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Hello
● I’m Vecna
● My pronouns are they/them
● I love crypto and am excited to talk about it :)
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Today
● Secure Messaging Goals
● PGP

– PGP Keys
– Problems with PGP

● OTR
● Signal

3



Secure Messaging Goals
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Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the 

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?
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Hi, 
Bob!

What’s 
your 

password?

Well 
that 

doesn’t 
seem 
right...
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Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the 

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?
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Bob, this is Alice. 
I need your 
password.

Hey, 
you’re 

not 
Alice!
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Secure Messaging Goals
● Confidentiality: Only Alice and Bob can read the message
● Integrity: Bob knows Mallory has not tampered with the 

message (and that it has not been corrupted)
● Authentication: Bob knows Alice wrote the message

– Non-repudiability?
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Carol is 
annoying.

Carol is 
annoying.

Look what 
Alice said 
about you!

OMG she 
really said 

that??!



Pretty Good Privacy
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PGP
● Public-key (actually hybrid) encryption tool
● Used for encrypted email (and other uses)
● Originally made by Phil Zimmermann in 1991

– He got in a lot of trouble for it, since cryptography was highly 
controlled at the time
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
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PGP
● PGP: Pretty Good Privacy (original program)

● OpenPGP: Open standard (RFC 4880)

● GPG/GnuPG: GNU Privacy Guard (a popular OpenPGP program)

● Many people just say “PGP” for all of the above

● Today, there are many programs which implement the OpenPGP 
standard
– GNU Privacy Guard (gpg), Thunderbird, Evolution, 

Mailvelope, OpenKeychain, PGPro, Delta Chat, Proton Mail, ...
12
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PGP
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PGP
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Message

Message hhash( ) =
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PGP
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Message

Message hhash( ) =

h sigsign( ) =,
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PGP
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Messagesig



CS489 Winter 2023 

PGP
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Messagesig

SK = secret key (random)
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PGP
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Messagesig

SK = secret key (random)

SKMessagesigenc( , )
(symmetric encryption)
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PGP
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C1

SK

=
Messagesigenc( , )

(symmetric encryption)



CS489 Winter 2023 

PGP
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C1
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PGP
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C1

SK =enc( , )
(public key encryption)

C2
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PGP
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C1

SK =enc( , )
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PGP
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C1C2
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PGP
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C1C2
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PGP

25

C1C2

SK=dec( , )
(public key crypto)

C2
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PGP
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C1C2

SK=dec( , )
(public key crypto)

C2

C1 SK
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PGP
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C1 SK
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PGP
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C1 SKdec( , )
(symmetric encryption)

C1 SK
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PGP
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C1 SK

=
Messagesig

dec( , )
(symmetric encryption)

C1 SK
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PGP
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Messagesig
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PGP
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Messagesigverify( , ),

Messagesig
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Encrypted Messaging Goals and PGP

● Confidentiality

● Integrity

● Authentication

– Non-repudiability?
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C1C2
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C1C2

sig
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C1C2

sig

sig

sig
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In-Class Activity
● Alice sends a message to Bob
● Bob decrypts it, re-encrypts it for Carol, and sends it to Carol
● Does Carol believe that Alice intended this message for her? (Assume 

Carol ONLY relies on the cryptography.)
● If so, how can Alice prevent this attack without changing the 

protocol?

● Submit to Learn:
– Ideas for how to prevent this attack
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C1C2

C1C3

C3 SK ,= enc( )

The deal is off! C1C2



PGP Keys
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PGP Keys
Each person has at least 2 keypairs:

● One for signatures
– Public key used to verify
– Private key used to sign

39

● One for encryption
– Public key used to encrypt
– Private key used to 

decrypt
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Obtaining Keys
● How does Alice get Bob’s public key?

– Download from Bob’s website
– Download from a keyserver
– Bob sends it via email
– Other channel

● How does Alice know it’s Bob’s authentic key?
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Verifying Public Keys
● Alice and Bob would rather not 

have to trust CAs
● They can compare keys (in-

person, through a secure 
channel, etc.)

● But keys are big and unwieldy!
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-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGPUBx4BEADa3JsMGX9GKriACgI1vvokxOc8ltbHSl7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNJ6mQuzgUBJ7T54ed8pEf1rtMWL+7OoMNRNaFX6vosT5
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmwwWVcVMBBGfrP3pR93dKWbET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPxEP8JoTCn0xAv4ugjM6VE6xxb/Cj15I/5PsIhx
76LPqSsPUwRzKQ9stP8YjTX+Ol91+GNqLhtdmy5yXPD9F/NO+fhQVwvUZ0oJ544a
KeFDQ/G9GKJfJzTIhvQn9BdkZpff5Kjzun0+4HNk0msB5S8BItdPpuc3qs+rkL6W
aAnXUS9j7mB3Gf58fjJu+1gMP5dXG16nduB/W3SuH2/XSympjSm6PkuNcSMI0XEN
FCUH/aoRjZQV/Xi5laQHg+cbEtLRACdkaAHNNjxGDXkzjbuYzjtv3hPMvNiBF897
PvihCO2w4pXBQ7rpxzn6OvU1iawfrmdZQA2tRZOSN2Cpti3KJ0OzKzfGT0VFRaVq
NfEy26ZtEPAZjhgBJDo8SLxJkshrMLhNnIobR/BLng1v/xSrjPTAVE/sK032GfqZ
uynR6zO+rVcwAKz3g/aK5kknPG/Or4KdEhsmOKuPgATSduGo96t299dRqQARAQAB
tBlBbGljZSA8YWxpY2VAZXhhbXBsZS5jb20+iQJXBBMBCABBFiEE7yLlFuqcQ7em
fk+0HNJWA8FMDQUFAmPUBx4CGwMFCQAnjQAFCwkIBwICIgIGFQoJCAsCBBYCAwEC
HgcCF4AACgkQHNJWA8FMDQV3LQ/8CnyOARm+seUp4ShUo5xqIlEMPG6F+VbBE45G
XGiEr/PeMbdTJtkrO0Qzsx0/tVYKJGiLE5D9W/1TaqzAkmnsyvhF0wp3XZQGeqlt
U9mPpBQkzAfzwW21++3CK48WcCtb5mRh+O9Z7jwF0aEYDOKxO2og6a9132kUp66n
CctBy+h6ucBVMMTZS0jFr5YHFZJKa/IyQ6ODgkv+fIwfPZm2N93jHejIdrKSVtzi
Yb5tiXqGDwoljSlxhlVA6pX03CtENKqrpDPS0tM70AdmVSmjQgn7AR3UtBJn4JMb
iC+/yKD2JIGLS1R5RKvovJ1BBQHU7FATcrKFL4SORQ5o5iaEteMsFLLbBMomrs23
oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4lhY/WpZGDAIayA9v9TWMUMzxDjMwmfeK+j
OlcJwj0BO6GbMBBNlr76ae+zWpJeqZrjv7S7H+h0bOi8n0PBKrTxbGLM7wg/r9ii
qEm4pHT5P0i6WBr3PYu/PoyEnPlKonxSv9kOJXGyjDcdV6vjBA6c37mFFs0Ffk8A
s/x3V85+0YK34RbDVDqm5+V42Lo5DP49KdBV1dp+O07nWRJDsOroFarbMcPCCWiJ
i0p4+r9nU9Hx8k6mjustyjZBgplmDhBnCo5hAaAytuOLTU3wKwmhq8ONCJhKYRXo
+88+0P65Ag0EY9QHHgEQAOFF4x8GKiSCjk5jUxL87s0nkm9OGxtpx8L4drn9rFtu
u6cP7XcOJ0ngxF4HufcL6vNfPMF5knU6ezXUgMvOseFVT30VC6uF39OrqOj26va/
LcCYzKaIWFLKyuBvtLDuPUdANhplQhH7s4FQIvTPUO+saCAqJDJtOsq/F/n+Gttz
DxNdPbsTC5oESkgfhyednT9gZpCsxc9Gd3mDyDDkMGyWaEf4bWjdjX2NEj6TuezY
ijyqtYBHKf9eNSmPY9SEbV9HIMLgZa/R4mrtZ+AMya2lTuyBXi6oo+oElS71cefD
BFajeOKH0MHtPKQvkagyetI6I5Ta+6Ekqoy5Oc90s85UdUIZZkCaZ5zA8vrkhLNh
KvJ90Uf5IVuoe+Ci6wpvZZQhpIumX+eRMSX1U4hBahB5z+fLe3YUCn5rDwEFmSG2
EAMRDF5QG7L5dDMS6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghJLfm79Dl
O9MSYRdOFPVIIumqWIiv862zXOr8dqwnIKB9uDWMHGnEkFtlseC0WrsbRaeMHDFc
7A/bNCocDrA8x18GieIkVTMhuFMc77WiN43rjYSLr17W2V0KqIN0NHYCSsGOhC4z
0aJcDDJLvdkt4AriXpmhSmMOWZsvblrT9i5voY8GIEbltQ5xppOUGZ+3vfq0UwER
ABEBAAGJAjwEGAEIACYWIQTvIuUW6pxDt6Z+T7Qc0lYDwUwNBQUCY9QHHgIbDAUJ
ACeNAAAKCRAc0lYDwUwNBR0JEACAJ8LSN8YlnrKq/9JqJy6qkoLTr0r5Yvz7Fm/F
KRP7vDicOiKGH3NwsrBE3+r7UB8MWWjOrdtWLd7a5AaswEtTSXKHrpzSC/s8kn1m
POtR/vSaIlfb6qjXAQrK0ZhWhoD4YsRBY57Xe9EhOup5y6eUeFbGMS80HvLrApju
IUvKJNdpD+21U0Ohu16JKAuIhyKFfpXVtjH3lxnagBl9UOlLG0h4y9aMa4RwAmY0
Z4h9StZcQhMOoKeL0dovHoS5BvyDIa91TpennGhM+AeEI1VPdRfpaa1O4srGMUQX
kjtnHNdMVHEzMSy5vwygJEIXMBpkFqZF/CCOhqvqM+RQgh0sTATa6ixVRNyml241
PqMbZn7JYMZ0flbMPtD2qd9lT6rKfXUzLtRQswhXpcVi+8Mgsb53JyKQlpigIdu0
z+VOq7ObHuwwPCi1ohJ8Q3SfaKIynfhACVOlDr8l89rZ3mVbTiLMvKKyKYEijpB/
idbN3QtUuPYlnALlcN4883DwzMO5ZQ8CPc3/6yOQOUytTUpNo143XcQ//OwC3Tmm
YsMnvZVhlY6MoiQ7cXDJvwRUOTU4IlG6qkwmbeEO7zatGHXv/agSxpRuLzIhZHem
fI11i44fYII2ZxWWVr2vQ6T9oELTyCjJTeGxaot0thOxxQ3pdXavxuYdG84zZyMd
i96dvg==
=tJAW
-----END PGP PUBLIC KEY BLOCK-----
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Fingerprints
● Hash the key to get the key fingerprint
● Instead compare the fingerprints
● Much shorter:

– EF22 E516 EA9C 43B7 A67E 4FB4 1CD2 5603 C14C 0D05

● Remember: With a good hash function, no two key fingerprints 
should collide

● (What if you only use part of the fingerprint?)

42
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Verifying Public Keys
● Alice and Bob have verified each other. Great!
● But verifying is hard

– Inconvenient if possible at all
– Bob and Carol may not know each other well

● What if Bob and Carol can’t verify each other?

● (Would it help if Carol has verified Alice?)

43
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Signing Keys
● Once Alice has verified Bob’s key, she uses her certification key to 

sign Bob’s key
– (By default, certification key == signature key)

● This is effectively the same as Alice signing a message saying “I 
have verified that the key with [Bob’s fingerprint] belongs to Bob”

● Bob can attach Alice’s signature to the key he has published 
somewhere

● (Are there any issues with doing this?)
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Web of Trust
● Now Alice can act as an introducer for Bob
● If Carol can’t verify Bob herself, but she has already verified 

Alice (and she trusts Alice to introduce other people):
– She downloads Bob’s key
– She sees Alice’s signature on it
– She is able to use Bob’s key without verifying it herself

● This is called the Web of Trust
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Awesome!
● If Alice and Bob want to have a private conversation by 

email:
– They create their keys
– They exchange their keys (possibly relying on the WoT)
– They send signed and encrypted messages back and 

forth

● Pretty Good, right?

46



Problems with PGP
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Problem #1: Usability
● Hard to use

● Low adoption

48
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Problem #1: Usability
● https://moxie.org/2015/02/24/gpg-and-me.html

– “When I receive a GPG encrypted 
email from a stranger, though, I 
immediately get the feeling that I 
don’t want to read it. [...] Eventually I 
realized that when I receive a GPG 
encrypted email, it simply means that 
the email was written by someone 
who would voluntarily use GPG.”

49

https://xkcd.com/1181/

https://moxie.org/2015/02/24/gpg-and-me.html
https://xkcd.com/1181/
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Problem #1: Usability
● Usability is a security parameter

– If it’s hard to use, people will not use it
– If it’s hard to use properly, people will use it in insecure 

ways

50
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Problem #2: Lack of Forward Secrecy
● Alice sends many encrypted messages to Bob

– Possibly over the course of months, years

● Suppose Eve saves all of them
– Not so unreasonable if Eve runs the email server

● What if Eve steals Bob’s private key?
– She can decrypt all messages sent to him. Past, present, 

and future...

51
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Problem #3: Non-repudiability
● Why non-repudiation?
● Good for contracts, not private emails
● Casual conversations are “off-the-record”

– Alice and Bob talk in private
– No one else can hear
– No one else knows what they say
– No one can prove what was said

● Not even Alice or Bob
52

Alice said you’re 
annoying.

Oh yeah? 
Prove it!



Off-The-Record (OTR) Messaging
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OTR
● Messaging (XMPP) extension for encryption with

– Forward secrecy
– Post-compromise security
– Deniability

54



CS489 Winter 2023 

Goals of Off-The-Record Messaging
● (Perfect) Forward secrecy: a key compromise does not reveal past 

communication
● Post-compromise security Backward secrecy Future secrecy Self-healing: a key 

compromise does not reveal future communication
● Repudiation (deniable authentication): authenticated communication, but a 

participant cannot prove to a third party that another participant said something

55
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Goals of Off-The-Record Messaging

57

● (Perfect) Forward secrecy: a key compromise does not reveal past 
communication

● Post-compromise security Backward secrecy Future secrecy Self-healing: a key 
compromise does not reveal future communication

● Repudiation (deniable authentication): authenticated communication, but a 
participant cannot prove to a third party that another participant said 
something
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Forward Secrecy
● Forward secrecy: Key compromise doesn’t reveal past 

messages
● How can we accomplish that?
● Change the key!
● Old keys must be securely deleted

59

1

2
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Forward Secrecy (one approach)
● Recall Diffie-Hellman...

60
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Forward Secrecy (one approach)
● Alice and Bob have ephemeral (temporary) “sessions”
● Alice produces ephemeral DH keys (a, ga)

– She signs the public key with her long-term key A
● Bob produces ephemeral DH keys (b, gb)

– He signs the public key with his long-term key B

● Alice and Bob use shared secret gab

● They make new keys later

61
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Forward Secrecy (one approach)

62

● Alice and Bob talk on 
Monday...

● Alice and Bob talk on 
Tuesday...

Monday Tuesday
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Forward Secrecy (one approach)
● Eve can compromise a session but not everything
● Problems?

– Alice can’t start a session unless Bob is online
– Eve can still compromise a whole session
– We’ll see other ideas later

63

Tuesday



CS489 Winter 2023 

Forward Secrecy in OTR
● What if we make the sessions as short as possible?
● What if new sessions don’t have to be negotiated 

interactively?
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Forward Secrecy in OTR
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Forward Secrecy in OTR
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Forward Secrecy in OTR
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Forward Secrecy in OTR

68

● Alice and Bob automatically 
create new sessions as they 
reply to each other

● Also provides post-
compromise security

● Awesome! :)
● This is a “ratchet”: You can’t go 

backwards
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Forward Secrecy in OTR

69

● One problem...
– Session keys only roll 

forward when sender 
changes

– What if Alice sends Bob 
many messages in a row?

– (We’ll see Signal improve 
upon this later)
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Deniable Authentication in OTR
● PGP uses signatures for authentication...
● ...but they also provide non-repudiability
● How can we get authentication without non-repudiability?

70
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Deniable Authentication in OTR
● PGP uses signatures for authentication...
● ...but they also provide non-repudiability
● How can we get authentication without non-repudiability?
● With a MAC!

– Alice and Bob similarly negotiate DH authentication key

71
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Recall...
● Why are MACs deniable?

● Only Alice and Bob know K

● Alice sends Bob a message MACed with K

● Bob knows it was Alice because:
– Only Alice or Bob could have produced this MAC
– Bob did not produce the MAC

● Why doesn’t this argument work for Carol?
72



Signal
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Signal
● Mobile app with companion desktop (Electron) client

– OTR was less mobile-friendly

● Encryption protocol based on OTR
– Double Ratchet Algorithm builds on OTR DH ratchet
– Deniability ideas from OTR

● Protocol also used in other apps like WhatsApp, OMEMO 
extension for XMPP, etc.

74
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Double Ratchet Algorithm
● Uses two ratchets:

– KDF chain
– Diffie-Hellman sessions (like OTR)

● Originally called Axolotl ratchet for its “self-healing” 
property (from the DH ratchet)

75

Illustration: ArmandoAre1

“Axolotl” is a Nahuatl word. (pronunciation)

Photo: th1098

https://pixabay.com/vectors/axolotl-animal-axolote-amphibians-5199181/
https://upload.wikimedia.org/wikipedia/commons/5/58/Axolotl.ogg
https://en.wikipedia.org/wiki/File:AxolotlBE.jpg
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Forward Secrecy (another approach)
● What if instead of session keys, 

we had a new key for each 
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve 

compromises a key?
76
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Forward Secrecy (another approach)
● What if instead of session keys, 

we had a new key for each 
message?
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compromises a key?
78

 H( ) =

1

1 2
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Forward Secrecy (another approach)
● What if instead of session keys, 

we had a new key for each 
message?

● We can do this deterministically
● Simplified ratchet:

– Kn+1 = H(Kn)
● What happens if Eve 

compromises a key?
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 H( ) =

1

1 2

 H( ) =
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KDF Ratchet
● KDF = Key Derivation Function (think 

hashing – it only goes one way)
● Outputs message key

– Used to encrypt a single message

● Outputs chain key
– Used to derive future keys

● Why separate chain & message keys?
– What if messages are out-of-order?
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DH Ratchet
● Like OTR
● Outputs Receiving and 

Sending chain keys
– These are used for KDF 

ratchet (previous slide)
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DH Ratchet

82
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DH Ratchet

83
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Brace Yourselves!!!
● We’re about to put the two ratchets together
● It’s going to be complicated
● But it will be okay

84

Photo: David J. Stang

Photo: ZeWrestler

https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_1zz.jpg
https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_at_Vancouver_Aquarium.jpg
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Double Ratchet Algorithm

85

● Alice -> Bob
● Alice and Bob do 

DH and get Alice’s 
sending 
chain/Bob’s 
receiving chain

● Alice derives a 
key with her 
sending chain

● Alice uses this 
MA0 key to 
encrypt her 
message for Bob
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Double Ratchet Algorithm
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Double Ratchet Algorithm
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Double Ratchet Algorithm
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Double Ratchet Algorithm

89

● Alice -> Bob 
(again)

● (no new DH until 
Bob replies)

● Alice derives a 
key with her 
sending chain

● Alice uses this 
MA1 key to 
encrypt her 
message for Bob
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Let’s take a breath
● Here are some more pictures of axolotls
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Photo: LeDameBucolique
Photo: LoKiLeCh

Photo: uthlas

https://en.wikipedia.org/wiki/File:Axolotl-2193331_1280.webp
https://en.wikipedia.org/wiki/File:Axolotl_ganz.jpg
https://pixabay.com/photos/axolotl-cute-weird-2412189/
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Deniability in Signal
● Alice and Bob use MACs (like in OTR)
● But what if they can make it even more deniable?
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Deniability in OTR
● DH(a,b) can only be created by Alice or Bob

– A: long-term (Alice)
– B: long-term (Bob)
– x: ephemeral (Alice)
– y: ephemeral (Bob)
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Deniability in Signal: 3DH
● DH(A,y) || DH(x,B) || DH(x,y) can be created by anyone
● But if Alice knows x, only Bob could know y
● Why?

https://signal.org/blog/simplifying-otr-deniability/
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gx gy

gA gB

gAy gBx

gxy

https://signal.org/blog/simplifying-otr-deniability/
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That’s more theoretical
● Signal actually uses a more complicated eXtended Triple 

Diffie-Hellman (X3DH) key agreement protocol which 
involves some signatures 

● X3DH is useful for enabling asynchronous communication
– More mobile-friendly

● We won’t talk about it, but it’s well-documented here: 
https://signal.org/docs/specifications/x3dh/
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https://signal.org/docs/specifications/x3dh/
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Quick Recap
● PGP

– No forward secrecy
– Non-repudiable (not off-the-record)

● OTR
– Forward secrecy through DH ratchet :)
– Deniable :)

● Signal: Double Ratchet Algorithm
– DH ratchet provides forward secrecy and post-compromise security based on replies
– KDF ratchet provides only forward secrecy, but for every message
– Deniable :)
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