slide 59: Implications?
	Slide 60: Implications?
	Slide 61: Implications?
	Slide 62: Digital Signatures - For When Repudiation is Bad
	Slide 63: Properties of digital signatures
	Slide 64: Properties of digital signatures
	Slide 65: Properties of digital signatures
	Slide 66: Properties of digital signatures
	Slide 67: Properties of digital signatures
	Slide 68: Making Digital Signatures
	Slide 69: Digital Signatures at a Glance
	Slide 70: Faster Signatures
	Slide 71: Faster Signatures - aka More Hybrids
	Slide 72: Faster Signatures - aka More Hybrids
	Slide 73: Combining PKE and digital signatures
	Slide 74: Relationship between key pairs
	Slide 75: The Key Management Problem
	Slide 76: The Key Management Problem
	Slide 77: The Key Management Problem
	Slide 78: The Key Management Problem…Solutions?
	Slide 79: Next up: More Cryptography…

