CS489/689 Privacy, Cryptography, Network and Data Security

Syntactic Notions of Privacy

Recap

- In the previous lecture, we saw many attacks.
- Now, we're going to see some defenses.
- How do we measure privacy?
 - **Empirically**:
 - by measuring the performance of an attack
 - Theoretically:
 - Syntactic notions: measuring a property on the released data / leakage.
 - Semantic notions: ensuring the data release mechanism itself has a property (independent of its inputs/outputs)

Leaks private

information from the

users!

Some data

Analysis resul

Provides utility gains

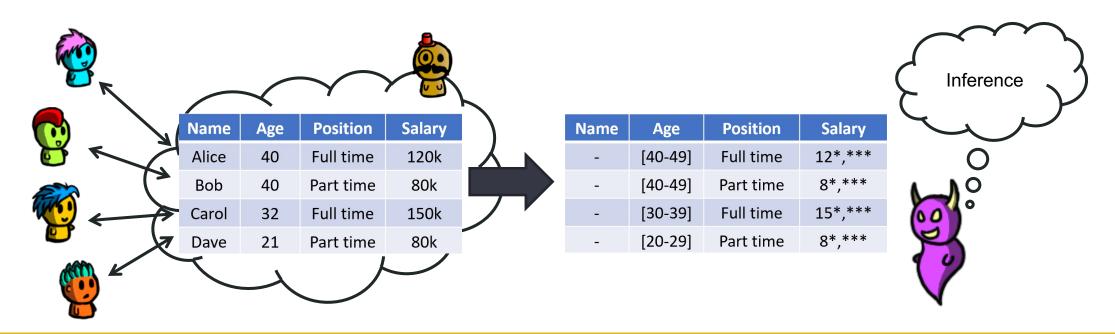
Data

Owner

Data

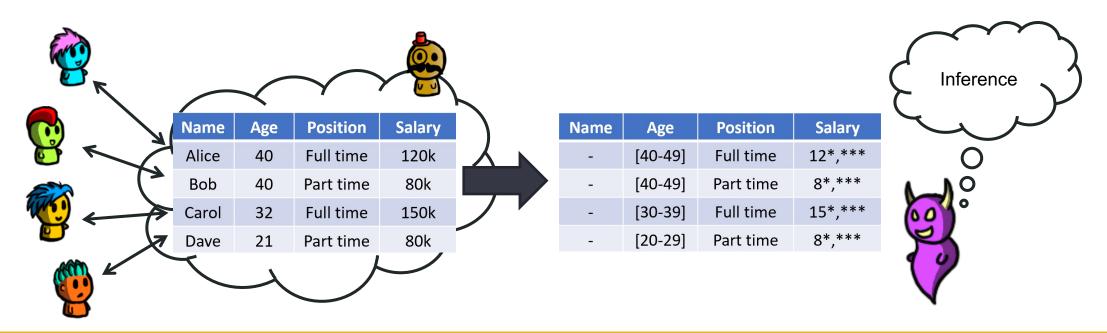
Analyst

Syntactic Privacy in relational databases

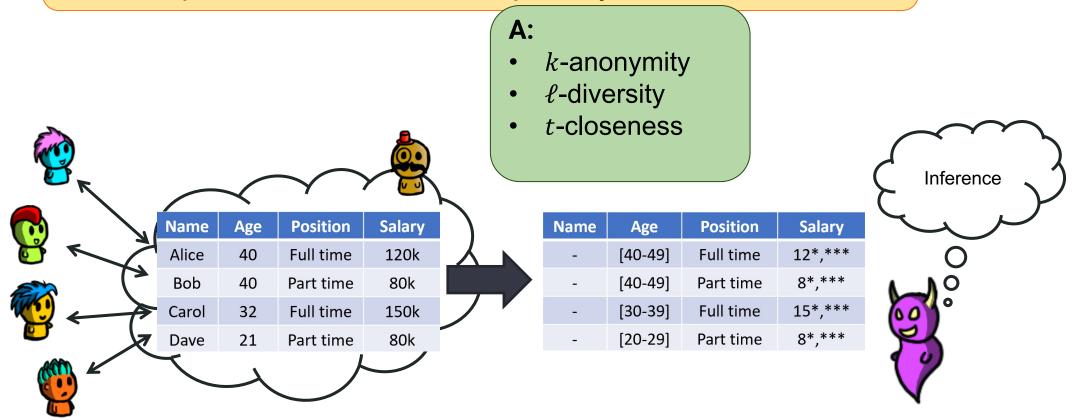

- Syntactic notions of privacy define a property that the released data must satisfy.
- The notions we will see refer to tabular data (relational databases).
- When talking about a table, the columns are the attributes, and the rows are the data entries or samples.

Syntactic Privacy in relational databases

- The attributes of a table can be classified into:
 - Identifiers: uniquely identify a participant
 - Quasi-identifiers: in combination with external information, can identify a participant (ZIP, DOB, Gender, etc.)
 - **Confidential attributes**: contain privacy-sensitive information
 - Non-confidential attributes: are not considered sensitive
- We will always remove identifiers and focus on confidential attributes.


System Model

- Each user contributes to a row in a database
- A data curator releases a sanitized version of the database
- The adversary/analyst sees the sanitized database


System Model

Q: What are the properties the sanitized database should have to preserve some level of privacy to its users?

System Model

Q: What are the properties the sanitized database should have to preserve some level of privacy to its users?

k-anonymity

k-anonymity

For each published record, there exists at least k - 1 other records with the same quasi-identifiers

- To **compute** k-anonymity: To **provide** k-anonymity:
 - Group the rows with the same quasi-0 identifier(s).
 - These rows form an *equivalence* class or equi-class.
 - Count: what is the smallest size of a 0 group? That will be the level of kanonymity

- Remove a quasi-identifier Ο
- Reduce the granularity of a quasi-Ο identifier (e.g., hiding the last characters of a ZIP code)
- Group quasi-identifiers (e.g., report age 0 ranges instead of actual ages)

k-anonymity: example

ZIP (QI)	Party affiliation	-	ZIP	Party affiliation
N1CFFA	Green Party		N1C***	Green Party
G0ANFA	Liberal Party		G0A***	Liberal Party
N1C5YN	Green Party		N1C***	Green Party
N2J0HJ	Conservative Party		N2J***	Conservative Party
N1C4KH	Green Party		N1C***	Green Party
G0A3G4	Conservative Party		G0A***	Conservative Party
G0A3GN	Liberal Party		G0A***	Liberal Party
N2JWBV	New Democratic Party		N2J***	New Democratic Party
N2JWBV	Liberal Party		N2J***	Liberal Party

Q: what is the k-anonymity level?

k-anonymity: example

ZIP (QI)	Party affiliation	ZIP	Party affiliation
N1CFFA	Green Party	N1C***	Green Party
G0ANFA	Liberal Party	G0A***	Liberal Party
N1C5YN	Green Party	N1C***	Green Party
N2J0HJ	Conservative Party	N2J***	Conservative Party
N1C4KH	Green Party	N1C***	Green Party
G0A3G4	Conservative Party	G0A***	Conservative Party
G0A3GN	Liberal Party	G0A***	Liberal Party
N2JWBV	New Democratic Party	N2J***	New Democratic Party
N2JWBV	Liberal Party	N2J***	Liberal Party

Q: what is the k-anonymity level?

A: the table is 3-anonymous

k-anonymity: example (II)

zip (QI)	DOB (QI)	Party affiliation	-	ZIP	DOB	Party affiliation
N1CFF	1962-01-24	Green Party		N1C***	196*-**-**	Green Party
GOANF	1975-12-30	Liberal Party		G0A***	197*-**-**	Liberal Party
N1C5YN	1966-10-17	Green Party		N1C***	196*-**-**	Green Party
N2J0HJ	1996-08-14	Conservative Party		N2J***	199*_**_**	Conservative Party
N1C4KH	1963-04-06	Green Party		N1C***	196*-**-**	Green Party
G0A3G4	1977-07-09	Conservative Party		G0A***	197*-**-**	Conservative Party
G0A3GN	1973-08-14	Liberal Party		G0A***	197*-**-**	Liberal Party
N2JWBV	1990-11-02	New Democratic Party		N2J***	199*_**_**	New Democratic Party
N2JWBV	1990-01-25	Liberal Party		N2J***	199*_**_**	Liberal Party

Q: what is the k-anonymity level?

k-anonymity: example (II)

ZIP (QI)	dob (QI)	Party affiliation	-	ZIP	DOB	Party affiliation
N1CFF	1962-01-24	Green Party		N1C***	196*-**-**	Green Party
G0ANF	1975-12-30	Liberal Party		G0A***	197*-**-**	Liberal Party
N1C5YN	1966-10-17	Green Party		N1C***	196*-**-**	Green Party
N2J0HJ	1996-08-14	Conservative Party		N2J***	199*_**_**	Conservative Party
N1C4KH	1963-04-06	Green Party		N1C***	196*-**-**	Green Party
G0A3G4	1977-07-09	Conservative Party	V	G0A***	197*-**-**	Conservative Party
G0A3GN	1973-08-14	Liberal Party		G0A***	197*-**-**	Liberal Party
N2JWBV	1990-11-02	New Democratic Party		N2J***	199*_**_**	New Democratic Party
N2JWBV	1990-01-25	Liberal Party		N2J***	199*_**_**	Liberal Party

Q: what is the k-anonymity level?

A: the table is 3-anonymous

k-anonymity: practice

• Both age and gender are QI.

Age	Gender	
23	F	
25	F	
33	F	
35	F	
27	Μ	
30	Μ	
32	М	
21	NB	
25	NB	

Q: What is the k-anonymity if...

- We hide the Age
- We hide the Gender (but not the age)
- We report the most significant digit of Age, plus the Gender
- We only report the most significant digit of Age, but not the Gender

k-anonymity: practice

• Both age and gender are **QI**.

Age	Gender	
23	F	
25	F	
33	F	
35	F	
27	Μ	
30	Μ	
32	Μ	
21	NB	
25	NB	

Q: What is the k-anonymity if...

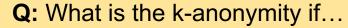
- We hide the Age
- We hide the Gender (but not the age)
- We report the most significant digit of Age, plus the Gender
- We only report the most significant digit of Age, but not the Gender

A: 2, 1, 1, 4

k-anonymity: practice (II)

• Both age and DOB are **QI**.

Gender	DOB	Party affiliation
Μ	1968-**-**	Green Party
F	1975-**-**	Liberal Party
0	1966-**-**	Green Party
Μ	1962-**-**	Green Party
Μ	1962-**-**	Conservative Party
0	1966-**-**	Conservative Party
F	1973-**-**	Liberal Party
F	1973-**-**	Liberal Party
0	1968-**-**	Green Party
F	1975-**-**	Liberal Party



- We publish the table as shown
- We hide the least-significant digit of year
- We hide the Gender column
- We hide the least-significant digit of year and hide the Gender column

k-anonymity: practice (II)

• Both age and DOB are **QI**.

Gender	DOB	Party affiliation
Μ	1968-**-**	Green Party
F	1975-**-**	Liberal Party
0	1966-**-**	Green Party
Μ	1962-**-**	Green Party
Μ	1962-**-**	Conservative Party
0	1966-**-**	Conservative Party
F	1973-**-**	Liberal Party
F	1973-**-**	Liberal Party
0	1968-**-**	Green Party
F	1975-**-**	Liberal Party

- We publish the table as shown
- We hide the least-significant digit of year
- We hide the Gender column
- We hide the least-significant digit of year and hide the Gender column

A: 1, 3, 2, 4

Act.

k-anonymity: practice (III)

Age	Province	
21	ON	
23	ON	
26	ON	
32	ON	
33	ON	
35	ON	
36	ON	
43	ON	
45	ON	
22	BC	
24	BC	
26	BC	
27	BC	
32	BC	
33	BC	
43	BC	
45	BC	
49	BC	

•	Age	and	Province	are	Q	Ι.
---	-----	-----	----------	-----	---	----

Q1: what is the k-anonymity if we replace the age with ranges [20-29], [30-39], [40-49]?

Q2: design ranges that provide a higher level of k-anonymity, ensuring that

- Ranges must cover all ages from 20 to 49
- You must create 3 age ranges
- Each range must contain at least one record

Submit the answers of Q1-3 (next slide too) to Learn

k-anonymity and privacy

ZIP (QI)	DOB (QI)	Party affiliation
N1C***	196*_**_**	Green Party
N1C***	196*_**_**	Green Party
N1C***	196*_**_**	Green Party
G0A***	197*_**_**	Liberal Party
G0A***	197*_**_**	Liberal Party
G0A***	197*_**_**	Conservative Party
N2J***	199*_**_**	Conservative Party
N2J***	199*_**_**	New Democratic Party
N2J***	199*_**_**	Liberal Party

• This table is 3-anonymous.

Q3: This provides some resistance against linking attacks, why?

Submit the answers of Q1-3 to Learn

k-anonymity and privacy

ZIP (QI)	DOB (QI)	Party affiliation
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
G0A***	197*_**_**	Liberal Party
G0A***	197*_**_**	Liberal Party
G0A***	197*_**_**	Conservative Party
N2J***	199*_**_**	Conservative Party
N2J***	199*_**_**	New Democratic Party
N2J***	199*_**_**	Liberal Party

• This table is 3-anonymous.

Q: Is k-anonymity enough? Can you see any issues with it?

k-anonymity and privacy

•	ZIP (QI)	DOB (QI)	Party affiliation	 This table
	N1C*** N1C*** N1C***	196*-**-** 196*-**-** 196*-**-**	Green Party Green Party Green Party	Q: Is k-anor see a
	G0A*** G0A*** G0A***	197*_**_** 197*_**_** 197*_**_**	Liberal Party Liberal Party Conservative Party	Attack 1: if you N1C***, what c
	N2J*** N2J*** N2J***	199*_**_** 199*_**_** 199*_**_**	Conservative Party New Democratic Party Liberal Party	Attack 2: if you and does not I learn from him

• This table is 3-anonymous.

Q: Is k-anonymity enough? Can you see any issues with it?

Attack 1: if you know Alice has ZIP code N1C***, what can you learn from her?

Attack 2: if you know Bob has ZIP code G0A*** and does not like Liberal Party, what can you learn from him?

ℓ-diversity

ℓ-diversity

For each quasi-identifier value, there should be at least ℓ distinct values of the sensitive attributes

- To **compute** *l*-diversity:
 - Group the rows by quasi-identifiers into equi-classes.
 - For each equi-class, compute how many distinct sensitive values there are
 - The equi-class with the smallest number of distinct sensitive values is the level of ℓ-diversity.

• To **provide** *l*-diversity:

 Similar to k-anonymity: try to make the equi-classes as large as possible, while making sure there is enough variety of sensitive attributes per class.

ℓ-diversity: example

Gender	DOB	Party affiliation
M	196*-**-**	Green Party
M	196*-**-**	Liberal Party
M	196*-**-**	Conservative Party
0	196*-**-**	Green Party
0	196*-**-**	Green Party
0	196*-**-**	Conservative Party
F	197*-**-**	Liberal Party
F	197*-**-**	Green Party
F	197*-**-**	Conservative Party
F	197*-**-**	Liberal Party

 Gender and DOB are QI, Party affiliation is the sensitive attribute.

Q: what is the level of *l*-diversity?

ℓ-diversity: example

Gender	DOB	Party affiliation
M	196*-**-**	Green Party
M	196*-**-**	Liberal Party
M	196*-**-**	Conservative Party
0	196*-**-**	Green Party
0	196*-**-**	Green Party
0	196*-**-**	Conservative Party
F	197*-**-**	Liberal Party
F	197*-**-**	Green Party
F	197*-**-**	Conservative Party
F	197*-**-**	Liberal Party

 Gender and DOB are QI, Party affiliation is the sensitive attribute.

Q: what is the level of ℓ -diversity?

A: the table is 2-diversified

ZIP	DOB	Salary
N3P***	199*_**_**	20K
N3P***	199*_**_**	15K
N3P***	199*_**_**	25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*_**_**	50K
S4N***	197*_**_**	60K
S4N***	197*_**_**	65K

Q: what is the level of k-anonymity and *ℓ*-diversity?

ZIP	DOB	Salary
N3P***	199*_**_**	20K
N3P*** N3P***	199*-**-** 199*-**-**	15K 25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*-**-**	50K
S4N***	197*-**-**	60K
S4N***	197*_**_**	65K

Q: what is the level of k-anonymity and ℓ -diversity?

A: 3 and 3

Q: why does this provide privacy?

ZIP	DOB	Salary
N3P***	199*_**_**	20K
N3P***	199*-**-**	15K
N3P***	199*_**_**	25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*-**-**	50K
S4N***	197*-**-**	60K
S4N***	197*-**-**	65K

Q: what is the level of k-anonymity and *ℓ*-diversity?

A: 3 and 3

Q: why does this provide privacy?

A: it alleviates the problem of kanonymity when all values are the same.

Q: is this good enough? Do you see any issue?

ZIP	DOB	Salary	Disease
N3P***	199*_**_**	20K	gastric ulcer
N3P***	199*_**_**	15K	gastritis
N3P***	199*_**_**	25K	stomach cancer
H1A***	196*-**-**	100K	heart attack
H1A***	196*-**-**	90K	flu
H1A***	196*-**-**	120K	bronchitis
S4N***	197*_**_**	50K	COVID
S4N***	197*_**_**	60K	kidney stone
S4N***	197*_**_**	65K	pneumonia

Q: is this good enough? Do you see any issue?

Q: if you know Charles, who earns a low salary, is in this table: what else did you learn?

ZIP	DOB	Salary	Disease	Q: is this good enough? Do you see any issue?
N3P***	199*_**_**	20K	gastric ulcer	
N3P***	199*_**_**	15K	gastritis	
N3P***	199*_**_**	25K	stomach cancer	
H1A***	196*-**-**	100K	heart attack	Q: if you know Charles, who earns a low salary, is in this table: what else did you learn?
H1A***	196*-**-**	90K	flu	
H1A***	196*-**-**	120K	bronchitis	
S4N*** S4N*** S4N***	197*_**_** 197*_**_** 197*_**_**	50K 60K 65K	COVID kidney stone pneumonia	A: Charles has a stomach disease (Similarity attack)

ZIP	DOB	Virus X Test
N3P***	199*_**_**	Positive
N3P***	199*_**_**	Positive
N3P***	199*_**_**	Positive
4	5 more positiv	e cases
N3P***	199*_**_**	Negative
H1A***	196*-**-**	Negative
H1A***	196*-**-**	Negative
H1A***	196*-**-**	Negative
94	5 more negati	ve cases
H1A***	196*-**-**	Positive

Q: if you know David, who is in his 20s, is in this table: what else did you learn?

ZIP	DOB	Virus X Test
N3P***	199*_**_**	Positive
N3P***	199*_**_**	Positive
N3P***	199*_**_**	Positive
4	5 more positiv	e cases
N3P***	199*_**_**	Negative
H1A***	196*-**-**	Negative
H1A***	196*-**-**	Negative
H1A***	196*-**-**	Negative
94	5 more negati	ve cases
H1A***	196*-**-**	Positive

Q: if you know David, who is in his 20s, is in this table: what else did you learn?

A: David probably has the virus (Skewness attack)

What went wrong?

ZIP	DOB	Virus X Test	
N3P***	199*_**_**	Positive	
N3P***	199*_**_**	Positive	
N3P***	199*_**_**	Positive	
4	5 more positiv	e cases	
N3P***	199*_**_**	Negative	
H1A***	196*_**_**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
945 more negative cases			
H1A***	196*-**-**	Positive	

- The data in each equiclass is unexpectedly skewed.
- This means that learning the equi-class of a person can leak a lot of statistical information about the sensitive attributes of that person.

t-closeness

t-closeness

The distribution of sensitive values in each equi-class is no further than a threshold *t* from the overall distribution of the sensitive values in the whole table

• To compute t-closeness:

- Organize rows by equi-class
- Compute the distribution of sensitive attributes per equi-class and for the whole table.
- Compute the maximum difference between a class distribution and the whole table's distribution on a sensitive value. That's the value of t.

To **provide** t-closeness:

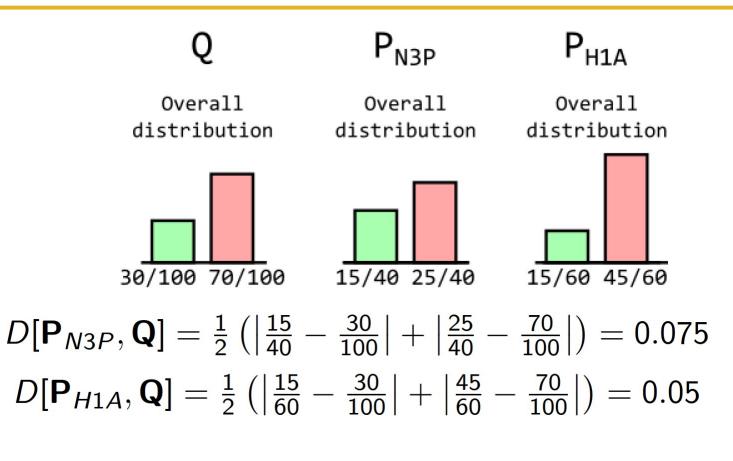
- Similar to k-anonymity: try to make the equi-classes as large as possible, while trying to maintain a uniform distribution.
- Could add dummy records to help smooth the distribution.

t-closeness

t-closeness

The distribution of sensitive values in each equi-class is no further than a threshold *t* from the overall distribution of the sensitive values in the whole table

- To compute t-closeness we need to define a notion of distance between distributions. See the <u>original paper</u> that proposes t-closeness for a full description of distance notions
- We will only see one distance:


Variational distance (or EMD Categorical Distance using Equal Distance) For two distributions over m values $P = (p_1, p_2, ..., p_m)$ and $Q = (q_1, q_2, ..., q_m)$: $D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$

t-closeness example

ZIP (QI)	Virus (Sens)	
N3P***	Pos	x15
N3P***	Neg	x25
H1A***	Pos	x15
H1A***	Neg	x45

Variational distance:

$$D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$$

t-close with t=0.075 (the maximum of these values)

t-closeness example: more sensitive values

ZIP (QI)	Virus (Sens)	
N3P***	Pos	x5
N3P***	Neg	x22
N3P***	Inc	x3
H1A***	Pos	x12
H1A***	Neg	x47
H1A***	Inc	x1

Variational distance: $D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$ **Q:** what is the k-anonymity, *l*-diversity and t-closeness level of this published dataset?

A: 30-anonymous and 3-diversified. $D[P_{N3P}, Q] = \frac{1}{2} \left(\left| \frac{5}{30} - \frac{17}{90} \right| + \left| \frac{22}{30} - \frac{69}{90} \right| + \left| \frac{3}{30} - \frac{4}{90} \right| \right) = \frac{1}{18}$ $D[P_{H1A}, Q] = \frac{1}{2} \left(\left| \frac{12}{60} - \frac{17}{90} \right| + \left| \frac{47}{60} - \frac{69}{90} \right| + \left| \frac{1}{60} - \frac{4}{90} \right| \right) = \frac{1}{36}$ Therefore, the table is $\frac{1}{18}$ -close with respect to Virus

Notes on computing *t*-closeness

- If you have k equi-classes, you would have to compute k distances and take the maximum of those distances as the value of t.
- If you have m distinct sensitive values, the histograms would have m bars and you would have to add m absolute value terms to compute each distance.

			0	P _{N3P}	P _{H1A}
ZIP (QI)	Virus <mark>(Sens)</mark>		Overall	Overall	Overall
N3P***	Pos	x15	distribution	distribution	distribution
N3P***	Neg	x25			
H1A***	Pos	x15			
H1A***	Neg	x45	30/100 70/100	15/40 25/40	15/60 45/60

Notes on computing *t*-closeness

- If you have more than one sensitive attribute (column), you can compute the t-closeness for each sensitive attribute independently (e.g., a table can be t₁-close with respect to Salary and t₂-close with respect to Virus).
- Check the <u>original paper by Li et al.</u> for other distance metrics and more examples.

Limitations

- t-closeness is overall a reasonable syntactic notion of privacy. It prevents the attacks that we have seen. However, it still has some limitations:
- 1. These privacy notions require a clear distinction between quasi-identifiers and sensitive values, which is not always possible (and is subjective)
- 2. Expensive to compute:
 - Computing the optimal k-anonymous dataset is NP-hard
- 3. These notions of privacy do not provide guarantees against an adversary with (arbitrary) background knowledge

Limitations Example

	Non-Sensitive			Sensitive		Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition		Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS	1	130**	<35	*	AIDS
2	130**	<30	•	Heart Disease	2	130**	<35	•	Tuberculosis
3	130**	<30	•	Viral Infection	3	130**	<35	*	Flu
4	130**	<30	•	Viral Infection	4	130**	<35	*	Tuberculosis
5	130**	>40	•	Cancer	5	130**	<35	•	Cancer
6	130**	>40	•	Heart Disease	6	130**	<35	•	Cancer
7	130**	>40	•	Viral Infection	7	130**	≥35	*	Cancer
8	130**	>40	•	Viral Infection	8	130**	>35	*	Cancer
9	130**	3*	•	Cancer	9	130**	>35		Cancer
10	130**	3*	•	Cancer	10	130**	>35	*	Tuberculosis
11	130**	3*	•	Cancer	11	130**	>35	*	Viral Infection
12	130**	3*	•	Cancer	12	130**	≥35	*	Viral Infection

Q: We know that Dave just had his 35th birthday! He told us on his way to the hospital on the left. What did we learn?

Q: We know a 28 year old visited both hospitals. What can we infer?

Source: Ganta et al. 2008 Composition attacks and auxiliary information in data privacy

Limitations Example

	Non-Sensitive			Sensitive		Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition		Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS	1	130**	<35	*	AIDS
2	130**	<30	•	Heart Disease	2	130**	<35	•	Tuberculosis
3	130**	<30	•	Viral Infection	3	130**	<35	•	Flu
4	130**	<30	•	Viral Infection	4	130**	<35	*	Tuberculosis
5	130**	>40	•	Cancer	5	130**	<35	•	Cancer
6	130**	>40	•	Heart Disease	6	130**	<35	•	Cancer
7	130**	>40	•	Viral Infection	7	130**	>35	*	Cancer
8	130**	>40	•	Viral Infection	8	130**	>35	*	Cancer
9	130**	3*	•	Cancer	9	130**	>35	•	Cancer
10	130**	3*	•	Cancer	10	130**	>35	•	Tuberculosis
11	130**	3*	•	Cancer	11	130**	>35	*	Viral Infection
12	130**	3*	•	Cancer	12	130**	≥35	•	Viral Infection

Q: We know that Dave just had his 35th birthday! He told us on his way to the hospital on the left. What did we learn?

A: Dave has Cancer

Q: We know a 28 year old visited both hospitals. What can we infer?

A: They likely have AIDS

Source: Ganta et al. 2008 Composition attacks and auxiliary information in data privacy

Limitations

- We need a privacy notion that is adversary-agnostic... a semantic notion of privacy, that only depends on the mechanism!
 - In the next lectures, we will see Differential Privacy (DP)