
CS489/689
 Privacy, Cryptography,

Network and Data Security

Winter 2023, Tuesday/Thursday 8:30-9:50am

Secure Messaging

CS489 Winter 2023

Hello
● I’m Vecna
● My pronouns are they/them
● I love crypto and am excited to talk about it :)

2

CS489 Winter 2023

Today
● Secure Messaging Goals
● PGP

– PGP Keys
– Problems with PGP

● OTR
● Signal

3

Secure Messaging Goals

4

CS489 Winter 2023

Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?

5

CS489 Winter 2023

Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?

6

CS489 Winter 2023

Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?

7

Hi,
Bob!

What’s
your

password?

Well
that

doesn’t
seem
right...

CS489 Winter 2023

Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?

8

Bob, this is Alice.
I need your
password.

Hey,
you’re

not
Alice!

CS489 Winter 2023

Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?

9

Carol is
annoying.

Carol is
annoying.

Look what
Alice said
about you!

OMG she
really said

that??!

Pretty Good Privacy

10

CS489 Winter 2023

PGP
● Public-key (actually hybrid) encryption tool
● Used for encrypted email (and other uses)
● Originally made by Phil Zimmermann in 1991

– He got in a lot of trouble for it, since cryptography was highly
controlled at the time
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

11

https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

CS489 Winter 2023

PGP
● PGP: Pretty Good Privacy (original program)

● OpenPGP: Open standard (RFC 4880)

● GPG/GnuPG: GNU Privacy Guard (a popular OpenPGP program)

● Many people just say “PGP” for all of the above

● Today, there are many programs which implement the OpenPGP
standard
– GNU Privacy Guard (gpg), Thunderbird, Evolution,

Mailvelope, OpenKeychain, PGPro, Delta Chat, Proton Mail, ...
12

CS489 Winter 2023

PGP

13

Message

CS489 Winter 2023

PGP

14

Message

Message hhash() =

CS489 Winter 2023

PGP

15

Message

Message hhash() =

h sigsign() =,

CS489 Winter 2023

PGP

16

Messagesig

CS489 Winter 2023

PGP

17

Messagesig

SK = secret key (random)

CS489 Winter 2023

PGP

18

Messagesig

SK = secret key (random)

SKMessagesigenc(,)
(symmetric encryption)

CS489 Winter 2023

PGP

19

C1

SK

=
Messagesigenc(,)

(symmetric encryption)

CS489 Winter 2023

PGP

20

C1

SK

CS489 Winter 2023

PGP

21

C1

SK =enc(,)
(public key encryption)

C2

CS489 Winter 2023

PGP

22

C1

SK =enc(,)

C2

C1

C2

CS489 Winter 2023

PGP

23

C1C2

CS489 Winter 2023

PGP

24

C1C2

CS489 Winter 2023

PGP

25

C1C2

SK=dec(,)
(public key crypto)

C2

CS489 Winter 2023

PGP

26

C1C2

SK=dec(,)
(public key crypto)

C2

C1 SK

CS489 Winter 2023

PGP

27

C1 SK

CS489 Winter 2023

PGP

28

C1 SKdec(,)
(symmetric encryption)

C1 SK

CS489 Winter 2023

PGP

29

C1 SK

=
Messagesig

dec(,)
(symmetric encryption)

C1 SK

CS489 Winter 2023

PGP

30

Messagesig

CS489 Winter 2023

PGP

31

Messagesigverify(,),

Messagesig

CS489 Winter 2023

Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?

32

CS489 Winter 2023

Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?

33

C1C2

CS489 Winter 2023

Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?

34

C1C2

sig

CS489 Winter 2023

Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?

35

C1C2

sig

sig

CS489 Winter 2023

Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?

36

C1C2

sig

sig

sig

CS489 Winter 2023

In-Class Activity
● Alice sends a message to Bob
● Bob decrypts it, re-encrypts it for Carol, and sends it to Carol
● Does Carol believe that Alice intended this message for her? (Assume

Carol ONLY relies on the cryptography.)
● If so, how can Alice prevent this attack without changing the

protocol?

● Submit to Learn:
– Ideas for how to prevent this attack

37

C1C2

C1C3

C3 SK ,= enc()

The deal is off! C1C2

PGP Keys

38

CS489 Winter 2023

PGP Keys
Each person has at least 2 keypairs:

● One for signatures
– Public key used to verify
– Private key used to sign

39

● One for encryption
– Public key used to encrypt
– Private key used to

decrypt

CS489 Winter 2023

Obtaining Keys
● How does Alice get Bob’s public key?

– Download from Bob’s website
– Download from a keyserver
– Bob sends it via email
– Other channel

● How does Alice know it’s Bob’s authentic key?

40

CS489 Winter 2023

Verifying Public Keys
● Alice and Bob would rather not

have to trust CAs
● They can compare keys (in-

person, through a secure
channel, etc.)

● But keys are big and unwieldy!

41

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGPUBx4BEADa3JsMGX9GKriACgI1vvokxOc8ltbHSl7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNJ6mQuzgUBJ7T54ed8pEf1rtMWL+7OoMNRNaFX6vosT5
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmwwWVcVMBBGfrP3pR93dKWbET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPxEP8JoTCn0xAv4ugjM6VE6xxb/Cj15I/5PsIhx
76LPqSsPUwRzKQ9stP8YjTX+Ol91+GNqLhtdmy5yXPD9F/NO+fhQVwvUZ0oJ544a
KeFDQ/G9GKJfJzTIhvQn9BdkZpff5Kjzun0+4HNk0msB5S8BItdPpuc3qs+rkL6W
aAnXUS9j7mB3Gf58fjJu+1gMP5dXG16nduB/W3SuH2/XSympjSm6PkuNcSMI0XEN
FCUH/aoRjZQV/Xi5laQHg+cbEtLRACdkaAHNNjxGDXkzjbuYzjtv3hPMvNiBF897
PvihCO2w4pXBQ7rpxzn6OvU1iawfrmdZQA2tRZOSN2Cpti3KJ0OzKzfGT0VFRaVq
NfEy26ZtEPAZjhgBJDo8SLxJkshrMLhNnIobR/BLng1v/xSrjPTAVE/sK032GfqZ
uynR6zO+rVcwAKz3g/aK5kknPG/Or4KdEhsmOKuPgATSduGo96t299dRqQARAQAB
tBlBbGljZSA8YWxpY2VAZXhhbXBsZS5jb20+iQJXBBMBCABBFiEE7yLlFuqcQ7em
fk+0HNJWA8FMDQUFAmPUBx4CGwMFCQAnjQAFCwkIBwICIgIGFQoJCAsCBBYCAwEC
HgcCF4AACgkQHNJWA8FMDQV3LQ/8CnyOARm+seUp4ShUo5xqIlEMPG6F+VbBE45G
XGiEr/PeMbdTJtkrO0Qzsx0/tVYKJGiLE5D9W/1TaqzAkmnsyvhF0wp3XZQGeqlt
U9mPpBQkzAfzwW21++3CK48WcCtb5mRh+O9Z7jwF0aEYDOKxO2og6a9132kUp66n
CctBy+h6ucBVMMTZS0jFr5YHFZJKa/IyQ6ODgkv+fIwfPZm2N93jHejIdrKSVtzi
Yb5tiXqGDwoljSlxhlVA6pX03CtENKqrpDPS0tM70AdmVSmjQgn7AR3UtBJn4JMb
iC+/yKD2JIGLS1R5RKvovJ1BBQHU7FATcrKFL4SORQ5o5iaEteMsFLLbBMomrs23
oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4lhY/WpZGDAIayA9v9TWMUMzxDjMwmfeK+j
OlcJwj0BO6GbMBBNlr76ae+zWpJeqZrjv7S7H+h0bOi8n0PBKrTxbGLM7wg/r9ii
qEm4pHT5P0i6WBr3PYu/PoyEnPlKonxSv9kOJXGyjDcdV6vjBA6c37mFFs0Ffk8A
s/x3V85+0YK34RbDVDqm5+V42Lo5DP49KdBV1dp+O07nWRJDsOroFarbMcPCCWiJ
i0p4+r9nU9Hx8k6mjustyjZBgplmDhBnCo5hAaAytuOLTU3wKwmhq8ONCJhKYRXo
+88+0P65Ag0EY9QHHgEQAOFF4x8GKiSCjk5jUxL87s0nkm9OGxtpx8L4drn9rFtu
u6cP7XcOJ0ngxF4HufcL6vNfPMF5knU6ezXUgMvOseFVT30VC6uF39OrqOj26va/
LcCYzKaIWFLKyuBvtLDuPUdANhplQhH7s4FQIvTPUO+saCAqJDJtOsq/F/n+Gttz
DxNdPbsTC5oESkgfhyednT9gZpCsxc9Gd3mDyDDkMGyWaEf4bWjdjX2NEj6TuezY
ijyqtYBHKf9eNSmPY9SEbV9HIMLgZa/R4mrtZ+AMya2lTuyBXi6oo+oElS71cefD
BFajeOKH0MHtPKQvkagyetI6I5Ta+6Ekqoy5Oc90s85UdUIZZkCaZ5zA8vrkhLNh
KvJ90Uf5IVuoe+Ci6wpvZZQhpIumX+eRMSX1U4hBahB5z+fLe3YUCn5rDwEFmSG2
EAMRDF5QG7L5dDMS6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghJLfm79Dl
O9MSYRdOFPVIIumqWIiv862zXOr8dqwnIKB9uDWMHGnEkFtlseC0WrsbRaeMHDFc
7A/bNCocDrA8x18GieIkVTMhuFMc77WiN43rjYSLr17W2V0KqIN0NHYCSsGOhC4z
0aJcDDJLvdkt4AriXpmhSmMOWZsvblrT9i5voY8GIEbltQ5xppOUGZ+3vfq0UwER
ABEBAAGJAjwEGAEIACYWIQTvIuUW6pxDt6Z+T7Qc0lYDwUwNBQUCY9QHHgIbDAUJ
ACeNAAAKCRAc0lYDwUwNBR0JEACAJ8LSN8YlnrKq/9JqJy6qkoLTr0r5Yvz7Fm/F
KRP7vDicOiKGH3NwsrBE3+r7UB8MWWjOrdtWLd7a5AaswEtTSXKHrpzSC/s8kn1m
POtR/vSaIlfb6qjXAQrK0ZhWhoD4YsRBY57Xe9EhOup5y6eUeFbGMS80HvLrApju
IUvKJNdpD+21U0Ohu16JKAuIhyKFfpXVtjH3lxnagBl9UOlLG0h4y9aMa4RwAmY0
Z4h9StZcQhMOoKeL0dovHoS5BvyDIa91TpennGhM+AeEI1VPdRfpaa1O4srGMUQX
kjtnHNdMVHEzMSy5vwygJEIXMBpkFqZF/CCOhqvqM+RQgh0sTATa6ixVRNyml241
PqMbZn7JYMZ0flbMPtD2qd9lT6rKfXUzLtRQswhXpcVi+8Mgsb53JyKQlpigIdu0
z+VOq7ObHuwwPCi1ohJ8Q3SfaKIynfhACVOlDr8l89rZ3mVbTiLMvKKyKYEijpB/
idbN3QtUuPYlnALlcN4883DwzMO5ZQ8CPc3/6yOQOUytTUpNo143XcQ//OwC3Tmm
YsMnvZVhlY6MoiQ7cXDJvwRUOTU4IlG6qkwmbeEO7zatGHXv/agSxpRuLzIhZHem
fI11i44fYII2ZxWWVr2vQ6T9oELTyCjJTeGxaot0thOxxQ3pdXavxuYdG84zZyMd
i96dvg==
=tJAW
-----END PGP PUBLIC KEY BLOCK-----

CS489 Winter 2023

Fingerprints
● Hash the key to get the key fingerprint
● Instead compare the fingerprints
● Much shorter:

– EF22 E516 EA9C 43B7 A67E 4FB4 1CD2 5603 C14C 0D05

● Remember: With a good hash function, no two key fingerprints
should collide

● (What if you only use part of the fingerprint?)

42

CS489 Winter 2023

Verifying Public Keys
● Alice and Bob have verified each other. Great!
● But verifying is hard

– Inconvenient if possible at all
– Bob and Carol may not know each other well

● What if Bob and Carol can’t verify each other?

● (Would it help if Carol has verified Alice?)

43

CS489 Winter 2023

Signing Keys
● Once Alice has verified Bob’s key, she uses her certification key to

sign Bob’s key
– (By default, certification key == signature key)

● This is effectively the same as Alice signing a message saying “I
have verified that the key with [Bob’s fingerprint] belongs to Bob”

● Bob can attach Alice’s signature to the key he has published
somewhere

● (Are there any issues with doing this?)

44

CS489 Winter 2023

Web of Trust
● Now Alice can act as an introducer for Bob
● If Carol can’t verify Bob herself, but she has already verified

Alice (and she trusts Alice to introduce other people):
– She downloads Bob’s key
– She sees Alice’s signature on it
– She is able to use Bob’s key without verifying it herself

● This is called the Web of Trust

45

CS489 Winter 2023

Awesome!
● If Alice and Bob want to have a private conversation by

email:
– They create their keys
– They exchange their keys (possibly relying on the WoT)
– They send signed and encrypted messages back and

forth

● Pretty Good, right?

46

Problems with PGP

47

CS489 Winter 2023

Problem #1: Usability
● Hard to use

● Low adoption

48

CS489 Winter 2023

Problem #1: Usability
● https://moxie.org/2015/02/24/gpg-and-me.html

– “When I receive a GPG encrypted
email from a stranger, though, I
immediately get the feeling that I
don’t want to read it. [...] Eventually I
realized that when I receive a GPG
encrypted email, it simply means that
the email was written by someone
who would voluntarily use GPG.”

49

https://xkcd.com/1181/

https://moxie.org/2015/02/24/gpg-and-me.html
https://xkcd.com/1181/

CS489 Winter 2023

Problem #1: Usability
● Usability is a security parameter

– If it’s hard to use, people will not use it
– If it’s hard to use properly, people will use it in insecure

ways

50

CS489 Winter 2023

Problem #2: Lack of Forward Secrecy
● Alice sends many encrypted messages to Bob

– Possibly over the course of months, years

● Suppose Eve saves all of them
– Not so unreasonable if Eve runs the email server

● What if Eve steals Bob’s private key?
– She can decrypt all messages sent to him. Past, present,

and future...

51

CS489 Winter 2023

Problem #3: Non-repudiability
● Why non-repudiation?
● Good for contracts, not private emails
● Casual conversations are “off-the-record”

– Alice and Bob talk in private
– No one else can hear
– No one else knows what they say
– No one can prove what was said

● Not even Alice or Bob
52

Alice said you’re
annoying.

Oh yeah?
Prove it!

Off-The-Record (OTR) Messaging

53

CS489 Winter 2023

OTR
● Messaging (XMPP) extension for encryption with

– Forward secrecy
– Post-compromise security
– Deniability

54

CS489 Winter 2023

Goals of Off-The-Record Messaging
● (Perfect) Forward secrecy: a key compromise does not reveal past

communication
● Post-compromise security Backward secrecy Future secrecy Self-healing: a key

compromise does not reveal future communication
● Repudiation (deniable authentication): authenticated communication, but a

participant cannot prove to a third party that another participant said something

55

CS489 Winter 2023

Goals of Off-The-Record Messaging
● (Perfect) Forward secrecy: a key compromise does not reveal past

communication
● Post-compromise security Backward secrecy Future secrecy Self-healing: a

key compromise does not reveal future communication
● Repudiation (deniable authentication): authenticated communication, but a

participant cannot prove to a third party that another participant said something

56

CS489 Winter 2023

Goals of Off-The-Record Messaging

57

● (Perfect) Forward secrecy: a key compromise does not reveal past
communication

● Post-compromise security Backward secrecy Future secrecy Self-healing: a key
compromise does not reveal future communication

● Repudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said
something

CS489 Winter 2023

Goals of Off-The-Record Messaging
● (Perfect) Forward secrecy: a key compromise does not reveal past

communication
● Post-compromise security Backward secrecy Future secrecy Self-healing: a key

compromise does not reveal future communication
● Repudiation (deniable authentication): authenticated communication, but a

participant cannot prove to a third party that another participant said something

58

CS489 Winter 2023

Forward Secrecy
● Forward secrecy: Key compromise doesn’t reveal past

messages
● How can we accomplish that?
● Change the key!
● Old keys must be securely deleted

59

1

2

3

CS489 Winter 2023

Forward Secrecy (one approach)
● Recall Diffie-Hellman...

60

CS489 Winter 2023

Forward Secrecy (one approach)
● Alice and Bob have ephemeral (temporary) “sessions”
● Alice produces ephemeral DH keys (a, ga)

– She signs the public key with her long-term key A
● Bob produces ephemeral DH keys (b, gb)

– He signs the public key with his long-term key B

● Alice and Bob use shared secret gab

● They make new keys later

61

CS489 Winter 2023

Forward Secrecy (one approach)

62

● Alice and Bob talk on
Monday...

● Alice and Bob talk on
Tuesday...

Monday Tuesday

CS489 Winter 2023

Forward Secrecy (one approach)
● Eve can compromise a session but not everything
● Problems?

– Alice can’t start a session unless Bob is online
– Eve can still compromise a whole session
– We’ll see other ideas later

63

Tuesday

CS489 Winter 2023

Forward Secrecy in OTR
● What if we make the sessions as short as possible?
● What if new sessions don’t have to be negotiated

interactively?

64

CS489 Winter 2023

Forward Secrecy in OTR

65

CS489 Winter 2023

Forward Secrecy in OTR

66

CS489 Winter 2023

Forward Secrecy in OTR

67

CS489 Winter 2023

Forward Secrecy in OTR

68

● Alice and Bob automatically
create new sessions as they
reply to each other

● Also provides post-
compromise security

● Awesome! :)
● This is a “ratchet”: You can’t go

backwards

CS489 Winter 2023

Forward Secrecy in OTR

69

● One problem...
– Session keys only roll

forward when sender
changes

– What if Alice sends Bob
many messages in a row?

– (We’ll see Signal improve
upon this later)

CS489 Winter 2023

Deniable Authentication in OTR
● PGP uses signatures for authentication...
● ...but they also provide non-repudiability
● How can we get authentication without non-repudiability?

70

CS489 Winter 2023

Deniable Authentication in OTR
● PGP uses signatures for authentication...
● ...but they also provide non-repudiability
● How can we get authentication without non-repudiability?
● With a MAC!

– Alice and Bob similarly negotiate DH authentication key

71

CS489 Winter 2023

Recall...
● Why are MACs deniable?

● Only Alice and Bob know K

● Alice sends Bob a message MACed with K

● Bob knows it was Alice because:
– Only Alice or Bob could have produced this MAC
– Bob did not produce the MAC

● Why doesn’t this argument work for Carol?
72

Signal

73

CS489 Winter 2023

Signal
● Mobile app with companion desktop (Electron) client

– OTR was less mobile-friendly

● Encryption protocol based on OTR
– Double Ratchet Algorithm builds on OTR DH ratchet
– Deniability ideas from OTR

● Protocol also used in other apps like WhatsApp, OMEMO
extension for XMPP, etc.

74

CS489 Winter 2023

Double Ratchet Algorithm
● Uses two ratchets:

– KDF chain
– Diffie-Hellman sessions (like OTR)

● Originally called Axolotl ratchet for its “self-healing”
property (from the DH ratchet)

75

Illustration: ArmandoAre1

“Axolotl” is a Nahuatl word. (pronunciation)

Photo: th1098

https://pixabay.com/vectors/axolotl-animal-axolote-amphibians-5199181/
https://upload.wikimedia.org/wikipedia/commons/5/58/Axolotl.ogg
https://en.wikipedia.org/wiki/File:AxolotlBE.jpg

CS489 Winter 2023

Forward Secrecy (another approach)
● What if instead of session keys,

we had a new key for each
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve

compromises a key?
76

CS489 Winter 2023

Forward Secrecy (another approach)
● What if instead of session keys,

we had a new key for each
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve

compromises a key?
77

1

CS489 Winter 2023

Forward Secrecy (another approach)
● What if instead of session keys,

we had a new key for each
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve

compromises a key?
78

 H() =

1

1 2

CS489 Winter 2023

Forward Secrecy (another approach)
● What if instead of session keys,

we had a new key for each
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve

compromises a key?
79

 H() =

1

1 2

 H() =
2 3

CS489 Winter 2023

KDF Ratchet
● KDF = Key Derivation Function (think

hashing – it only goes one way)
● Outputs message key

– Used to encrypt a single message

● Outputs chain key
– Used to derive future keys

● Why separate chain & message keys?
– What if messages are out-of-order?

80

CS489 Winter 2023

DH Ratchet
● Like OTR
● Outputs Receiving and

Sending chain keys
– These are used for KDF

ratchet (previous slide)

81

CS489 Winter 2023

DH Ratchet

82

CS489 Winter 2023

DH Ratchet

83

CS489 Winter 2023

Brace Yourselves!!!
● We’re about to put the two ratchets together
● It’s going to be complicated
● But it will be okay

84

Photo: David J. Stang

Photo: ZeWrestler

https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_1zz.jpg
https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_at_Vancouver_Aquarium.jpg

CS489 Winter 2023

Double Ratchet Algorithm

85

● Alice -> Bob
● Alice and Bob do

DH and get Alice’s
sending
chain/Bob’s
receiving chain

● Alice derives a
key with her
sending chain

● Alice uses this
MA0 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

86

● Alice -> Bob
● Alice and Bob do

DH and get Alice’s
sending
chain/Bob’s
receiving chain

● Alice derives a
key with her
sending chain

● Alice uses this
MA0 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

87

● Alice -> Bob
● Alice and Bob do

DH and get Alice’s
sending
chain/Bob’s
receiving chain

● Alice derives a
key with her
sending chain

● Alice uses this
MA0 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

88

● Alice -> Bob
● Alice and Bob do

DH and get Alice’s
sending
chain/Bob’s
receiving chain

● Alice derives a
key with her
sending chain

● Alice uses this
MA0 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

89

● Alice -> Bob
(again)

● (no new DH until
Bob replies)

● Alice derives a
key with her
sending chain

● Alice uses this
MA1 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

90

● Alice -> Bob
(again)

● (no new DH until
Bob replies)

● Alice derives a
key with her
sending chain

● Alice uses this
MA1 key to
encrypt her
message for Bob

CS489 Winter 2023

Double Ratchet Algorithm

91

● Alice -> Bob
(again)

● (no new DH until
Bob replies)

● Alice derives a
key with her
sending chain

● Alice uses this
MA1 key to
encrypt her
message for Bob

CS489 Winter 2023 92

● Bob -> Alice
● Alice and Bob do DH

and get Alice’s
receiving chain/Bob’s
sending chain

● Alice derives a key with
her receiving chain

● Alice uses this MB0
key to decrypt her
message from Bob

CS489 Winter 2023 93

● Bob -> Alice
● Alice and Bob do DH

and get Alice’s
receiving chain/Bob’s
sending chain

● Alice derives a key with
her receiving chain

● Alice uses this MB0
key to decrypt her
message from Bob

CS489 Winter 2023 94

● Bob -> Alice
● Alice and Bob do DH

and get Alice’s
receiving chain/Bob’s
sending chain

● Alice derives a key with
her receiving chain

● Alice uses this MB0
key to decrypt her
message from Bob

CS489 Winter 2023 95

● Bob -> Alice
● Alice and Bob do DH

and get Alice’s
receiving chain/Bob’s
sending chain

● Alice derives a key with
her receiving chain

● Alice uses this MB0
key to decrypt her
message from Bob

CS489 Winter 2023

Let’s take a breath
● Here are some more pictures of axolotls

96

Photo: LeDameBucolique
Photo: LoKiLeCh

Photo: uthlas

https://en.wikipedia.org/wiki/File:Axolotl-2193331_1280.webp
https://en.wikipedia.org/wiki/File:Axolotl_ganz.jpg
https://pixabay.com/photos/axolotl-cute-weird-2412189/

CS489 Winter 2023

Deniability in Signal
● Alice and Bob use MACs (like in OTR)
● But what if they can make it even more deniable?

97

CS489 Winter 2023

Deniability in OTR
● DH(a,b) can only be created by Alice or Bob

– A: long-term (Alice)
– B: long-term (Bob)
– x: ephemeral (Alice)
– y: ephemeral (Bob)

98

gx gy
gxy

CS489 Winter 2023

Deniability in Signal: 3DH
● DH(A,y) || DH(x,B) || DH(x,y) can be created by anyone
● But if Alice knows x, only Bob could know y
● Why?

https://signal.org/blog/simplifying-otr-deniability/

99

gx gy

gA gB

gAy gBx

gxy

https://signal.org/blog/simplifying-otr-deniability/

CS489 Winter 2023

That’s more theoretical
● Signal actually uses a more complicated eXtended Triple

Diffie-Hellman (X3DH) key agreement protocol which
involves some signatures

● X3DH is useful for enabling asynchronous communication
– More mobile-friendly

● We won’t talk about it, but it’s well-documented here:
https://signal.org/docs/specifications/x3dh/

100

https://signal.org/docs/specifications/x3dh/

CS489 Winter 2023

Quick Recap
● PGP

– No forward secrecy
– Non-repudiable (not off-the-record)

● OTR
– Forward secrecy through DH ratchet :)
– Deniable :)

● Signal: Double Ratchet Algorithm
– DH ratchet provides forward secrecy and post-compromise security based on replies
– KDF ratchet provides only forward secrecy, but for every message
– Deniable :)

101

	CS489/689 Privacy, Cryptography, Network and Data Security
	Groups - Basically a set with specific properties
	Today
	What on earth are groups…
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

