CS489/689 Privacy, Cryptography, Network and Data Security

Confidentiality

Today's Lecture - Confidentiality

- Traffic snooping
 - Tools and information we can collect
 - Solution is encryption

• What about the data encryption can not protect?

• Problems and solutions

Confidentiality Goals

- Two parties: Alice and Bob
- They want to communicate securely over a (open) network
- There is one adversary: Eve on the network link
 - Can read traffic on the network
- Alice and Bob want
 - Confidentiality of their messages

Our Model

Secure Channel for Authentication Setup

Easy case

- Wiretap
 - Broadcast networks
 - Wired/Wireless
 - Router/Host-based

• What does the adversary see?

- Data Link Layer Information
- IP Layer Information
- TCP Layer Information
- Application Layer Information

Traffic Analysis

Easy attack surface:

 Mallory has access to one of the many hops traffic takes on the internet

Communication media (WiFi)

• WiFi

- Can be easily intercepted by anyone with a
- WiFi-capable (mobile) device
 - Don't need additional hardware, which would cause suspicion
- Maybe from kilometers away using a directed antenna
- WiFi also raises other security problems
 - Physical barriers (walls) help against random devices being connected to a wired network, but are (nearly) useless in case of wireless network

Communication media

- Copper cable
 - Inductance allows a physically close attacker to eavesdrop without making physical contact
 - Cutting cable and splicing in secondary cable is another option
- Optical fiber
 - No inductance, and signal loss by splicing is likely detectable
- Microwave/satellite communication
 - Signal path at receiver tends to be wide, so attacker close to receiver can eavesdrop
- All these attacks are feasible in practice, but require physical expenses/effort

Traffic Analysis

- TCP/IP has each packet include unique addresses for the packet's sender and receiver end nodes, which makes traffic analysis easy
- The attacker simply needs to sniff packets to determine what is going where and when.
 - Can be sensitive info such as two CEOs talking or a whistle blower.
- tcpdump is a text-based traffic analysis tool

Tcpdump (1 of 3)

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options [nop,nop,TS val 117964079 ecr 816509256], length 372

- 14:47:26.566195 the timestamp of the received packet
- IP is the network layer protocol (IPv4)
- 192.168.2.2.22 is the source IP address and port
- 192.168.1.1 is the destination IP address and port

Tcpdump (2 of 3)

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options [nop,nop,TS val 117964079 ecr 816509256], length 372

• TCP Flag (Flags [P.]) fields include:

Value	Flag Type	Description
S	SYN	Start Connection
F	FIN	End (Finish) Connection
Р	PUSH	Push data
R	RST	Reset connection
	ACK	Acknowledgement

Tcpdump (3of 3)

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, options [nop,nop,TS val 117964079 ecr 816509256], length 372

- seq 196:568 is the sequence number of the data contained in the packet (196 bytes to 568 bytes)
- ack 1 is the ack number, which is 1 (sender) or the next expected byte (receiver)
- win 309 is the number of bytes available in the receiving buffer
- options [nop,nop,TS val 117964079 ecr 816509256], are the TCP options
- length 372 is the length, in bytes, of the payload data (the difference between the first and last byte in the sequence number)

Tcpdump activity – if time at the end

- Launch the Labtainer VM
- In the terminal type: **labtainer telnet** and hit enter
- Open the lab manual
- Complete the lab
- Run **stoplab** to finish

Wireshark

Source: Miti Mazmudar

Network layers and encapsulation

Figure 10.10: Network protocol stack (TCP/IP model) and encapsulation. In the sevenlayer OSI model, between Application (7) and Transport are Presentation and Session layers, and Link is Data Link, above Physical (1). Wi-Fi denotes IEEE 802.11 wireless.

Wireshark

			chrissanders-http_google.pcapng	×
File <u>E</u> dit <u>V</u> iew <u>Go</u> <u>Capture Analyze</u> <u>S</u> tatistics Telephony <u>W</u> ireless <u>T</u> ools <u>H</u> elp				
🔺 🔳 🖉 💿 🛄 🛙	` 🖉 📀 🙎 🖉	* K % I I I D		
Apply a display filter <	<ctrl-></ctrl->			•
No. Time	Source	Destination	Protocol Length Info	
- 10.00000 20.030107 30.030182 40.030248 50.079026 60.101202 70.101465 80.101495 90.102282 100.102350 110.102364 - 120.134395	172.16.16.128 74.125.95.104 172.16.16.128 172.16.16.128 174.125.95.104 74.125.95.104 74.125.95.104 172.16.16.128 74.125.95.104 74.125.95.104 172.16.16.128 74.125.95.104	74.125.95.104 172.16.16.128 74.125.95.104 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128 172.16.16.128	TCP 661606 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1 TCP 6680 1606 [SYN, ACK] Seq=0 Ack=1 Win=5720 Len=0 MSS=1406 SACK_PERM=1 WS=64 TCP 541606 80 [ACK] Seq=1 Ack=1 Win=16872 Len=0 HTTP 6816ET / HTTP/1.1 TCP 6080 1606 [ACK] Seq=1 Ack=628 Win=6976 Len=0 TCP 146080 1606 [ACK] Seq=1 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 146080 1606 [ACK] Seq=1407 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 541606 80 [ACK] Seq=1407 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 541606 80 [ACK] Seq=213 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 541606 80 [ACK] Seq=213 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 541606 80 [ACK] Seq=213 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 146080 1606 [ACK] Seq=213 Ack=628 Win=6976 Len=1406 [TCP segment of a reassembled PDU] TCP 15680 1606 [ACK] Seq=2219 Ack=628 Win=6976 Len=1402 [TCP segment of a reassembled PDU] TCP 15680 1606 [ACK] Seq=628 Ack=4321 Win=16872 Len=0 HTTP 591 HTTP/1.1 200 0K (text/html)	
<pre>> Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface unknown, id 0 > Ethernet II, Src: IntelCor_5b:7d:4a (00:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (00:05:5d:21:99:4c) > Internet Protocol Version 4, Src: 172.16.16.128, Dst: 74.125.95.104 > Transmission Control Protocol, Src Port: 1606, Dst Port: 80, Seq: 0, Len: 0</pre>				
00000 00 05 5d 21 9 0010 00 34 40 f2 2 0020 5f 68 06 66 0 0030 20 00 0b 30 6 0040 04 02 02 00 00 30 0	99 4c 00 21 6a 5b 7c 10 00 80 06 53 5c ac 10 50 7c 23 5a b7 06 10 60 62 04 65 b4 61	I 4a 08 00 45 00 : 10 10 80 4a 7d 0 60 60 60 80 02 _h 1 63 63 62 61 01	··]!·L·! j[}J··E· -4@ @ ··· S\····J} _h·F·P # Z······	

From Chris Sanders' PCAP file collection at https://github.com/chrissanders/packets/ (http_google.pcapng)

1. Find total number of packets and bytes captured in a .pcap file.

- Find total number of packets and bytes captured in a .pcap file.
- 2. Isolate packets by the upper-most *protocol*.
 - a. Sort by protocol field.
 - b. Apply a display filter: protocol.type_of_message

- Find total number of packets and bytes captured in a .pcap file.
- 2. Isolate packets by the upper-most *protocol*.
 - a. Sort by protocol field.
 - b. Apply a display filter
- 3. Encapsulation in action.
- 4. How to find what type of payload follows a given header.

- 1. Find total number of packets and bytes captured in a .pcap file.
- 2. Isolate packets by the upper-most protocol.
 - a. Sort by protocol field.
 - b. Apply a display filter:
- 3. Encapsulation in action.
- 4. How to find what type of payload follows a given header.
- 5. Parsing the payload.
- 6. Addresses ---- IP and MAC addresses.
- 7. TCP flags --- SYN and ACK flags.

Cheatsheet

- Wireshark cheatsheets online such as:
- <u>https://www.comparitech.com/net-admin/wireshark-</u> <u>cheat-sheet/</u>

TELNET protocol

- Old school, insecure SSH.
 - Remote terminal access to other machines
- All commands are sent in plaintext.
- Not really used these days.
- To connect to a machine
 - telnet <ip>

Note on A2

- Wireshark displays the relative TCP sequence number, by default
 - which equals to the actual sequence number minus the initial sequence number

To see the actual sequence number in a packet:

right click the TCP section of the Wireshark output, and select "Protocol Preference". In the popup window, uncheck the "Relative Sequence Number" option.

Wireshark activity

- Launch the Labtainer VM
- In the terminal type: **labtainer wireshark-intro** and hit enter
- Open the lab manual
- Complete the lab and upload the .lab file to learn!
- Remember, you can use **checkwork** to see if you completed the task
- stoplab to exit the lab
- Student manual is on learn

Easy case remedy

- Encrypt the message
 - Previous/Upcoming lectures

• Remaining issues

- Information that cannot be (easily) encrypted
 - Timing of a message
 - Length of a message
 - Meta data

Timing of messages

- Consider two network links: L₁ and L₂
 - E.g. after source and before destination
 - E.g. before and after router
- There is a message m₁ on L₁ sent at t₁ to L₂
- There is a message m₂ on L₂ at t₂
- If Alice and Bob are communicating over L₁ and L₂
 - And $t_2 > t_1$ and $t_2 < t_1 + \varepsilon$
 - Then $Pr[m_1 = m_2] > Pr[m_1 = m_i]$ for "most" m_i

Length of a message

- The length of a message cannot be encrypted, only padded
- Padding can be wasteful
- Message Length distribution differs:
 - Data Link Layer
 - IP Layer
 - Application Layer

A very old statistic

Figure 2: Distribution of content lengths of web pages.

Source: Davison, 2000.

Timing and Length

- Timing and Length can be combined
- Message length rarely changes across the network
 - Exception: Fragmentation
- Hence when matching messages based on time, one can consider only messages of the same length

Metadata

- Who is communicating with whom
- Difficult to hide, not easy to encrypt
 - When encrypting end-to-end, how does a router forward?
 - When encrypting to the next hop, what if the adversary controls the router?
- Default
 - At its network layer, addresses are unencrypted
 - E.g. TLS does not encrypt IP addresses or TCP port numbers

Side-Channels

- Timing side-channels
 - The runtime of code depends on sensitive data

• Storage side-channels

- Storage is not properly cleaned and then shared
 - Cache side-channels, Cold boot attack

• Hardware side-channels

- Power, electro-magnetic waves, sound
- Fault injection
 - Leakage from error behavior

Private Database Systems Example

Timing Attack

Error Messages

```
WHERE ssn = '123-45-6789'
AND disease = 'condition'
AND SQRT(age-1000) = 1
```

Source: <u>https://people.mpi-sws.org/~francis/side-channel.pdf</u>

Classic Timing Side-Channel Example

- Square-and-Multiply Algorithm for Modular Exponentiation
- Input: x, e, p
- Output: x^e mod p
- Note* for decryption e is often a secret key

```
1: s = x, r = x

2: for each bit b of the binary representation of e (skip first bit)

3: s = s^2 \pmod{p}

4: if b = 1

5: s = s * r \pmod{p} The execution of this line depends on e

6: return s
```

How to exploit this side channel

• Assume (mod p) is implemented as

1: If r > p-1

- 2: r = r p
- We give some example inputs x for decryption
- For each bit of e, we choose many values for x
 - Some such that we expect the mod to require computation, some not.
- If the values take the same time likely the bit of e was 0
- Once we know the first bit, repeat.
- For more details: <u>https://www.cs.sjsu.edu/faculty/stamp/students/article.html</u>

Over networks

- Timing side channels can be exploited over networks
- Recovery of private key in SSL over LAN [Brumley and Boneh, 2003]
 - <u>http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf</u>
- Could factor RSA by taking into consideration optimizations in the decryption function!
 - Guess bit by bit in a binary search, took a long time if they were close, shorter if not.

SSH Timing Attack

- Ssh would send each keystroke immediately in a different packet
- Based on time between packets can reconstruct data
- https://people.eecs.berkeley.edu/~daw/pap ers/ssh-use01.pdf

Histogram of the latency of character pairs

To summarize

- Many, many examples of side channels in practice
- Very hard to foresee them all
- Important to keep up to date with latest attacks
- Better, collaborate!

Mitigating Timing Side Channels

• Constant-time code

- Can be difficult
- No branches on sensitive data
- Called oblivious algorithms

Randomization

- Choose random number R
- Compute S = ModExp(Rx, e, p)
- Compute T = ModExp(R, e, p)
- Compute S/T (mod p)

Example: Oblivious Sorting Algorithm

Conducts the exact same comparisons regardless of the data.

Next class, Applications!