CS489/689 Privacy, Cryptography, Network and Data Security

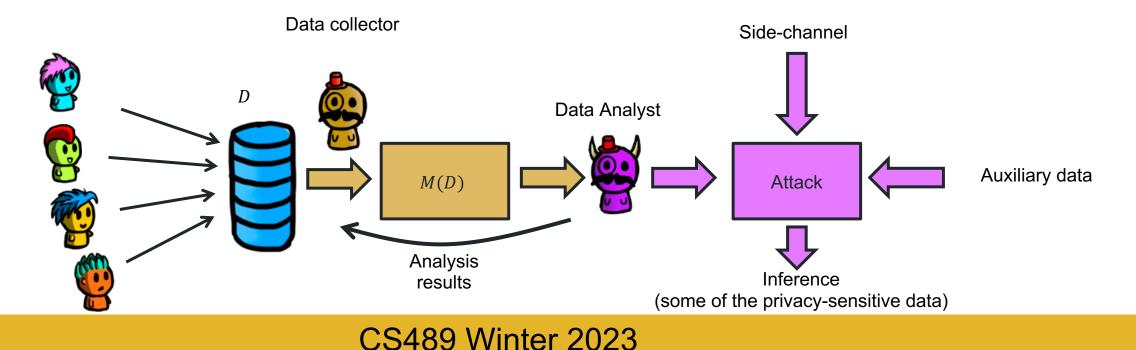
Differential Privacy

Syntactic notions of privacy have some issues

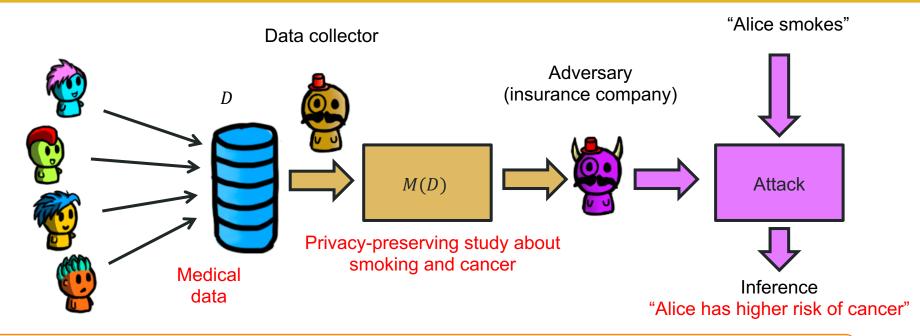
- As seen in the last lecture, syntactic notions of privacy have some issues:
 - Defining which attributes are quasi-identifiers and which are sensitive attributes is hard
 - They mostly apply to relational databases; what about more general data releases like machine learning?
 - The guarantees are data-dependent and adversary-dependent.
 - What if the adversary has arbitrary auxiliary information?
- We need a formal notion of privacy, that provides formal guarantees against (all) attacks.
 - But how do we achieve this?

Can we protect against auxiliary information?

- Each user contributes to one entry (row) of a database *D*.
- The release mechanism M publishes some data R = M(D).
 - Note: we can characterize the mechanism by Pr(M(D) = R), which is the same as Pr(R|D) in the inference attacks lecture.
- Can we provide privacy when the adversary has auxiliary information?

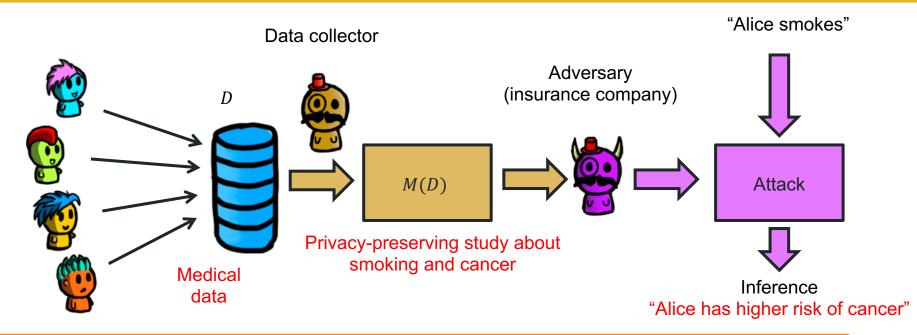


Example: strong auxiliary information



Q: Can we design a mechanism *M* that prevents this? Does it make sense to design a mechanism *M* that prevents this?

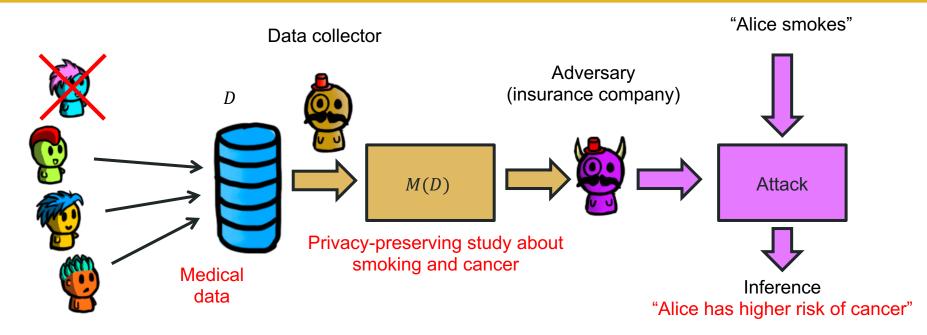
Example: strong auxiliary information



Q: Can we design a mechanism *M* that prevents this? Does it make sense to design a mechanism *M* that prevents this?

A: The adversary would've reached the same conclusion even if Alice hadn't participated in the study! We cannot prevent this unless we destroy utility (e.g., not doing the study)

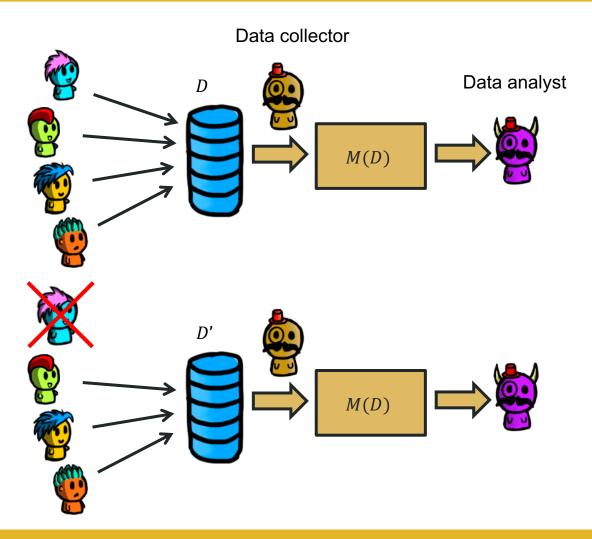
Example: strong auxiliary information



 Note that the adversary reaches the same conclusion in this case, even though Alice has not participated!

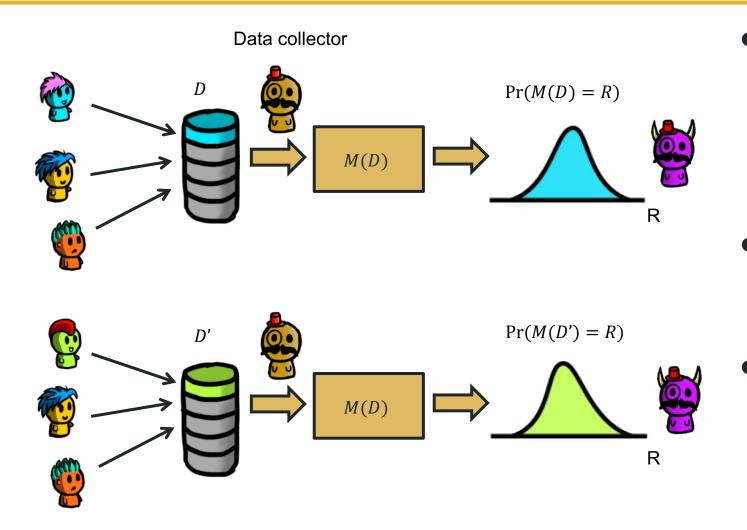
Q: Any ideas of how we could define privacy taking this into account?

Possible Idea:



- If the analyst learns similar things in these two cases about Alice, then *M* provides enough privacy.
- If the adversary learns "a lot" about Alice in both cases, then we cannot prevent this anyway
- Given R = M(D), the adversary should be unable to distinguish whether or not Alice was in the dataset!
- Note that this means that M(D) has to be randomized (or always report the same value, but this makes R constant independent of D which is not useful.)

We want similar output distributions!



- These datasets are usually called neighboring datasets (and usually denoted by *D* and *D*')
- We want these distributions to be "similar" (for all *R*)
- How do we quantify how "similar" they are?

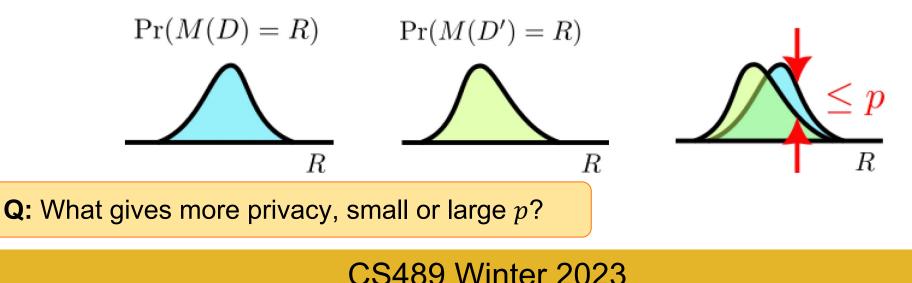
How do we define "similar" distributions?

Tentative privacy definition (with parameter *p*)

A mechanism *M* is *p*-private if the following holds for all possible outputs R and all pairs of neighboring datasets (D, D'):

 $\Pr(M(D') = R) - p < \Pr(M(D) = R) < \Pr(M(D') = R) + p$

• What does this mean?

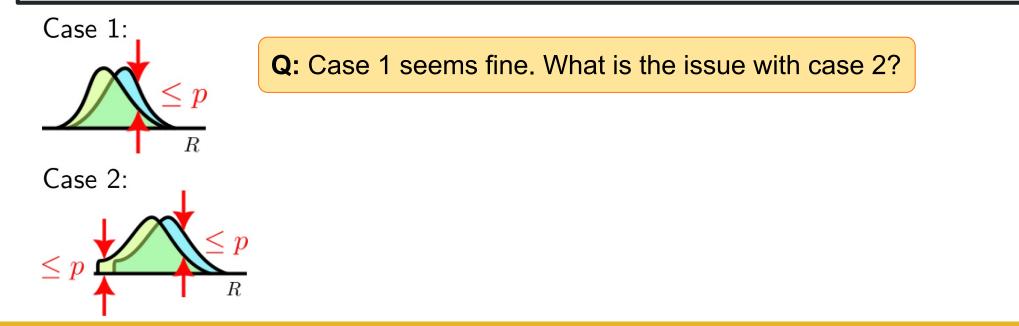


Does this really work?

Tentative privacy definition (with parameter *p*)

A mechanism *M* is *p*-private if the following holds for all possible outputs R and all pairs of neighboring datasets (D, D'):

 $\Pr(M(D') = R) - p < \Pr(M(D) = R) < \Pr(M(D') = R) + p$

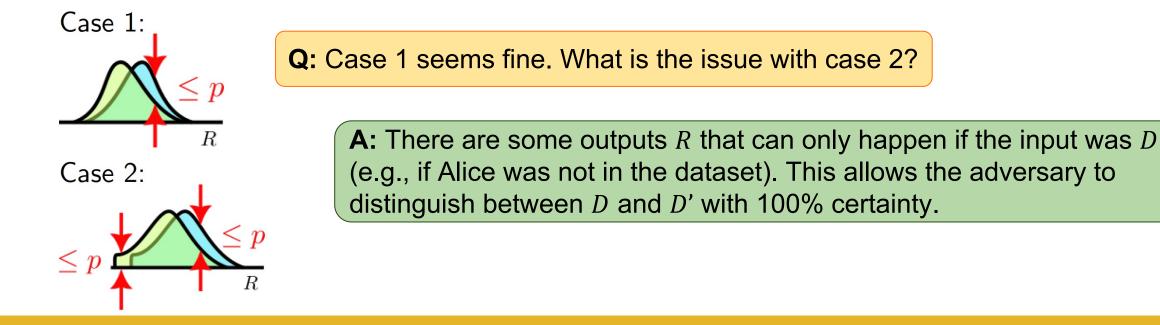


Does this really work?

Tentative privacy definition (with parameter *p*)

A mechanism *M* is *p*-private if the following holds for all possible outputs R and all pairs of neighboring datasets (D, D'):

 $\Pr(M(D') = R) - p < \Pr(M(D) = R) < \Pr(M(D') = R) + p$



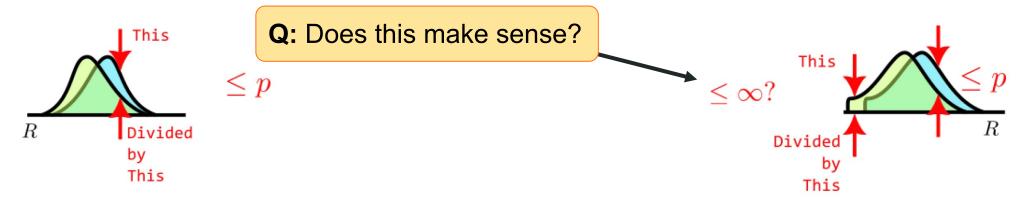
What if we make the distance multiplicative?

Tentative privacy definition II (with parameter p)

A mechanism M is *p*-private if the following holds for all possible outputs R and all pairs of neighboring datasets (D, D'):

$$\frac{\operatorname{Pr}(M(D') - K)}{p} < \operatorname{Pr}(M(D) = R) < \operatorname{Pr}(M(D') = R) \cdot p$$

• **Q:** what does provide more privacy, small (but larger than 1) or large p?



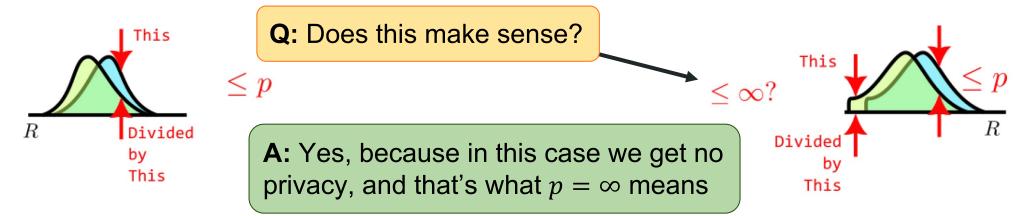
What if we make the distance multiplicative?

Tentative privacy definition II (with parameter p)

A mechanism M is *p*-private if the following holds for all possible outputs R and all pairs of neighboring datasets (D, D'):

$$\frac{\Pr(M(D') = R)}{p} < \Pr(M(D) = R) < \Pr(M(D') = R) \cdot p$$

• **Q:** what does provide more privacy, small (but larger than 1) or large p?



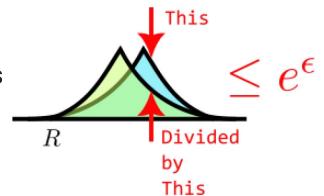
Finally: Differential Privacy

• Same definition, but instead of "p" we use e^{ϵ}

Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible outputs $R \in \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$: $Pr(M(D) = R) \leq Pr(M(D') = R) e^{\epsilon}$

- Some notes:
 - We use e^{ϵ} , instead of just ϵ , because this makes it easier to formulate some useful theorems that we will see later
 - We do not need the $e^{-\epsilon}$ on the left, since this must hold for all pairs (D, D'). This includes (D', D).
 - $\epsilon \in [0, \infty)$; this ensures that $e^{\epsilon} \in [1, \infty)$



End of day 15

Recall, Differential Privacy (for discrete functions)

Differential Privacy – Discrete Definition

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible outputs $R \in \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$: $Pr(M(D) = R) \leq Pr(M(D') = R) e^{\epsilon}$

DP for continuous functions

Differential Privacy – Continuous Definition

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible outputs $r \in \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

 $p_{M(D)}(r) \le p_{M(D')}(r) e^{\epsilon}$

Where $p_{M(D)}(r)$ is the PDF of M(D) evaluated at r

Generic DP Definition

- Discrete definition does not work for continuous functions
 - Probability of a single value is zero
- Similarly continuous doesn't work for discrete functions
- A more generic definition:

Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible **sets of outputs** $R \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

 $\Pr(M(D) \in R) \leq \Pr(M(D') \in R) e^{\epsilon}$

When to use which!?

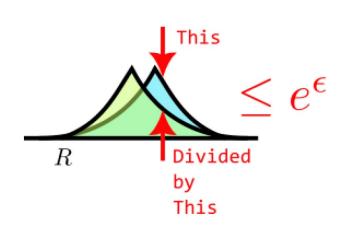
- Discrete and continuous versions are easiest to use when proving a discrete or continuous mechanism respectively
- Generic is nice for reasoning about things in general, but proofs get trickier
 - perhaps you need to integrate the PDF over a set...

Differential privacy: some questions

Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible sets of outputs $R \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

 $\Pr(M(D) \in R) \leq \Pr(M(D') \in R) e^{\epsilon}$



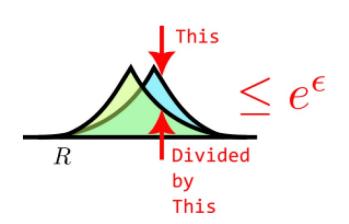
Q: which provides more privacy? $\epsilon = 1$ or $\epsilon = 2$?

Differential privacy: some questions

Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible sets of outputs $R \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

 $\Pr(M(D) \in R) \leq \Pr(M(D') \in R) e^{\epsilon}$



Q: which provides more privacy? $\epsilon = 1$ or $\epsilon = 2$?

A: Smaller ϵ means more privacy; larger means less privacy

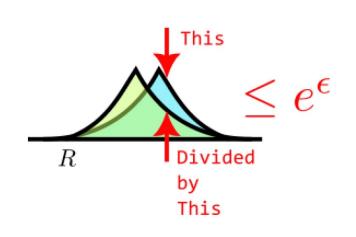
Q: What does $\epsilon = 0$ mean?

Differential privacy: some questions

Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible sets of outputs $R \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

 $\Pr(M(D) \in R) \leq \Pr(M(D') \in R) e^{\epsilon}$



Q: which provides more privacy? $\epsilon = 1$ or $\epsilon = 2$?

A: Smaller ϵ means more privacy; larger means less privacy

Q: What does $\epsilon = 0$ mean?

A: Perfect privacy! The output is independent of the dataset! Utility will be very bad.

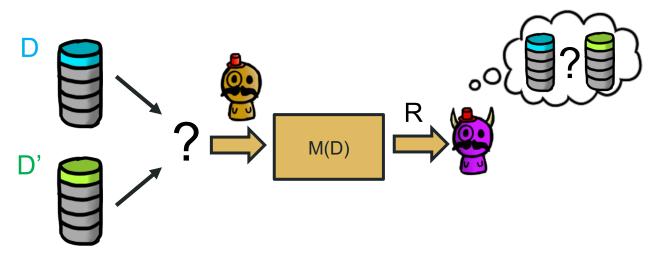
CS489 Winter 2023

Some notes on Differential Privacy

- DP was proposed in 2006 by Cynthia Dwork et al. [DMNS06]
- The authors won the Test-of-Time Award in 2016 and the Godel Price in 2017.
- Adopted by big companies like Apple, Google, Microsoft, Facebook, LinkedIn, and by the US Census Bureau for the 2020 US Census, etc.
- There is no consensus on how small ϵ should be.
- Let's see an alternative interpretation of DP as a statistical inference game!

DP as a statistical game

- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



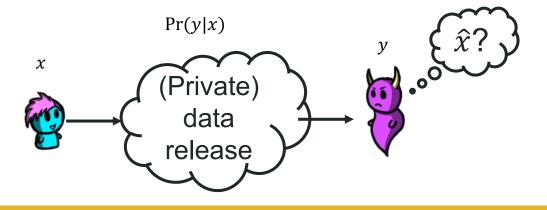
- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

Probability recap (from lecture 14)

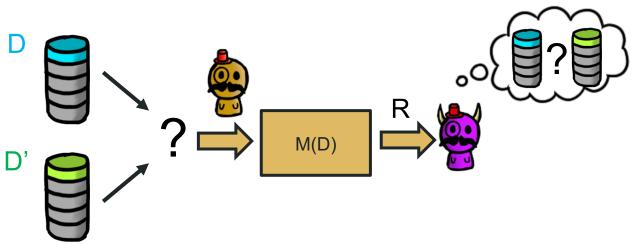
- x is Alice's private information, y is the leakage; usually \hat{x} is the adversary's estimate of x.
- Pr(x): the prior probability distribution of Alice's secret value
- Pr(y|x): the mechanism that models the leakage given Alice's secret information
 - In Bayesian inference, Pr(y|x) is also called the *likelihood* (of x having generated y)
- Pr(x|y): the *posterior* probability distribution (the probability that x took a certain value given the observed leakage y)
- **Bayes' theorem** connects these concepts:

$$\Pr(x|y) = \frac{\Pr(y|x) \cdot \Pr(x)}{\Pr(y)}$$

• **Law of total** probability: $Pr(y) = \sum_{x} Pr(x) Pr(y|x)$



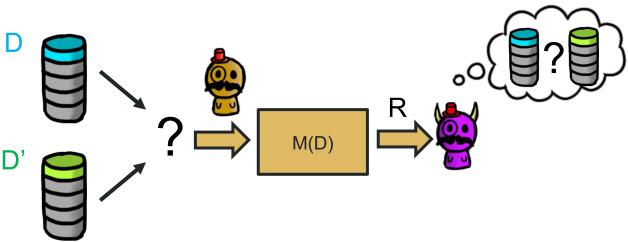
- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



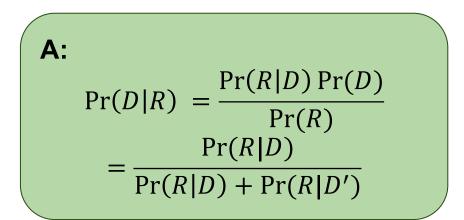
Q: Compute the posterior probability Pr(D|R) as a function of the mechanism only. Recall Pr(R|D) = Pr(M(D) = R)

- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:

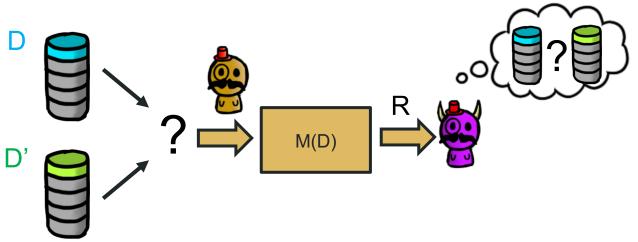


Q: Compute the posterior
probability Pr(D|R) as a function
of the mechanism only.
Recall Pr(R|D) = Pr(M(D) = R)



- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

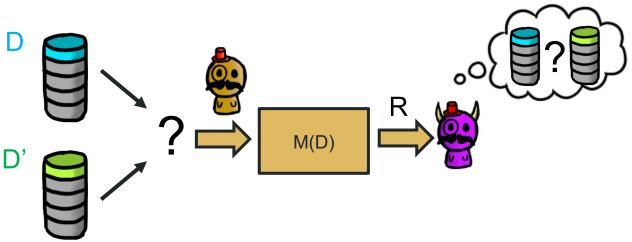
- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



Q: What is the optimal decision that the attacker can make, based on the posterior probabilities? (think of MAP)

- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:

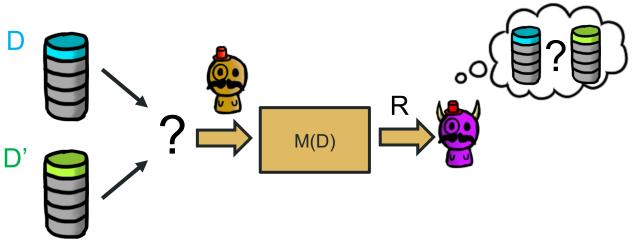


Q: What is the optimal decision that the attacker can make, based on the posterior probabilities? (think of MAP)

A: The adversary would pick *D* if $Pr(D|R) \ge Pr(D'|R)$. Otherwise *D'*.

- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



Q: What is the maximum and minimum value that Pr(D|R) can take (for any *D* or *R*), when *M* is ϵ -DP?

- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

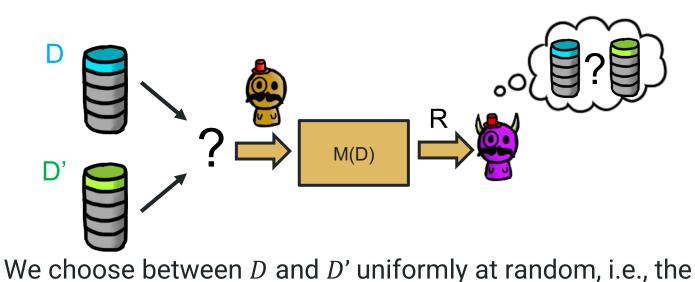
- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:

prior is uniform, Pr(D) = Pr(D') = 0.5.

we talked about inference attacks).

We generate R = M(D) and give it to the analyst

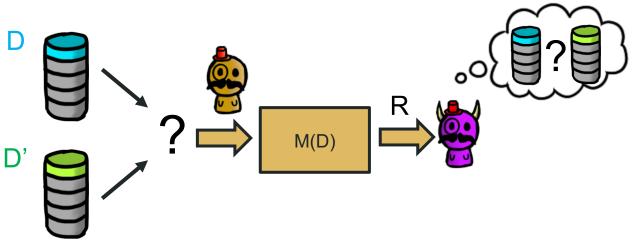
(adversary). This is the leakage (which we called y when



Q: What is the maximum and minimum value that Pr(D|R) can take (for any *D* or *R*), when *M* is ϵ -DP?

A: We have $\Pr(D|R) = \frac{1}{1 + \frac{\Pr(R|D')}{\Pr(R|D)}}$. Using the definition of DP, we know that $\frac{1}{1 + e^{\epsilon}} \le \Pr(D|R) \le \frac{1}{1 + e^{-\epsilon}}$

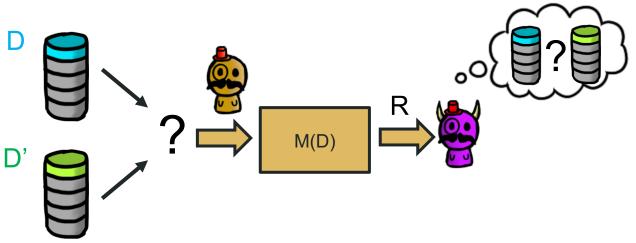
- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



Q: How does this connect to the probability of error p_{error} of the smartest adversary? i.e. can we bound p_{error} using DP? (p_{error} is the probability the attack from previous slide got it wrong)

- We choose between *D* and *D*' uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

- What does $Pr(M(D) = R) \le Pr(M(D') = R) e^{\epsilon}$ even mean?
- Consider the following game:



- We choose between *D* and *D'* uniformly at random, i.e., the prior is uniform, Pr(D) = Pr(D') = 0.5.
- We generate R = M(D) and give it to the analyst (adversary). This is the leakage (which we called y when we talked about inference attacks).

Q: How does this connect to the probability of error p_{error} of the smartest adversary? i.e. can we bound p_{error} using DP? (p_{error} is the probability the attack from previous slide got it wrong)

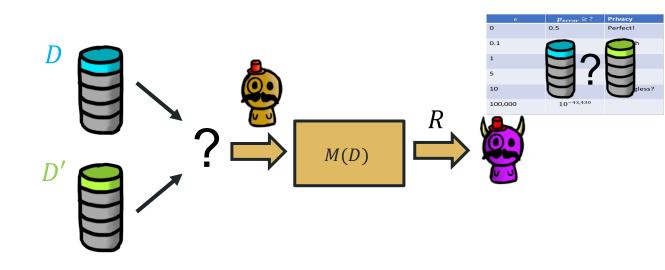
A: When the adversary picks D', it's because $Pr(D|R) \le 0.5$. The probability of error in that case is simply Pr(D|R) (the probability that the actual true dataset was D given R). Therefore, we have

 $\frac{1}{p^{\epsilon}+1} \leq p_{error} \leq 0.5$

DP as a statistical game - Notes

- Note that the assumptions of this exercise are many times unrealistic, but DP provides privacy even in this worst-case scenario.
- This game is often called the Strong Adversary Experiment.
- DP implies this bound on *p_{error}*, but this is not a sufficient condition for DP.

DP interpretation as a game – Interpreting ϵ



If *M* is ϵ -DP, the adversary's probability of error is:

$$\frac{1}{e^{\epsilon}+1} \le p_{error} \le 0.5$$

ϵ	$p_{error} \ge ?$	Privacy
0	0.5	Perfect!
0.1	0.47	Very high
1	0.26	OK?
5	0.006	Bad
10	0.00004	Meaningless ?
100,000	$10^{-43,430}$	

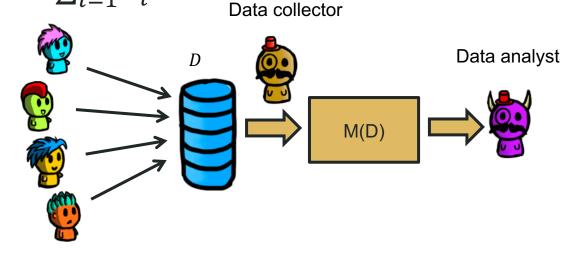
About DP and empirical attack performance

- DP ensures protection even against a strong adversary that knows that the input is either *D* or *D*'
 - and it provides the guarantee for all possible outputs R, even those that are unlikely to happen!
- In practice, an algorithm that provides ϵ =10 might provide high empirical protection against existing attacks
 - even though it does not provide a meaningful worst-case bound.
- However, one can argue: why would you use DP as a defense with ϵ =10?
 - At that point the theoretical worst-case guarantee is *meaningless*, and you might as well use something that does not provide DP but provides better empirical performance.

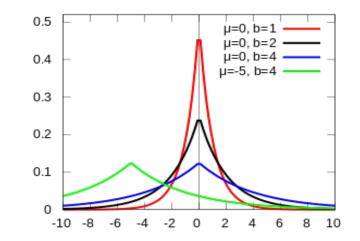
Example DP mechanism

- The dataset contains health data from *n* users, and the data analyst wants to know how many patients have tested positive for a virus
- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- Consider an analyst wants to report the count $\sum_{i=1}^{n} x_i$

Q: How could we make this private?



- Let Y ~ Lap(b, μ)
 Δ Laplace distribution!
- With PDF: $p_Y(y) = \frac{1}{2b} e^{-\frac{|y-\mu|}{b}}$



- Consider the mechanism that reports the true count of positive results plus Laplacian noise, i.e.,
 - $M(D) = \sum_{i=1}^{n} x_i + Y$, where *Y* is noise from a Laplace distribution with mean 0 and scale *b*.

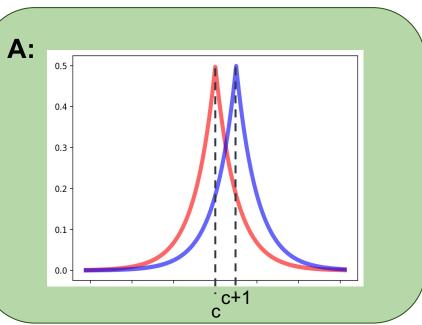
- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where *Y* is noise from a Laplace distribution with mean 0 and scale *b*.
- You can write $c = \sum_{i=2}^{n} x_i$.

Q: What do the worst-case distributions of M(D) vs M(D') look like?

- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where Y is noise from a Laplace distribution with mean 0 and scale b.
- You can write $c = \sum_{i=2}^{n} x_i$.

Q: What do the worst-case distributions of M(D) vs M(D') look like?

Q: What is the maximum ratio between the distributions?

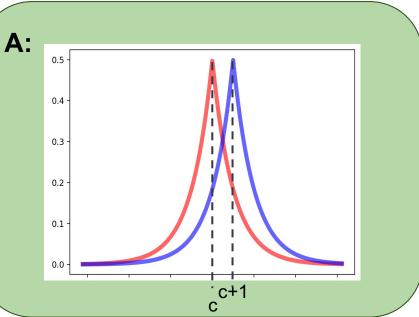


- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where Y is noise from a Laplace distribution with mean 0 and scale b.
- You can write $c = \sum_{i=2}^{n} x_i$.

Q: What do the worst-case distributions of M(D) vs M(D') look like?

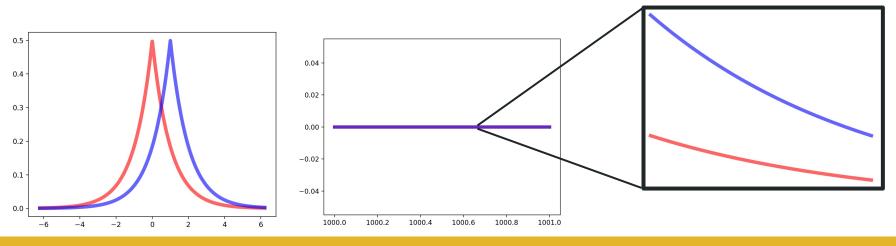
Q: What is the maximum ratio between the distributions?

A: exp(1/b)... Let $b = 1/\epsilon$ and we have DP!



Approximate DP

- Differential privacy is very strict. In the slide before, if we replace the Laplacian noise with a Laplace y ~ Lap(1) truncated at y > 1000, the mechanism is basically "the same":
 - $\Pr(y > 1000 | y \sim Lap(1)) = \frac{1}{2} \exp(-1000) \approx 10^{-435}.$
- However, if we truncate the Laplacian noise, the mechanism goes from $\epsilon = 1$ (good privacy) to $\epsilon = \infty$ (no privacy).



No matter where we do zoom, we'll always see this!

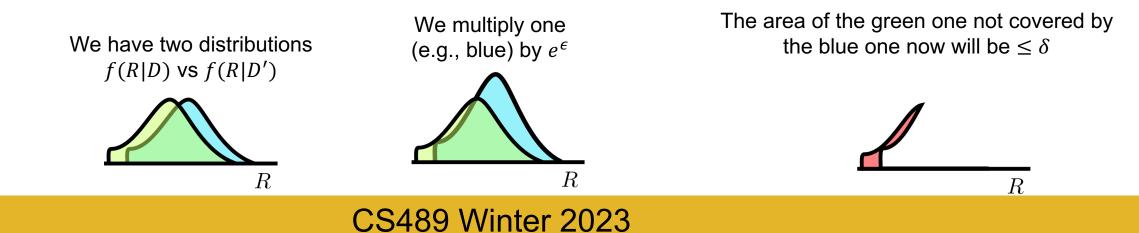
Approximate DP

• The following is a relaxation of the DP definition, that allows some tolerance:

(Approximate) Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if the following holds for all sets of possible outputs $S \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$: $\Pr(M(D) \in S) \leq \Pr(M(D') \in S) e^{\epsilon} + \delta$

- When $\delta = 0$, this is the same as ϵ -DP (called pure DP).
- What does this mean?



Approximate DP: interpretation

(Approximate) Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if the following holds for all sets of possible outputs $S \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$: $Pr(M(D) \in S) \leq Pr(M(D') \in S) e^{\epsilon} + \delta$

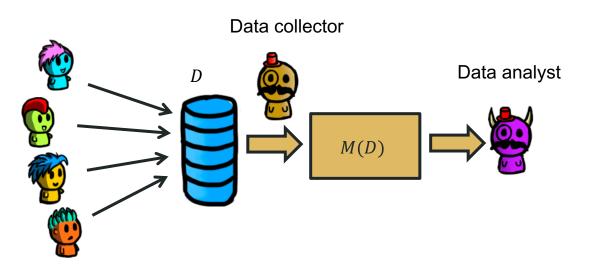
- A mechanism $M: \mathcal{D} \to \mathcal{R}$ that provides ϵ -DP except for certain "bad" outcomes $B \subset \mathcal{R}$, where $\Pr(M(D) \in B) \leq \delta$ (for any $D \in \mathcal{D}$) also provides (ϵ, δ)-DP.
- Proof is not as simple as it seems, but it can be proven

Differential Privacy Settings

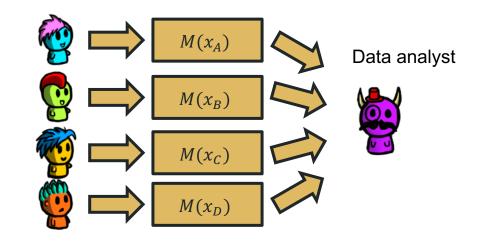
Central DP vs. Local DP

• Depending on who runs the mechanism, there are two broad models for differential privacy.

Central Differential Privacy: there is a centralized (trusted) aggregator



Local Differential Privacy: each user runs the mechanism themselves and reports the result to the adversary/analyst

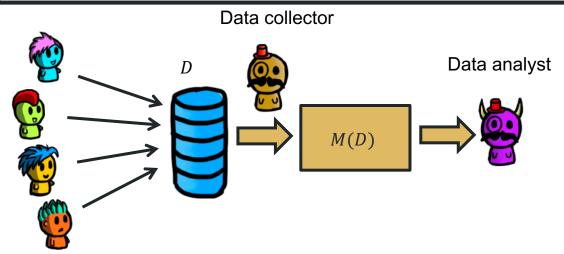


Central DP vs. Local DP

(Central) Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible sets of outputs $R \subset \mathcal{R}$ and all pairs of neighboring datasets $D, D' \in \mathcal{D}$:

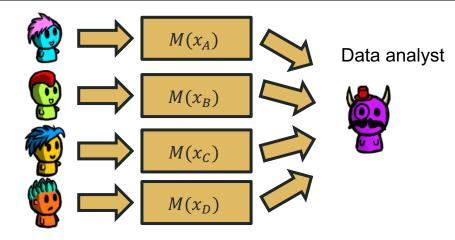
 $\Pr(M(D) \in R) \le \Pr(M(D') \in R) e^{\epsilon}$



(Local) Differential Privacy

A mechanism $M: \mathcal{D} \to \mathcal{R}$ is ϵ -differentially private (ϵ -DP) if the following holds for all possible sets of outputs $R \subset \mathcal{R}$ and all pairs of neighboring inputs $x, x' \in \mathcal{D}$:

 $\Pr(M(x) \in R) \le \Pr(M(x') \in R) e^{\epsilon}$



• They are "the same definition", it's just that the inputs to the mechanism and what we define as "neighbouring" inputs/datasets is usually different.

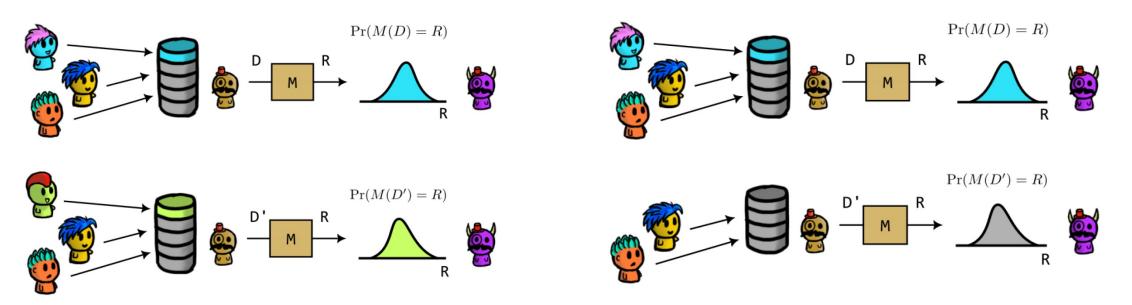
Central DP vs. Local DP

- Central DP
 - Best accuracy, aggregation allows to hide in the crowd before we add noise.
 - Need to trust the data collector.
 - Hard to verify if noise was added.
- Local DP
 - Accuracy not as good. Each user adds noise which can compound in the final result.
 - User doesn't need to trust anybody and knows they added noise.
- Shuffle Model of DP
 - Hybrid where users add less noise on the understanding a semi-trusted party aggregates and shuffles the results before they are made public.

Bounded DP vs. Unbounded DP

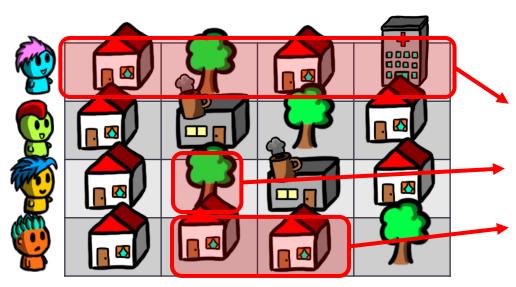
• There are two "main" definitions for how we define neighboring datasets in the central model.

Bounded DP: *D* and *D*' have the same number of entries but differ in the value of one. Unbounded DP: *D* and *D*' are such that you get one by deleting an entry from the other one.



Other notions of DP

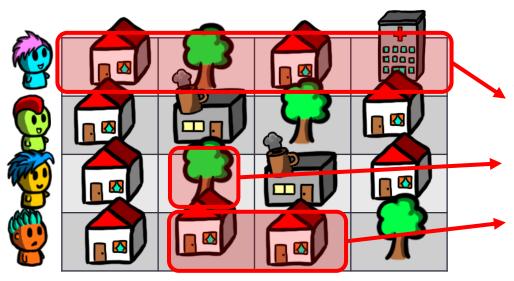
- Many possible neighbouring definitions.
- For example, in location privacy:



Depending on how we define neighboring datasets D and D', we get a different DP guarantee:

- User-level DP: we replace a user trajectory for another user's trajectory
- Event-level DP: we replace the location of a user for another location
- w-event DP: we replace a window of w consecutive locations of a user for another
- These are all DP and have their uses. It is important to understand, for each system/application, which notion of DP it provides.

Other notions of DP - question

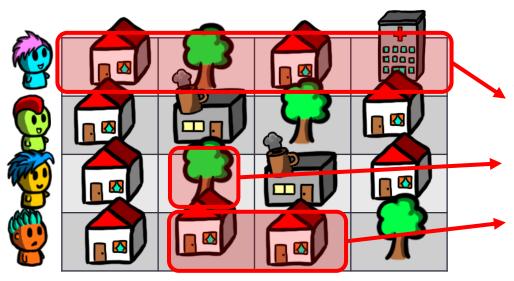


Depending on how we define neighboring datasets D and D', we get a different DP guarantee:

- User-level DP: we replace a user trajectory for another user's trajectory
- Event-level DP: we replace the location of a user for another location
- w-event DP: we replace a window of w consecutive locations of a user for another

Q: Which notions of DP imply the others?

Other notions of DP - question



Depending on how we define neighboring datasets D and D', we get a different DP guarantee:

- User-level DP: we replace a user trajectory for another user's trajectory
- Event-level DP: we replace the location of a user for another location
- w-event DP: we replace a window of w consecutive locations of a user for another

Q: Which notions of DP imply the others?

A: User implies w-event and event W-event implies event

DP Mechanisms

DP Mechanisms

- We are going to see different mechanisms that provide Differential Privacy and that can be applied to various systems.
- You need to understand why they provide DP, when you can use them, how to compute the ϵ level they provide, etc.
- We will see:
 - 1. The Laplace Mechanism (DP, continuous outputs)
 - 2. The Randomized Response Mechanism (DP, binary inputs/outputs)
 - 3. General Discrete Mechanisms
 - 4. The Exponential Mechanism (DP, discrete outputs)
 - 5. The Gaussian Mechanism (approximate DP, continuous)

The Laplace Mechanism – Sensitivity

- We already saw an example of this. Now, we will make it more formal.
- First, we need to bound the maximum change in the non-private function we want to compute.
- Given a function $f: \mathcal{D} \to \mathbb{R}^k$, and two neighboring datasets $D \in \mathcal{D}$ and $D' \in \mathcal{D}$, the ℓ_1 -sensitivity of f is the maximum change that replacing D for D' can cause in the output:

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

• Can generalize to other norms (such as ℓ_2 which we will see later)

The Laplace Mechanism

- Given a function $f: \mathcal{D} \to \mathbb{R}^k$, and two neighboring datasets $D \in \mathcal{D}$ and $D' \in \mathcal{D}$, the ℓ_1 -sensitivity of f is the maximum change that replacing D for D' can cause in the output: $\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$
- Given any function f and it's ℓ_1 sensitivity, we can turn it into a DP mechanism if we add Laplacian noise to its output:

Given a function $f: \mathcal{D} \to \mathbb{R}^k$ with ℓ_1 -sensitivity Δ_1 , the **Laplace mechanism** is defined as $M(D) = f(D) + (Y_1, Y_2, ..., Y_k)$ where each Y_i is independently distributed following $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$.

The Laplace Mechanism

- We already saw an example of this. Now, we will make it more formal.
- Given a function $f: \mathcal{D} \to \mathbb{R}^k$, and two neighboring datasets $D \in \mathcal{D}$ and $D' \in \mathcal{D}$, the ℓ_1 -sensitivity of f is the maximum change that replacing D for D' can cause in the output: $\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$
- Given any function f and it's ℓ_1 sensitivity, we can turn it into a DP mechanise The Laplace mechanist if we add Laplacian noise to its output:

Given a function $f: \mathcal{D} \to \mathbb{R}^k$ with ℓ_1 -sensitivity Δ_1 , the **Laplace mechanism** is defined as $M(D) = f(D) + (Y_1, Y_2, ..., Y_k)$ is independently distributed following $Y \sim Lap(b)$ with

Recall, our example

- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where *Y* is noise from a Laplace distribution with mean 0 and scale *b*.
- You can write $c = \sum_{i=2}^{n} x_i$.

Q: What is the sensitivity?

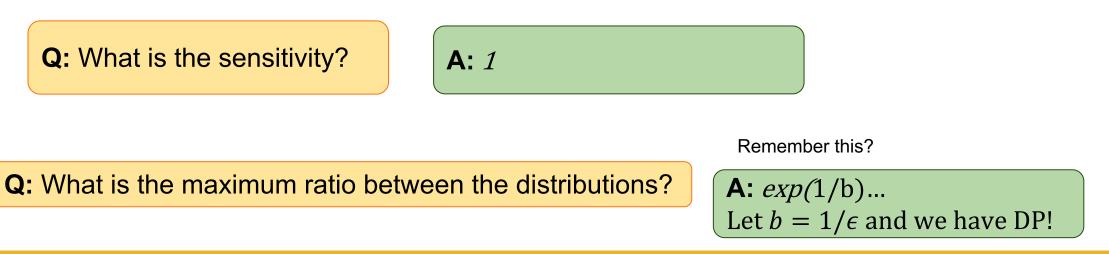
Recall, our example

- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where Y is noise from a Laplace distribution with mean 0 and scale *b*.
- You can write $c = \sum_{i=2}^{n} x_i$.

Q: What is the sensitivity?

Recall, our example

- Let x_i be the test result for user i ($x_i = 0$ for negative, $x_i = 1$ for positive)
- Let *D* be the dataset where $x_1 = x_A$ is Alice, and *D'* is the dataset where $x_1 = x_B$ is Bob. Assume that $x_A = 1$ and $x_B = 0$.
- $M(D) = \sum_{i=1}^{n} x_i + Y$, where Y is noise from a Laplace distribution with mean 0 and scale b.
- You can write $c = \sum_{i=2}^{n} x_i$.



CS489 Winter 2023

The Laplace Mechanism: proof

- Prove that the Laplace mechanism provides ϵ -DP (use k = 1 for simplicity)
 - 1. Write the pdf of the output when the input is *D*, i.e., $p_{M(D)}(r)$.
 - Remember that $p_Y(y) = \frac{1}{2b} e^{-\frac{|y-\mu|}{b}}$ when $Y \sim Lap(b,\mu)$.
 - 2. Write $p_{M(D)}(r)$ divided by $p_{M(D')}(r)$; what is the maximum value that this ratio can take?
 - Remember that $|f(D) f(D')| \le \Delta_1$, by the sensitivity definition.
 - 3. Remember that you just need to prove that $p_{M(D)}(r) \le p_{M(D')}(r)e^{\epsilon}$ for any pair of neighboring datasets and any output r.

Given a function $f: \mathcal{D} \to \mathbb{R}^k$ with ℓ_1 -sensitivity Δ_1 , the **Laplace mechanism** is defined as $M(D) = f(D) + (Y_1, Y_2, \dots, Y_k)$ where each Y_i is independently distributed following $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$. $\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$

The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

Q: what does smaller ϵ mean?

The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

A: more privacy

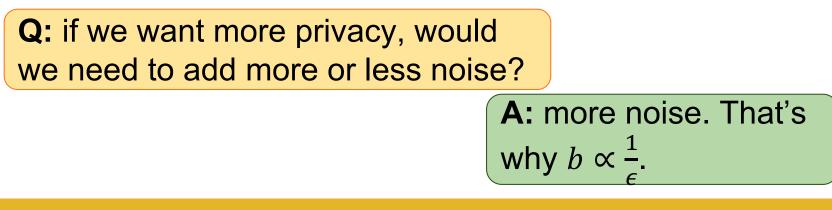
The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

Q: if we want more privacy, would we need to add more or less noise?

The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

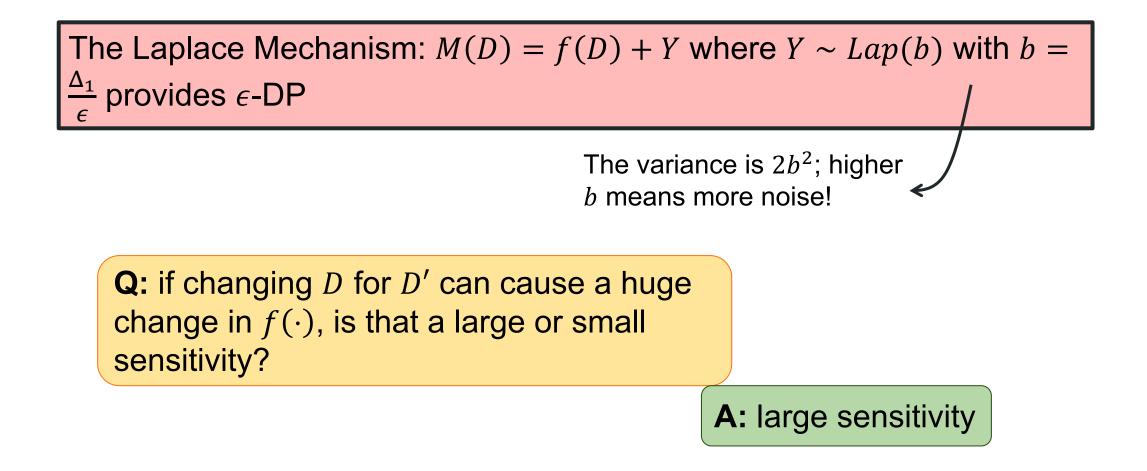
The variance is $2b^2$; higher *b* means more noise!



The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

Q: if changing *D* for *D'* can cause a huge change in $f(\cdot)$, is that a large or small sensitivity?



The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

Q: if changing *D* for D' can have a huge impact in *f*, do we need a lot or a little noise to hide this impact?

The Laplace Mechanism: M(D) = f(D) + Y where $Y \sim Lap(b)$ with $b = \frac{\Delta_1}{\epsilon}$ provides ϵ -DP

The variance is $2b^2$; higher *b* means more noise!

Q: if changing *D* for D' can have a huge impact in *f*, do we need a lot or a little noise to hide this impact?

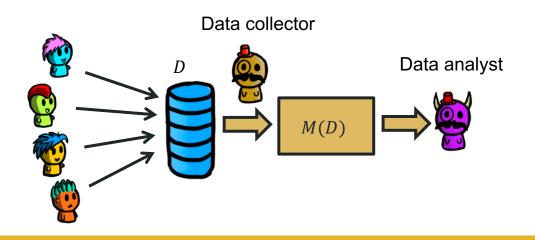
A: a lot of noise. That's why $b \propto \Delta_1$

Example 1: *D* contains the test results for virus X of a set of users. We want to release the total number of users that tested positive. How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



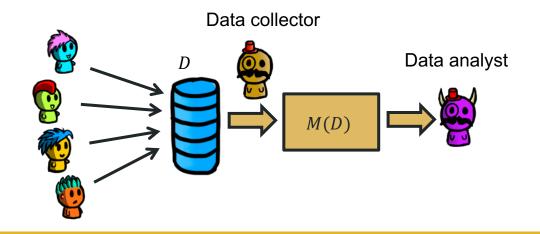
Example 1: *D* contains the test results for virus X of a set of users. We want to release the total number of users that tested positive. How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$

A: sensitivity is 1 in both cases Add $Y \sim Lap\left(\frac{1}{\epsilon}\right)$

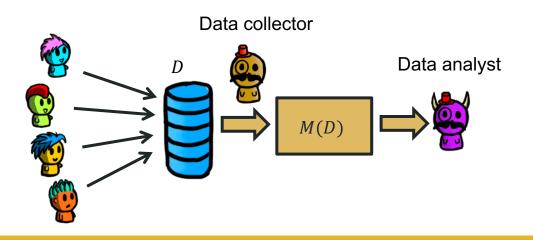


Example 2: *D* contains the salaries of a set of users. The salaries range from 20k to 200k. We want to release the **total** salary of the users. How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



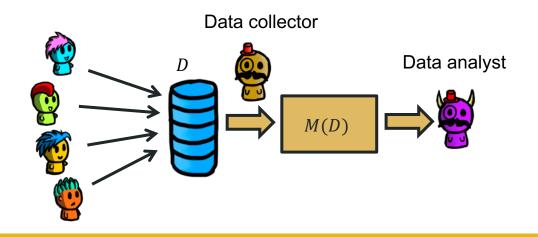
Example 2: *D* contains the salaries of a set of users. The salaries range from 20k to 200k. We want to release the **total** salary of the users. How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

A: sensitivity is bounded by 180k in the bounded and 200k in the unbounded Add $Y \sim Lap\left(\frac{180k}{\epsilon}\right)$ or $Y \sim Lap\left(\frac{200k}{\epsilon}\right)$

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$

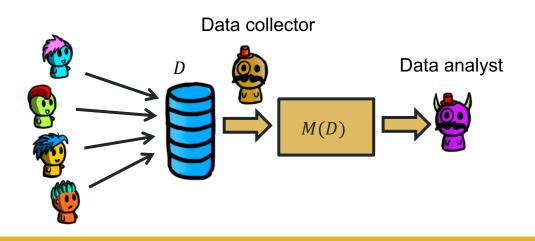


Example 3: *D* contains the salaries of *n* users (*n* is public knowledge). The salaries range from 20k to 200k. We want to release the **average** salary of users. How do we make this ϵ -DP?

Under bounded DP

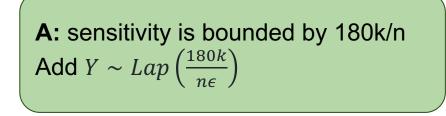
$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



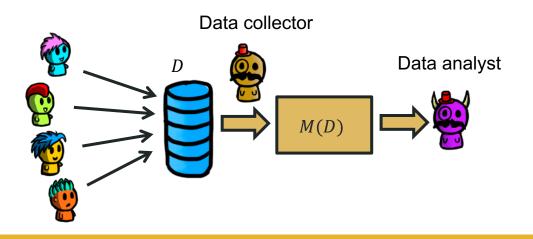
Example 3: *D* contains the salaries of *n* users (*n* is public knowledge). The salaries range from 20k to 200k. We want to release the **average** salary of users. How do we make this ϵ -DP?

Under bounded DP



 $\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$

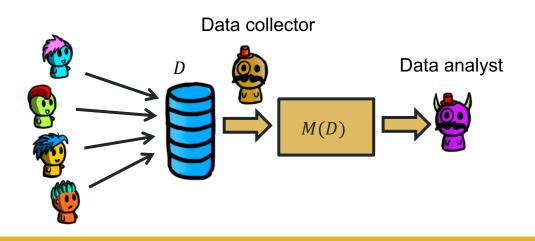


Example 4: *D* contains the age of a set of users. We want to release the histogram of ages [0-10), [10-20)...[100,110). How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



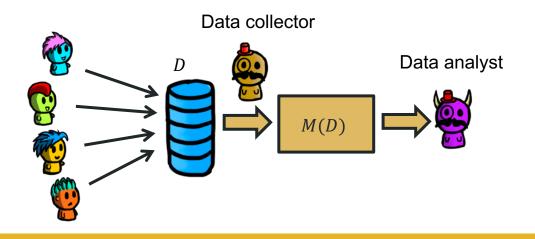
Example 4: *D* contains the age of a set of users. We want to release the histogram of ages [0-10), [10-20)...[100,110). How do we make this ϵ -DP?

- Under unbounded DP
- Under bounded DP

A: sensitivity is 1 in unbounded 2 in bounded Add $Y \sim Lap\left(\frac{1}{\epsilon}\right)$ or $Y \sim Lap\left(\frac{2}{\epsilon}\right)$ to each bucket in the histogram (drawn fresh for each bucket)

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

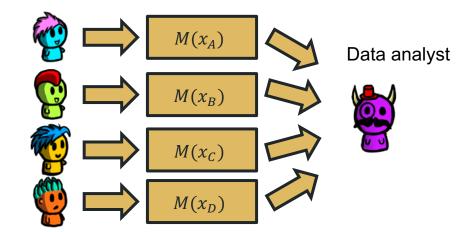
$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



Example 5: Alice wishes to report her annual salary x_A in a differentially private way. The salaries at her company range from 20k to 200k (and this is public information). What mechanism can she follow so that she gets ϵ -DP?

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$

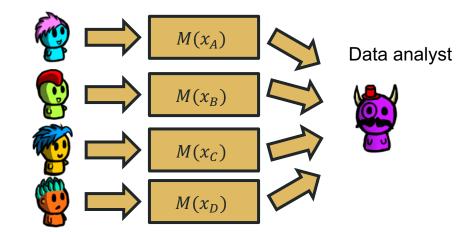


Example 5: Alice wishes to report her annual salary x_A in a differentially private way. The salaries at her company range from 20k to 200k (and this is public information). What mechanism can she follow so that she gets ϵ -DP?

A: sensitivity is bounded by 180k Add $Y \sim Lap\left(\frac{180k}{\epsilon}\right)$

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

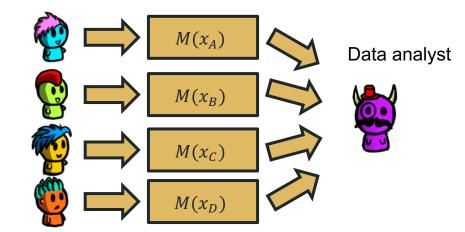
$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



Example 6: Alice wishes to report her age x_A in a differentially private way. It is public information that she is between 18 and 100 years old. She adds Laplacian noise with b = 3 to her age, and reports the resulting value. What is the level of DP that she gets?

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$



Example 6: Alice wishes to report her age x_A in a differentially private way. It is public information that she is between 18 and 100 years old. She adds Laplacian noise with b = 3 to her age, and reports the resulting value. What is the level of DP that she gets?

A: sensitivity is bounded by 82	
$b = \frac{82}{} = 3$	
ϵ	
$\epsilon = 82/3$	

$$\Delta_1 \doteq \max_{D,D'} ||f(D) - f(D')||_1$$

$$f(D) + Y$$
 is ϵ -DP if
 $Y \sim Lap\left(\frac{\Delta_1}{\epsilon}\right)$

