CS459/698 Privacy, Cryptography, Network and Data Security

Discrete Logarithm, Diffie-Hellman, ElGamal

 $h = g^x$, find x

It's supposed to be hard to find x

I bet we can use that

But don't forget about me

Groups

Groups - Sets with specific properties

A **group** is a set of elements (usually numbers) that are related to each other according to well-defined operations.

- ullet Consider a multiplicative group Z_p^*
 - This boils down to the set of non-zero integers between 1 and p-1 modulo $p \rightarrow A$ finite group
 - For p = 5, we have group $Z_5^* = \{1,2,3,4\} -> i.e.$, the <u>order</u> **n** of Z_5^* is 4
 - In this group, operations are carried out mod 5:
 - \bullet 3 * 4 = 12 mod 5 = 2
 - $2^3 = 2 * 2 * 2 = 8 \mod 5 = 3$

Group axioms

To be a group, these sets should respect some axioms

- Closure
- Identity existence
- Associativity
- Inverse existence
- Groups can also be <u>commutative</u> and <u>cyclic</u> (up next)

Let's take a look at some of these axioms (using multiplication as the operation)

Closure

- For every x, y in the group, x * y is in the group
 - o i.e., the multiplication of two group elements falls within the group too

- Example:
 - o in Z_5^* , 2 * 3 = 6 mod 5 = 1

Identity Existence

- There is an element e such that e * x = x * e = x
 - o i.e., has an element **e** such that any element times **e** outputs the element itself

Example:

- o In any Z_p^* , the identity element is 1
- o For $Z_5^* : 1 * 3 = 3 \mod 5 = 3$

Associativity

For any x, y, z in the group, (x * y) * z = x * (y * z)

• Example:

o For
$$Z_5^*: (2*3)*4=1*4=2*(3*4)=2*2=4$$

Inverse Existence

For any x in the group, there is a y such that x * y = y * x = e
 with e being identity element

Example:

```
• For Z_5^*: 2*3=1, 3*2=1 ( 2 and 3 are inverses)
```

$$\circ$$
 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

Abelian Groups

- Abelian groups are groups that are commutative
- This means that x * y = y * x for any group elements x and y

- Example:
 - o For $Z_5^*: 3*4=2, 4*3=2$

Cyclic groups

- A group is called **cyclic** if there is at least one element **g** such that its powers (g¹, g², g³, ...) mod p span all distinct group elements.
 - o **g** is called the "generator" of the group

Example:

- For Z_5^* , there are two generators (2 and 3):
 - $2^1 = 2, 2^2 = 4, 2^3 = 3, 2^4 = 1$
 - $3^1 = 3, 3^2 = 4, 3^3 = 2, 3^4 = 1$

Cyclic subgroups

We can have cyclic subgroups within larger finite groups

Example:

- The order of any cyclic subgroup of F_{607}^* must divide $\mathbf{n} = |F_{607}^*| = 606$
- \circ Thus, F_{607}^* has subgroups of orders {1, 2, 3, 6, 9, 18, 101, 202, 303, 606}

Important for later:

- The subgroup of order 101 is a subset of F_{607}^* . All calculations involving its generator **g** must take place in F_{607}^* , which uses modulo 607 arithmetic.
- Even though the subgroup has order n=101, its elements are still numbers in F_{607}^* , and their operations are also defined modulo 607.

 $h = g^x$, find x

It's supposed to be hard to find x

I bet we can use that

But don't forget about me

$$h = g^x$$
, find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of **h** base **g**

$$\circ$$
 e.g., $\log_2 256 = 8$, since $2^8 = 256$

Given $(g, h) \in \mathbf{G} \times \mathbf{G}$, find $x \in \mathbf{Z}_{p}^{*}$ such that:

$$h = g^x$$

Here, **G** is a multiplicative group of order **p**-1, just like we saw during the examples. (But **p** is thousands of bits long)

Solutions to the Discrete Logarithm Problem

If there's one solution, there are infinitely many

(thank you Fermat's little theorem and modular arithmetic "wrap-around")

How to solve DLP in cyclic groups of prime order?

Is the group cyclic, finite, and abelian?

Has a generator that spans all elements

Has a limited number of elements

Multiplication is commutative

Baby-step/Giant-step algorithms!!!

Baby-Step/Giant-Step Algorithm

- A cyclic group G = <g> that has order n
- $h \in G$, Goal: find $x \pmod{n}$ such that $h = g^x$

Math exploit!

- Every value \mathbf{x} ($0 \le x \le n$) can be written as: $\mathbf{x} = i + j \times [sqrt(n)]$
 - For integers m, i, j satisfying $0 \le i$, j < m.
 - \bigcirc m = [sqrt(n)]

Then:

$$h = g^{i + j*[sqrt(n)]}$$

$$g^{i} = h * (g^{-[sqrt(n)]})^{j}$$

Baby-Step/Giant-Step Algorithm

log_a h mod n is obtained by comparing two lists:

$$g^{i}$$
 and $h * (g^{-[sqrt(n)]})^{j}$

When we find a coincidence, the equality holds and then x = i + j*[sqrt(n)]

$g^i = h * (g^{-[sqrt(n)]})^j$

Baby-step/Giant-Step Algorithm

1.
$$x = i + j*[sqrt(n)]$$

$g^i = h * (g^{-[sqrt(n)]})^i$

Baby-step/Giant-Step Algorithm

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

Since 0≤x≤n, ...

 $g^i = h * (g^{-[sqrt(n)]})^i$

Baby-step/Giant-Step Algorithm

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < [sqrt(n)]$

 $g^i = h \cdot (g^{-\lceil sqrt(n) \rceil})^j$

Baby-step/Giant-Step Algorithm

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

 $g^i = h * (g^{-[sqrt(n)]})^j$

Baby-step/Giant-Step Algorithm

3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < [sqrt(n)]$

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

 $g^i = h * (g^{-[sqrt(n)]})^i$

Baby-step/Giant-Step Algorithm

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

4. Giant-step: $h_i \leftarrow h^*g^{-j \lceil sqrt(n) \rceil}$ for $0 \le j < \lceil sqrt(n) \rceil$

Overall time and space O(Sqrt(n))

Baby-step/Giant-Step Algg

- 1. x = i + j*[sqrt(n)]
- 2. $0 \le i, j < [sqrt(n)]$

4. Gi2

Note: For DLP in group G to be "difficult enough" (e.g., 2128 operations), needs prime order subgroup of size greater than 2256

verall time a

space O(Sqrt(n))

(11_j,j)

sqrt(n)]

• Consider the subgroup of prime order 101 ($\mathbf{n} = 101$) in F_{607}^* , generated by $\mathbf{g} = 64$

i	64 ⁱ (mod 607)	i	""
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

Take that we know this...

Focusing on the subgroup **ensures** that every element in the problem is generated by the **known** g=64, making it possible to **solve** the DLP.

• Consider the subgroup of prime order 101 ($\mathbf{n} = 101$) in F_{607}^* , generated by $\mathbf{g} = 64$

i	64 ⁱ (mod 607)	i	" "
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

Take that we know this...

Focusing on the subgroup **ensures** that every element in the problem is generated by the **known** g=64, making it possible to **solve** the DLP.

This tells us x is in the range $0 \le x < 101$ because the subgroup has order 101.

• Consider the subgroup of prime order 101 ($\mathbf{n} = 101$) in F_{607}^* , generated by $\mathbf{g} = 64$

i	64 ⁱ (mod 607)	i	""
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

Take that we know this...

Focusing on the subgroup **ensures** that every element in the problem is generated by the **known** g=64, making it possible to **solve** the DLP.

This tells us x is in the range $0 \le x < 101$ because the subgroup has order 101.

But recall we're operating in mod 607 due to F_{607}^*

• Consider the subgroup of prime order 101 ($\mathbf{n} = 101$) in F_{607}^* , generated by $\mathbf{g} = 64$

i	64 ⁱ (mod 607)	i	66 33
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

Baby-step:
$$g_i \leftarrow g^i$$
 for $0 \le i < \lceil sqrt(n) \rceil$

i	64 ⁱ (mod 607)	i	""
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

Baby-step: $g_i \leftarrow g^i$ for $0 \le i < [sqrt(n)]$

i	182* 64 ^{-11*j} (mod 607)	i	
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	_

i	182* 64 ^{-11*j} (mod 607)	i	
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76
4	343	10	580
5	573	-	

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

j		j	182* 64 ^{-11*j} (mod 607)
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76
4	343	10	580
5	573	-	

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

j		j	182* 64 ^{-11*j} (mod 607)
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76
4	343	10	580
5	573	-	

DLP Example, $182 = 64^{x} \pmod{607}$

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288

5

j		j	182* 64 ^{-11*j} (mod 607)
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76
4	343	10	580

Match when **i=4** and **j=4**.

(i is not necessarily equal to j, but it happened on this run $^-\$ _($^\vee$)_/ $^-$

DLP Example, $182 = 64^{x} \pmod{607}$

i		i	64 ⁱ (mod 607)
-			,
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288

5

100

x = i + j*[sqrt(n)]

Collision?

j		j	182* 64 ^{-11*j} (mod 607)
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76
4	343	10	580

Recall: x = i + j*[sqrt(n)]

So: x = 4 + 4*11 = 48.

DLP Example, $182 = 64^{x} \pmod{607}$

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288

5

100

Collision?

j		j	182* 64 ^{-11*j} (mod 607)
0	182	6	60
1	143	7	394
2	69	8	483
3	271	9	76

Verify: 64⁴⁸ (mod 607) = 182

Recall: x = i + j*[sqrt(n)]

So: x = 4 + 4*11 = 48.

Diffie-Hellman

A public-key protocol published in 1976 by Whitfield Diffie and Martin Hellman

Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a symmetric key cipher

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is <u>bad</u>)
- Assume as public parameters generator g and prime p
- Alice (resp. Bob) generates private value a (resp. b)

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is <u>bad</u>)
- Assume as public parameters generator g and prime p
- Alice (resp. Bob) generates private value a (resp. b)

$$B^{a} = (g^{b})^{a} = g^{ba}$$
 $A^{b} = (g^{a})^{b} = g^{ab}$

Alice and Bob can derive the same value by exchanging public values and combining them with their private ones!

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is <u>bad</u>)
- Assume as public parameters generator g and prime p
- Alice (resp. Bob) generates private value a (resp. b)

$$\mathsf{B}^\mathsf{a} = (\mathsf{g}^\mathsf{b})^\mathsf{a} = \mathsf{g}^\mathsf{b}\mathsf{a}$$

$$\mathsf{A}^\mathsf{b} = (\mathsf{g}^\mathsf{a})^\mathsf{b} = \mathsf{g}^\mathsf{a}\mathsf{b}$$

Resist keying temptation: the shared value should not <u>immediately</u> be used as a key. gab is a random element inside a group, but not necessarily a random bit string

<u>Diffie-Hellman Key Exchange – Visualization</u>

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value **a** from the public value **g**^a

(or **b** from g^b)

The adversary must not be able to solve the DLP

The Decisional Diffie-Hellman Problem

Given **g**, **g**^a, **g**^b distinguish **g**^{ab} from random **g**^c

- An adversary should NOT be able to learn anything about the secret g^{ab} after observing public values g^a and g^b
 - Assume g^{ab} and g^c occur with the same probability

The Decisional Diffie-Hellman Problem

Given **g**, **g**^a, **g**^b distinguish **g**^{ab} from random **g**^c

- An adversary should NOT be able to learn anything about the secret g^{ab} after observing public values g^a and g^b
 - Assume g^{ab} and g^c occur with the same probability

Useful assumption **beyond** DH key exchange!

EIGamal relies on the DDH assumption

ElGamal

ElGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in $(\mathbf{Z}_p^*, *)$ is infeasible
- Let α be a generator in \mathbf{Z}_{p}^{*} and \mathbf{a} a secret value
- **PubK** ={ (p, α, β) : $\beta \equiv \alpha^a \pmod{p}$ }

- For message **m** and secret random **k** in \mathbf{Z}_{p-1} :
 - \circ e_k(m, k) = (y₁, y₂), where y₁ = α ^k mod p and y₂ = m β ^k mod p

- For y_1 , y_2 in Z_p^* :
 - \bigcirc d_K(y₁, y₂)= y₂(y₁^a)-1 mod p

ElGamal: The Keys

- 1. Bob picks a "large" prime \mathbf{p} and a generator $\mathbf{\alpha}$.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer a
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$

ElGamal: The Keys

- 1. Bob picks a "large" prime \mathbf{p} and a generator $\mathbf{\alpha}$.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer a
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is (**p**, **α**, **β**)

ElGamal: The Keys

- 1. Bob picks a "large" prime \mathbf{p} and a generator $\mathbf{\alpha}$.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer a
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is (**p**, **α**, **β**)

5. Bob's private key is a

ElGamal: Encryption

I choose secret integer k

k must be random and never re-used

ElGamal: Encryption

Bob's $Pub_K \rightarrow (p, \alpha, \beta)$ Bob's $Priv_K \rightarrow a$ $\beta \equiv \alpha^a \pmod{p}$

I choose secret integer **k**

Compute $\mathbf{y}_1 \equiv \alpha^k \pmod{p}$

ElGamal: Encryption

Bob's $Pub_K \rightarrow (p, \alpha, \beta)$ Bob's $Priv_K \rightarrow a$ $\beta \equiv \alpha^a \pmod{p}$

I choose secret integer **k**

Compute $\mathbf{y}_1 \equiv \alpha^k \pmod{p}$

Compute $\mathbf{y_2} \equiv \beta^k \text{ m (mod p)}$

Bob's $Pub_K \rightarrow (p, \alpha, \beta)$

Bob's $Priv_K \rightarrow a$

β≡α^a (mod p)

ElGamal: Encryption

Compute $\mathbf{y_1} \equiv \alpha^{\mathbf{k}} \pmod{p}$

Compute $\mathbf{y_2} \equiv \beta^k \text{ m (mod p)}$

Send y_1 and y_2 to Bob

ElGamal: Decryption

I choose secret integer k

Compute $\mathbf{y}_1 \equiv \alpha^k \pmod{p}$

Compute $\mathbf{y_2} \equiv \beta^k \text{ m (mod p)}$

Send y_1 and y_2 to Bob

Compute $\mathbf{y_1y_2}^{-a} \equiv m \pmod{p}$

ElGamal: Decryption

Compute $\mathbf{y}_1 \equiv \alpha^k \pmod{p}$

Compute $\mathbf{y_2} \equiv \beta^k \text{ m (mod p)}$

Compute $y_2y_1^{-a} \equiv m \pmod{p}$

Send y_1 and y_2 to Bob

Bob can decrypt since:

$$\textbf{y}_{\textbf{2}}\textbf{y}_{\textbf{1}}^{-\textbf{a}} \equiv \beta^{\textbf{k}} \ \textbf{m} \ (\alpha^{\textbf{k}})^{-\textbf{a}} \equiv (\alpha^{\textbf{a}})^{\textbf{k}} \ \textbf{m} \ (\alpha^{\textbf{k}})^{-\textbf{a}} \equiv \alpha^{\textbf{a}\textbf{k}} \ \textbf{m} \ \alpha^{-\textbf{a}\textbf{k}} \equiv \textbf{m} \ (\textbf{mod} \ \textbf{p})$$

• The plaintext m is "hidden" by multiplying it by β^k to get y_2

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)

- The plaintext m is "hidden" by multiplying it by β^k to get y₂
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

Let's see an example!

Example

• Let p=2579, $\alpha = 2$, $\beta = 2^{765} \mod 2579 = 949$

Example

• Let p=2579, $\alpha = 2$, $\beta = 2^{765} \mod 2579 = 949$

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer

Example

• Let p=2579, $\alpha = 2$, $\beta = 2^{765} \mod 2579 = 949$

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer

$$\mathbf{y}_1 \equiv \mathbf{a}^{\mathbf{k}} \pmod{\mathbf{p}}$$

$$\mathbf{y_2} \equiv \beta^k \, \mathbf{m} \, (\mathbf{mod} \, \mathbf{p})$$

Example

• Let p=2579, $\alpha = 2$, $\beta = 2^{765} \mod 2579 = 949$

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer

$$\mathbf{y_1} \equiv \alpha^k \pmod{p}$$

 $\mathbf{y_2} \equiv \beta^k \pmod{p}$

- $\mathbf{y_1} = 2^{853} \mod 2579 = 435$
- \mathbf{y}_2 = 949⁸⁵³ * 1299 mod 2579 = 2396

Send y₁, y₂ to Bob

Example

- Bob now has y_1 and y_2
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

I received y = (435, 2396)

Example

- Bob now has y₁ and y₂
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

I received y = (435, 2396)

 $\mathbf{y_2y_1}^{-\mathbf{a}} \equiv \beta^k \ \mathbf{m} \ (\alpha^k)^{-\mathbf{a}} \equiv \mathbf{m} \ (\mathbf{mod} \ \mathbf{p})$

m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

Example

- Bob now has y₁ and y₂
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

I received y = (435, 2396)

 $\mathbf{y_2y_1}^{-a} \equiv \beta^k \ m \ (\alpha^k)^{-a} \equiv m \ (mod \ p)$

• m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

Nice! That's the plaintext I wanted to send.

Example

- Bob now has y₁ and y₂
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

I received y = (435, 2396)

 $\mathbf{y_2y_1}^{-a} \equiv \beta^k \ m \ (\alpha^k)^{-a} \equiv m \ (mod \ p)$

• m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

Nice! That's the plaintext I wanted to send.

Insecure if the adversary can compute $\mathbf{a} = \log_{\alpha} \beta$

Example

- Bob now has y₁ and y₂
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

I received y = (435, 2396)

 $\mathbf{y_2y_1}^{-a} \equiv \beta^k \ m \ (\alpha^k)^{-a} \equiv m \ (mod \ p)$

• m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

Nice! That's the plaintext I wanted to send.

Insecure if the adversary can compute $\mathbf{a} = \log_{\alpha} \beta$

To be secure, DLP must be infeasible in Z_D^*

But... We had RSA, why do we need ElGamal?

Extensions

- ElGamal supports Elliptic Curve Cryptography (ECC)
- Stronger security with smaller keys compared to RSA

Probabilistic Encryption

Adds semantic security with randomization (different ciphertexts for the same plaintext).

Homomorphic properties

Additive homomorphism vs. RSA's <u>multiplicative</u> homomorphism

Network Security - Next class