CS459/698 Privacy, Cryptography, Network and Data Security

Authentication Protocols

A1 is due today!

- Late policy from today 3pm until Oct 2 3pm.
 - No further help will be provided

Today's Lecture – Authentication Protocols

- Symmetric Authentication
 - Needham-Schroeder
 - Kerberos
- Asymmetric Authentication (PKI)
 - o DH
 - Certificates
- DNSSEC

Today's Focus

Establishing Keys:

- Typically, once authenticated, we give access to some service or message
- Goal will often be to establish a symmetric key between parties

Symmetric Crypto Authentication

Needham-Schroeder

Needham-Schroeder Overview (1978)

Key Distribution Center (S)

<_{AS}

 K_{BS}

- Alice (A) wants to initiate communication with Bob (B)
- There is a trusted Key Distribution Center (S) with pre-established symmetric keys
- K_{AS} is a symmetric key known only to A and S
 - \circ K_{BS} is a symmetric key known only to B and S
- S generates K_{AB}, a symmetric key used in the session between A and B
 - \circ Every time Alice wants to talk to Bob, a new symmetric K_{AB} key is provided

Needham-Schroeder Flow

Breaking Down Needham-Schroeder - Step 1

- First message in plaintext Identifies Alice and Bob
- N_A is a nonce used to prevent reply attacks against Alice

Breaking Down Needham-Schroeder - Step 2

 K_{AB}

Simply forward the encrypted K_{AB} to Bob

Breaking Down Needham-Schroeder - Step 3

Need to verify the keys

- Bob challenges Alice to prove she knows K_{AB}
- Remember that K_{AB} has been set up by trusted 3rd party S

Is Needham-Schroeder Vulnerable to Replay Attacks?

Replay attack:

- Mallory intercepts a message meant for some other party
- They later send this message again pretending to be some other party

Example

- Hashed password
- Car unlocking

Yes, it is 🕾

Needham-Schroeder is vulnerable to replay attacks

3 weeks later...

I was able to hack Alice and compromised that session's K_{AB}

What can I do with this?

Needham-Schroeder is vulnerable to replay attacks

3 weeks late

I intercepted message 3 a few weeks ago.

I was able to hack Alice and compromised that session's K_{AB}

What can I do with this?

3. Forwards K_{AB} encrypted under K_{BS} to Bob

4. Sends "Alice" a nonce encrypted under K_{AB}

Bob

BS

Needham-Schroeder is vulnerable to replay attacks

3 weeks later...

I intercepted message 3 a few weeks ago.

I was able to hack Alice and compromised that session's K^{AB}

What can I do with this?

3. Forwards K_{AB} encrypted under K_{BS} to Bob

4. Sends "Alice" a nonce encrypted under K_{ΔR}

Bob

5. Performs a simple operation on the nonce, re-encrypts it and sends back to Bob

Bob will believe he is talking to Alice.

Symmetric Crypto Authentication

Kerberos

- Based on the Needham-Schroeder protocol
- Fixes the potential for a replay attack
 - By adding a timestamp!
- Used in Windows Active Directory
 - o Enables administrators to manage permissions and access to network resources
- Effective Access Control
 - Each client only needs single key.
 - Each server also only needs a single key.
 - Mutual Authentication.

Kerberos Overview

The Keys

 K_{BS}

GOAL

The Keys

GOAL:

Kerberos Overview

Breaking Down Kerberos – Part 1

 K_{AT}

 K_{BA}

- $\{K_{BT}|ID_B|L\}$ is the ticket granting ticket (TGT)
- L is lifetime, T_A is the timestamp at A, N_B is a nonce

Breaking Down Kerberos – Part 2

- $\{K_{BT}|ID_B|L\}$ is the ticket granting ticket (TGT)
- $\{K_{BS}|ID_B|L\}$ is the service ticket (ST)
- K_{BT} is a session key between Bob and the TGS

 K_{AT}

 K_{TS}

Breaking Down Kerberos – Part 3

- $\{K_{BS}|ID_B|L\}$ is the service ticket (ST)
- K_{BS} is a session key between Bob and the Server

Kerberos Overview

Why does Kerberos help us?

- Timestamps included in previously insecure messages
- All tickets include a <u>Lifetime</u> (time at which they expire)

Asymmetric Crypto Authentication

Recall the Diffie-Hellman key exchange

Diffie-Hellman key exchange – Altogether

What's the Problem!

- Authentication!
- Need to verify the public keys!

Recall, Digital Signatures

The Key Management Problem

Q: How can Alice and Bob be sure they're talking to each other?

A: By having each other's verification key!

After

$$sig = Sign_{sk}((g^X, p, g))$$

$$(g^X, p, g)||sig$$

Verify_{vk}(sig, (g^X, p, g))?

The Key Management Problem

Q: How can Alice and Bob be sure they're talking to each other?

A: By having each other's verification key!

Q: But how do they get the keys...

The Key Management Problem...Solutions?

Q: But how do they get the keys...

A: Know it personally (manual keying e.g., SSH)

A: Trust a friend (web of trust e.g, PGP)

A: Trust some third party to tell them (CAs, e.g., TLS/SSL)

Certificate Authorities (CAs)

- A CA is a trusted third party who keeps a directory of people's (and organizations') verification keys
- Alice generates a (s_k^A, v_k^A) key pair, and sends the verification key and personal information, both signed with Alice's signature key, to the CA
- The CA ensures that the personal information and Alice's signature are correct
- The CA generates a certificate consisting of Alice's personal information, as well
 as her verification key. The entire certificate is signed with the CA's signature key

Certificate Authorities

- Everyone is assumed to have a copy of the CA's verification key (v_k^{CA}) , so they can verify the signature on the certificate
- There can be multiple levels of certificate authorities; level n CA issues certificates for level n+1 CAs – Public-key infrastructure (PKI)
- Need to have only verification key of root CA to verify the certificate chain

Chain of Certificates

Alice sends Bob the following certificate to prove her identity. Bob can follow the chain of certificates to validate Alice's identity.

CAs on the web

- Root verification keys installed on browser
- https://letsencrypt.org
 changed the game by
 offering free certificates

Examples

mathsisfun.com		WE1	GTS Root R4 (built-in root)	mathsisfun.com		WE1	GTS Root R4 (built-in root)	
Subject Name				Subject Name				
Common Name				_	ation Google Trust Services			
Issuer Name								
Country				Common Name	WE1			
-	Google Trust Services			Issuer Name				
Common Name	Validity Not Before Not After 2025-07-30, 7:52:55 a.m. (Eastern Daylight Saving Time) 2025-10-28, 8:52:53 a.m. (Eastern Daylight Saving Time)				Country US			
				•	ation Google Trust Services LLC			
				_	mmon Name GTS Root R4			
					<u> </u>			
Not After	2025- 10-28, 8:52:53 a.m. (Eastern Daylight Saving Time)		Validity					
Subject Alt Names				Not Before	2023-12-13, 4:00:00 a.m.	(Eastern Daylight Saving Time)		
•	DNS Name mathsisfun.com The mathsisfun.com mathsisfun.com			Not After	Not After 2029-02-20, 9:00:00 a.m. (Eastern Daylight Saving Time)			
DNS Name								
				Public Key Info				
Public Key Info	Elliptic Curve			_	Algorithm Elliptic Curve Key size 256 bits			
				-				
-	size 256 bits urve P-256				Curve P-256			
	P-256 04:F6:6B:39:B7:11:A8:E5:5C:FA:53:99:30:83:99:DF:F8:1B:28:B0:0D:E2:42:BE:6A:0D:81:79:42:C5:49:22:29:11:DE:79:E4:6D:27:51:AC			Public Value	04:6F:CD:3A:FE:67:57:47:4	C:21:03:85:40:C2:47:5D:BB:58:47:0F:40:C1:5C:	17:85:C6:19:37:E7:D5:7C:ED:86:4B:9B:81:D9:D7:1A:13:A	
				Miscellaneous				
Miscellaneous	PEM (cert), PEM (chain) 11:64:F9:2F:D6:45:ED:26:0D:BE:07:C9:62:C8:D1:63 ECDSA with SHA-256			Download	vnload PEM (cert), PEM (chain) umber 7F:F3:19:77:97:2C:22:4A:76:15:5D:13:86:D6:85:E3 orithm ECDSA with SHA-384			
				Serial Number				
				Signature Algorithm				
Version				Version	Version 3			
Fingerprints				Fingerprints				
SHA-256	82:B4:43:E1:42:0C:CB:A7:91:E7:3B:4E:FC:37:7A:23:57:AC:BB:7C:15:55:5E:55:7E:1A:76:F4:3B:4F:A7:C8		SHA-256	256 1D:FC:16:05:FB:AD:35:8D:8B:C8:44:F7:6D:15:20:3F:AC:9C:A5:C1:A7:9F:D4:85:7F:FA:F2:86:4F:BE:BF:96 A-1 10:8F:BF:79:4E:18:EC:53:47:A4:14:E4:37:0C:C4:50:6C:29:7A:B2				
SHA-1	A7:EC:D3:66:E1:26:2B:5D:B9:6B:9C:E3:C3:9A:3B:30:C3:8F:58:BD						SHA-1	

DNSSEC

What is DNS?

- The internet uses IP addresses to determine where to send messages
- IP addresses are difficult for people to remember!
- The Domain Name System is responsible to translating something easy for a human to remember into IP addresses

example.com -> 93.184.216.34

DNS is broken up into zones

Domain Name System (DNS) - dig command

```
<<>> DiG 9.16.15 <<>> crysp.uwaterloo.ca
  global options: +cmd
  Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34154
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
 EDNS: version: 0, flags:; udp: 1280
;; QUESTION SECTION:
;crysp.uwaterloo.ca.
;; ANSWER SECTION:
crysp.uwaterloo.ca.
                       4552
                                ΙN
                                        Α
                                                129.97.167.73
;; Query time: 0 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
  WHEN: Wed May 19 15:10:46 EDT 2021
  MSG SIZE rcvd: 63
```

dig crysp.uwaterloo.ca

Securing DNS

Use **digital signatures** to make sure a correct and unmodified message is received from the correct entity!

- New records added to DNSSEC signed zone
- Record sets (RRSets) are signed, instead of individual records
- Have two keys:
 - Key Signing Key (KSK): used for signing a zone's verification KSK and ZSK, kept in trusted hardware, hard to change, results in long signatures
 - Zone Signing Key (ZSK): used for signing a zone's RRSets, changed more often, results in short signatures

The verification process

- Light blue: Because of our trust anchor, we trust the KSK of the root (1). The root's KSK signs its ZSK, so now we trust the root's ZSK (2-3).
- Dark blue: We trust the root's ZSK. The root's ZSK signs .edu's KSK (4-5), so now we trust .edu's KSK.
- **Light green:** We trust the .edu's KSK (6). .edu's KSK signs .edu's ZSK, so now we trust .edu's ZSK (7-8).
- Dark green: We trust .edu's ZSK. .edu's ZSK signs berkeley.edu's KSK (9-10), so now we trust berkeley.edu's KSK.
- Light orange: We trust the berkeley.edu's KSK (11). berkeley.edu's KSK signs berkeley.edu's ZSK, so now we trust berkeley.edu's ZSK (12-13).
- **Dark orange:** We trust berkeley.edu's ZSK. berkeley.edu's ZSK signs the final answer record (14-15), so now we trust the final answer.

https://textbook.cs161.org/network/dnssec.html

How do we maintain key integrity?

Construct a chain of trust!

- The root verification KSK must be manually configurated on the machine making the request
- When the root **ZSK** is queried use the trust anchor to verify key and its signature (https://www.cloudflare.com/learning/dns/dnssec/root-signing-ceremony/)
- Each zone's parent zone contains a "Delegate signer" (DS)
 record, which is used to verify the zone's KSK
 - Essentially, a hash of KSK

Who's involved?

DNSSEC Root Signing Ceremony

- For signing the root DNS public keying information
 - There are two geographically distinct locations that safeguard the root key-signing key: **El Segundo, CA** and **Culpeper, VA**

