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Syntactic notions of privacy have some issues
● As seen in the last lecture, syntactic notions of privacy 

have some issues:
○ Defining which attributes are quasi-identifiers and which are sensitive attributes is hard
○ They mostly apply to relational databases; what about more general data releases like 

machine learning?
○ The guarantees are data-dependent and adversary-dependent.
○ What if the adversary has arbitrary auxiliary information?

● We need a formal notion of privacy, that provides formal 
guarantees against (all) attacks.
○ But how do we achieve this?
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Can we protect against auxiliary information?
● Each user contributes to one entry (row) of a database 𝐷.
● The release mechanism 𝑀 publishes some data 𝑅 = 𝑀(𝐷).

○ Note: we can characterize the mechanism by Pr(𝑀 𝐷 = 𝑅), which is the same as Pr 𝑅 𝐷 in the inference 
attacks lecture.

● Can we provide privacy when the adversary has auxiliary information?

𝑀(𝐷) Attack

Analysis
results Inference

(some of the privacy-sensitive data)

Auxiliary data

Side-channelData collector

Data Analyst
𝐷
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Example: strong auxiliary information

𝑀(𝐷) Attack

Privacy-preserving study about 
smoking and cancer

Inference
“Alice has higher risk of cancer”

“Alice smokes”Data collector

Adversary
(insurance company)𝐷

Medical 
data

Q: Can we design a mechanism 𝑀 that prevents this? Does it make sense to 
design a mechanism 𝑀 that prevents this?
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Example: strong auxiliary information

𝑀(𝐷) Attack

Privacy-preserving study about 
smoking and cancer

Inference
“Alice has higher risk of cancer”

“Alice smokes”Data collector

Adversary
(insurance company)𝐷

Medical 
data

Q: Can we design a mechanism 𝑀 that prevents this? Does it make sense to 
design a mechanism 𝑀 that prevents this?

A: The adversary would’ve reached the same conclusion even if Alice hadn’t 
participated in the study! We cannot prevent this unless we destroy utility (e.g., not 
doing the study)
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Example: strong auxiliary information

● Note that the adversary reaches the same conclusion in this case, 
even though Alice has not participated!

𝑀(𝐷) Attack

Privacy-preserving study about 
smoking and cancer

Inference
“Alice has higher risk of cancer”

Data collector

Adversary
(insurance company)𝐷

Medical 
data

“Alice smokes”

Q: Any ideas of how we could define privacy taking this into account?
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Possible Idea:
● If the analyst learns similar things in these 

two cases about Alice, then 𝑀 provides 
enough privacy.

● If the adversary learns “a lot” about Alice in 
both cases, then we cannot prevent this 
anyway

● Given 𝑅 = 𝑀(𝐷), the adversary should be 
unable to distinguish whether or not Alice 
was in the dataset!

● Note that this means that 𝑀(𝐷) has to be 
randomized (or always report the same 
value, but this makes 𝑅 constant –
independent of 𝐷 – which is not useful.)

𝑀(𝐷)

Data collector

𝐷 Data analyst

𝑀(𝐷)

𝐷’
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We want similar output distributions!
● These datasets are 

usually called 
neighboring datasets 
(and usually denoted 
by 𝐷 and 𝐷’)

● We want these 
distributions to be 
“similar” (for all 𝑅)

● How do we quantify 
how “similar” they 
are?

𝑀(𝐷)

Data collector

𝐷

𝑀(𝐷)

𝐷’

Pr(𝑀(𝐷) = 𝑅)

Pr(𝑀(𝐷’) = 𝑅)

R

R
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Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

How do we define “similar” distributions?

● What does this mean?

Q: What gives more privacy, small or large 𝑝?
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Does this really work?

Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

Q: Case 1 seems fine. What is the issue with case 2?
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Does this really work?

Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

Q: Case 1 seems fine. What is the issue with case 2?

A: There are some outputs 𝑅 that can only happen if the input was 𝐷
(e.g., if Alice was not in the dataset). This allows the adversary to 
distinguish between 𝐷 and 𝐷’ with 100% certainty.
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

● Q: what does provide more privacy, small (but larger than 1) or large 𝑝?
Q: Does this make sense?
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

● Q: what does provide more privacy, small (but larger than 1) or large 𝑝?
Q: Does this make sense?

A: Yes, because in this case we get no 
privacy, and that’s what 𝑝 = ∞ means
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Finally: Differential Privacy
● Same definition, but instead of “𝑝” we use 𝑒!

● Some notes:
○ We use 𝑒* , instead of just 𝜖, because this makes it easier to 

formulate some useful theorems that we will see later
○ We do not need the 𝑒+* on the left, since this must hold for all pairs 

(𝐷,𝐷’). This includes (𝐷’, 𝐷).
○ 𝜖 ∈ [0,∞); this ensures that 𝑒* ∈ 1,∞

Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following holds for all 
possible outputs 𝑅 ∈ ℛ and all pairs of neighboring datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷" = 𝑅 𝑒!
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Recall, Differential Privacy (for discrete functions)

Differential Privacy – Discrete Definition
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following holds for all 
possible outputs 𝑅 ∈ ℛ and all pairs of neighboring datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷" = 𝑅 𝑒!
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DP for continuous functions
Differential Privacy – Continuous Definition
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible outputs r ∈ ℛ and all pairs of neighboring datasets 
𝐷,𝐷" ∈ 𝒟:

𝑝# $ 𝑟 ≤ 𝑝# $, 𝑟 𝑒!

17

Where 𝑝# $ 𝑟 is the PDF of M(D) evaluated at r 
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Generic DP Definition
● Discrete definition does not work for continuous functions 

○ Probability of a single value is zero

● Similarly continuous doesn't work for discrete functions
● A more generic definition:

18

Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷" ∈ 𝑅 𝑒!
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When to use which!?
● Discrete and continuous versions are easiest to use when 

proving a discrete or continuous mechanism respectively
● Generic is nice for reasoning about things in general, but 

proofs get trickier 
○ perhaps you need to integrate the PDF over a set…

19
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Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷" ∈ 𝑅 𝑒!

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?

20
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Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷" ∈ 𝑅 𝑒!

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?

A: Smaller 𝜖 means more privacy; larger 
means less privacy

Q: What does 𝜖 = 0 mean?

21



CS489 Winter 2023 

Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷" ∈ 𝑅 𝑒!

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?

A: Smaller 𝜖 means more privacy; larger 
means less privacy

Q: What does 𝜖 = 0 mean?
A: Perfect privacy! The output is independent of 
the dataset! Utility will be very bad.
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Some notes on Differential Privacy
● DP was proposed in 2006 by Cynthia Dwork et al. [DMNS06]
● The authors won the Test-of-Time Award in 2016 and the Godel

Price in 2017.
● Adopted by big companies like Apple, Google, Microsoft, 

Facebook, LinkedIn, and by the US Census Bureau for the 2020 US 
Census, etc.

● There is no consensus on how small 𝜖 should be.
● Let’s see an alternative interpretation of DP as a statistical 

inference game!

23
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DP as a statistical game
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷) = 𝑅 𝑒* even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the prior is uniform, 
Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst (adversary). This is the 
leakage (which we called 𝑦 when we talked about inference attacks).

D

D’ ? M(D)

R
?

24
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Probability recap (from lecture 14)
● 𝒙 is Alice’s private information, 𝒚 is the leakage; usually 1𝒙 is the adversary’s estimate of 𝑥.
● 𝑷𝒓 𝒙 : the prior probability distribution of Alice’s secret value
● 𝑷𝒓(𝒚|𝒙): the mechanism that models the leakage given Alice’s secret information

○ In Bayesian inference, Pr(𝑦|𝑥) is also called the likelihood (of 𝑥 having generated 𝑦)

● 𝐏𝐫(𝒙|𝒚): the posterior probability distribution (the probability that 𝑥 took a certain value given 
the observed leakage 𝑦) 

● Bayes’ theorem connects these concepts:

Pr 𝑥 𝑦 = !" 𝑦 𝑥 ⋅!" $
!"(&)

● Law of total probability: Pr 𝑦 = ∑$ Pr 𝑥 Pr 𝑦 𝑥

(Private) 
data 

release

𝑥
𝑦

Pr(𝑦|𝑥)
:𝑥?
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

26

Q: Compute the posterior 
probability Pr(𝐷|𝑅) as a function 
of the mechanism only.
Recall Pr 𝑅 𝐷 = Pr(𝑀 𝐷 = 𝑅)
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?
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Q: Compute the posterior 
probability Pr(𝐷|𝑅) as a function 
of the mechanism only.
Recall Pr 𝑅 𝐷 = Pr(𝑀 𝐷 = 𝑅)

A:

Pr 𝐷 𝑅 =
Pr 𝑅 𝐷 Pr(𝐷)

Pr(𝑅)

=
Pr(𝑅|𝐷)

Pr 𝑅 𝐷 + Pr(𝑅|𝐷()
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

28

Q: What is the optimal decision 
that the attacker can make, 
based on the posterior 
probabilities? (think of MAP)
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

29

Q: What is the optimal decision 
that the attacker can make, 
based on the posterior 
probabilities? (think of MAP)

A: The adversary would pick 𝐷 if 
Pr 𝐷 𝑅 ≥ Pr(𝐷(|𝑅). Otherwise 
𝐷′.
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

30

Q: What is the maximum and 
minimum value that Pr(𝐷|𝑅) can 
take (for any 𝐷 or 𝑅), when 𝑀 is 
𝜖-DP?
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

31

Q: What is the maximum and 
minimum value that Pr(𝐷|𝑅) can 
take (for any 𝐷 or 𝑅), when 𝑀 is 
𝜖-DP?

A: We have Pr 𝐷 𝑅 = *

*+!"($|&
')

!"($|&)

. 

Using the definition of DP, we 
know that

1
1 + 𝑒)

≤ Pr 𝐷 𝑅 ≤
1

1 + 𝑒,)
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DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

32

Q: How does this connect to the 
probability of error 𝑝-../. of the 
smartest adversary? i.e. can we 
bound 𝑝-../. using DP?
(𝑝-../. is the probability the 
attack from previous slide got it 
wrong)



CS489 Winter 2023 

DP as a statistical game – Questions
● What does Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷( = 𝑅 𝑒) even mean?
● Consider the following game:

● We choose between 𝐷 and 𝐷’ uniformly at random, i.e., the 
prior is uniform, Pr(𝐷) = Pr(𝐷’) = 0.5.

● We generate 𝑅 = 𝑀(𝐷) and give it to the analyst 
(adversary). This is the leakage (which we called 𝑦 when 
we talked about inference attacks).

D

D’ ? M(D)

R
?

33

Q: How does this connect to the 
probability of error 𝑝-../. of the 
smartest adversary? i.e. can we 
bound 𝑝-../. using DP?
(𝑝-../. is the probability the 
attack from previous slide got it 
wrong)

A:When	the	adversary	picks	𝐷′,	
it’s	because	Pr 𝐷 𝑅 ≤ 0.5.	The	
probability	of	error	in	that	case	is	
simply	Pr(𝐷|𝑅) (the	probability	
that	the	actual	true	dataset	was	𝐷
given	𝑅).	Therefore,	we	have

1
𝑒) + 1

≤ 𝑝-../. ≤ 0.5
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DP as a statistical game - Notes
● Note that the assumptions of this exercise are many times 

unrealistic, but DP provides privacy even in this worst-case 
scenario.

● This game is often called the Strong Adversary Experiment.
● DP implies this bound on 𝑝[\\]\ , but this is not a sufficient 

condition for DP.

34
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DP interpretation as a game – Interpreting 𝜖
𝜖 𝒑𝒆𝒓𝒓𝒐𝒓 ≥ ? Privacy

0 0.5 Perfect!

0.1 0.47 Very high

1 0.26 OK?

5 0.006 Bad

10 0.00004 Meaningless
?

100,000 10+34,346

𝐷

𝐷′ ? 𝑀(𝐷)

𝑅
?

If 𝑀 is 𝜖-DP, the adversary’s probability of 
error is:

1
𝑒* + 1

≤ 𝑝.//0/ ≤ 0.5

35
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About DP and empirical attack performance
● DP ensures protection even against a strong adversary that knows that the 

input is either 𝐷 or 𝐷’
○ and it provides the guarantee for all possible outputs 𝑅, even those that are unlikely to 

happen!

● In practice, an algorithm that provides 𝜖=10 might provide high empirical 
protection against existing attacks 
○ even though it does not provide a meaningful worst-case bound.

● However, one can argue: why would you use DP as a defense with 𝜖=10? 
○ At that point the theoretical worst-case guarantee is meaningless, and you might as well use 

something that does not provide DP but provides better empirical performance.

36
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Example DP mechanism
● The dataset contains health data from 𝑛 users, and the data analyst wants to 

know how many patients have tested positive for a virus
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● Consider an analyst wants to report the count ∑%)&* 𝑥%

M(D)

Data collector

𝐷 Data analyst

37

Q: How could we make this private?
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Example: the Laplacian mechanism
● Let 𝑌 ∼ 𝐿𝑎𝑝(𝑏, 𝜇)

○ A Laplace distribution!

● With PDF: p1 𝑦 = 2
34
𝑒5

!"#
$

● Consider the mechanism that reports the true count of positive results 
plus Laplacian noise, i.e., 
○ 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	

0 and	scale	𝑏.

38
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Example: the Laplacian mechanism
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

39

Q: What do the worst-case distributions of 𝑀 𝐷 vs 
𝑀(𝐷() look like?
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A:

Example: the Laplacian mechanism
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

40

Q: What do the worst-case distributions of 𝑀 𝐷 vs 
𝑀(𝐷() look like?

Q: What is the maximum ratio between the distributions?

c
c+1
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A:

Example: the Laplacian mechanism
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

41

Q: What do the worst-case distributions of 𝑀 𝐷 vs 
𝑀(𝐷() look like?

Q: What is the maximum ratio between the distributions?

c
c+1

A: exp(1/b)…
Let	𝑏 = 1/𝜖 and	we	have	DP!	
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Approximate DP
● Differential privacy is very strict. In the slide before, if we replace the 

Laplacian noise with a Laplace 𝑦 ∼ 𝐿𝑎𝑝(1) truncated at 𝑦 > 1000, the 
mechanism is basically “the same”:
○ Pr 𝑦 > 1000 𝑦 ∼ 𝐿𝑎𝑝 1 = %

&
exp −1000 ≈ 10'()*.

● However, if we truncate the Laplacian noise, the mechanism goes from 𝜖 = 1
(good privacy) to 𝜖 = ∞ (no privacy).

No matter where we 
do zoom, we’ll 
always see this!

42
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Approximate DP
● The following is a relaxation of the DP definition, that allows some tolerance:

● When 𝛿 = 0, this is the same as 𝜖-DP (called pure DP).
● What does this mean?

(Approximate) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 
for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷" ∈ 𝑆 𝑒! + 𝛿

We have two distributions
𝑓(𝑅|𝐷) vs 𝑓(𝑅|𝐷))

We multiply one 
(e.g., blue) by 𝑒*

The area of the green one not covered by 
the blue one now will be ≤ 𝛿

43
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Approximate DP: interpretation

● A mechanism 𝑀:𝒟 → ℛ that provides 𝜖-DP except for certain ”bad” outcomes 
𝐵 ⊂ ℛ, where Pr 𝑀 𝐷 ∈ 𝐵 ≤ 𝛿 (for any 𝐷 ∈ 𝒟) also provides 𝜖, 𝛿 -DP.

● Proof is not as simple as it seems, but it can be proven

(Approximate) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 
for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷" ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷" ∈ 𝑆 𝑒! + 𝛿

44



Differential Privacy Settings

45
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Central DP vs. Local DP
● Depending on who runs the mechanism, there are two broad 

models for differential privacy.

46

Central Differential Privacy: there is a 
centralized (trusted) aggregator

Local Differential Privacy: each user runs the 
mechanism themselves and reports the result 
to the adversary/analyst

𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)
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Central DP vs. Local DP

47

𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

(Central) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-
DP) if the following holds for all possible sets of 
outputs 𝑅 ⊂ ℛ and all pairs of neighboring datasets 
𝐷,𝐷+ ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷+ ∈ 𝑅 𝑒,

(Local) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-
DP) if the following holds for all possible sets of 
outputs 𝑅 ⊂ ℛ and all pairs of neighboring inputs 
𝑥, 𝑥+ ∈ 𝒟:

Pr 𝑀 𝑥 ∈ 𝑅 ≤ Pr 𝑀 𝑥+ ∈ 𝑅 𝑒,

• They are “the same definition”, it’s just that the inputs to the mechanism and what we define as 
“neighbouring” inputs/datasets is usually different.
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Central DP vs. Local DP
● Central DP

○ Best accuracy, aggregation allows to hide in the crowd before we add noise.
○ Need to trust the data collector.
○ Hard to verify if noise was added.

● Local DP
○ Accuracy not as good. Each user adds noise which can compound in the final result.
○ User doesn’t need to trust anybody and knows they added noise.

● Shuffle Model of DP
○ Hybrid where users add less noise on the understanding a semi-trusted party aggregates and 

shuffles the results before they are made public.

48
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Bounded DP vs. Unbounded DP
● There are two “main” definitions for how we define neighboring datasets in the central model.

49

Bounded DP: 𝐷 and 𝐷’ have the same 
number of entries but differ in the value of 
one.

Unbounded DP: 𝐷 and 𝐷’ are such that you 
get one by deleting an entry from the other 
one.
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Other notions of DP
● Many possible neighbouring definitions. 
● For example, in location privacy:

● These are all DP and have their uses. It is important to understand, 
for each system/application, which notion of DP it provides.

50

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another
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Other notions of DP - question

51

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another

Q: Which notions of DP imply the others?
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Other notions of DP - question

52

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another

Q: Which notions of DP imply the others?

A: User implies w-event and event
W-event implies event



DP Mechanisms

53
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DP Mechanisms
● We are going to see different mechanisms that provide Differential 

Privacy and that can be applied to various systems.
● You need to understand why they provide DP, when you can use 

them, how to compute the 𝜖 level they provide, etc.
● We will see:

1. The Laplace Mechanism (DP, continuous outputs)
2. The Randomized Response Mechanism (DP, binary inputs/outputs)
3. General Discrete Mechanisms
4. The Exponential Mechanism (DP, discrete outputs)
5. The Gaussian Mechanism (approximate DP, continuous)

54
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The Laplace Mechanism – Sensitivity 
● We already saw an example of this. Now, we will make it more formal.
● First, we need to bound the maximum change in the non-private function we

want to compute.
● Given a function 𝑓:𝒟 → ℝL, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷" ∈ 𝒟, 

the ℓ𝟏-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Can generalize to other norms (such as ℓ𝟐 which we will see later)

55

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
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The Laplace Mechanism
● Given a function 𝑓:𝒟 → ℝL, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷" ∈ 𝒟, 

the ℓ&-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Given any function 𝑓 and it’s ℓ& sensitivity, we can turn it into a DP mechanism 
if we add Laplacian noise to its output:

56

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &

Given a function 𝑓:𝒟 → ℝL with ℓ&-sensitivity Δ&, the Laplace 
mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌&, 𝑌+, … , 𝑌L) where each 𝑌%
is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 = O7

! .
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The Laplace Mechanism
● We already saw an example of this. Now, we will make it more formal.
● Given a function 𝑓:𝒟 → ℝL, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷" ∈ 𝒟, 

the ℓ&-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Given any function 𝑓 and it’s ℓ& sensitivity, we can turn it into a DP mechanism 
if we add Laplacian noise to its output:

57

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &

Given a function 𝑓:𝒟 → ℝL with ℓ&-sensitivity Δ&, the Laplace 
mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌&, 𝑌+, … , 𝑌L) where each 𝑌%
is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 = O7

! .The Laplace mechanism 

provides 𝜖-D
P



CS489 Winter 2023 

Recall, our example
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

58

Q: What is the sensitivity?
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Recall, our example
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

59

Q: What is the sensitivity? A: 1



CS489 Winter 2023 

Recall, our example
● Let 𝑥% be the test result for user 𝑖 (𝑥% = 0 for negative, 𝑥% = 1 for positive)
● Let 𝐷 be the dataset where 𝑥& = 𝑥' is Alice, and 𝐷′ is the dataset where 𝑥& =

𝑥( is Bob. Assume that 𝑥' =1 and 𝑥( = 0.
● 𝑀 𝐷 = ∑%)&* 𝑥% + 𝑌,	where	𝑌 is	noise	from	a	Laplace	distribution	with	mean	0

and	scale	𝑏.
● You can write c = ∑%)+* 𝑥%.

60

Q: What is the sensitivity?

Q: What is the maximum ratio between the distributions? A: exp(1/b)…
Let	𝑏 = 1/𝜖 and	we	have	DP!	

A: 1

Remember this?
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The Laplace Mechanism: proof
● Prove that the Laplace mechanism provides 𝜖-DP (use 𝑘 = 1 for simplicity)

1. Write the pdf of the output when the input is 𝐷, i.e., 𝑝8 9 𝑟 .

■ Remember that p: 𝑦 = ;
<=
𝑒+

|"#$|
% when 𝑌 ∼ 𝐿𝑎𝑝(𝑏, 𝜇).

2. Write 𝑝8 9 𝑟 divided by 𝑝8 9> 𝑟 ;what is the maximum value that this ratio can take?
■ Remember that 𝑓 𝐷 − 𝑓 𝐷> ≤ Δ;, by the sensitivity definition.

3. Remember that you just need to prove that 𝑝8 9 𝑟 ≤ 𝑝8 9> 𝑟 𝑒* for any pair of neighboring 
datasets and any output r.

61

Given a function 𝑓:𝒟 → ℝL with ℓ&-sensitivity Δ&, the Laplace mechanism is 
defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌&, 𝑌+, … , 𝑌L) where each 𝑌% is independently 
distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 = O7

! .
Δ& ≐ max

$,$,
| 𝑓 𝐷 − 𝑓 𝐷" | &

Act.
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The Laplace Mechanism – checkpoint!

62

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: what does smaller 𝜖 mean?
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The Laplace Mechanism – checkpoint!

63

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: what does smaller 𝜖 mean?

A: more privacy
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The Laplace Mechanism – checkpoint!

64

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if we want more privacy, would 
we need to add more or less noise?
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The Laplace Mechanism – checkpoint!

65

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if we want more privacy, would 
we need to add more or less noise?

A: more noise. That’s 
why 𝑏 ∝ &

!.
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The Laplace Mechanism – checkpoint!

66

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 
change in 𝑓 ⋅ , is that a large or small 
sensitivity?
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The Laplace Mechanism – checkpoint!

67

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 
change in 𝑓 ⋅ , is that a large or small 
sensitivity?

A: large sensitivity
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The Laplace Mechanism – checkpoint!

68

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 
impact in 𝑓, do we need a lot or a little 
noise to hide this impact?
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The Laplace Mechanism – checkpoint!

69

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
O7
! provides 𝜖-DP

The variance is 2𝑏0; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 
impact in 𝑓, do we need a lot or a little 
noise to hide this impact?

A: a lot of noise. 
That’s why 𝑏 ∝ Δ&
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Laplace Mechanism: examples

70

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 1: 𝐷 contains the test results for virus X of a 
set of users. We want to release the total number of 
users that tested positive. How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

71

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 1: 𝐷 contains the test results for virus X of a 
set of users. We want to release the total number of 
users that tested positive. How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is 1 in both cases
Add 𝑌 ∼ 𝐿𝑎𝑝 *

)
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Laplace Mechanism: examples

72

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 2: 𝐷 contains the salaries of a set of users. 
The salaries range from 20k to 200k. We want to 
release the total salary of the users. How do we make 
this 𝜖-DP?
• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

73

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 2: 𝐷 contains the salaries of a set of users. 
The salaries range from 20k to 200k. We want to 
release the total salary of the users. How do we make 
this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is bounded by 
180k in the bounded and 200k 
in the unbounded
Add 𝑌 ∼ 𝐿𝑎𝑝 *123

)
or 

𝑌 ∼ 𝐿𝑎𝑝
200𝑘
𝜖



CS489 Winter 2023 

Laplace Mechanism: examples

74

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 
public knowledge). The salaries range from 20k to 200k. 
We want to release the average salary of users. How 
do we make this 𝜖-DP?
• Under bounded DP
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Laplace Mechanism: examples

75

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 
public knowledge). The salaries range from 20k to 200k. 
We want to release the average salary of users. How 
do we make this 𝜖-DP?
• Under bounded DP

A: sensitivity is bounded by 180k/n
Add 𝑌 ∼ 𝐿𝑎𝑝 %-./

0,
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Laplace Mechanism: examples

76

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 4: 𝐷 contains the age of a set of users. We 
want to release the histogram of ages [0-10), [10-
20)…[100,110). How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

77

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 4: 𝐷 contains the age of a set of users. We 
want to release the histogram of ages [0-10), [10-
20)…[100,110). How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is 1 in unbounded 2 in 
bounded
Add 𝑌 ∼ 𝐿𝑎𝑝 %

,
or 𝑌 ∼ 𝐿𝑎𝑝 &

,
to 

each bucket in the histogram (drawn 
fresh for each bucket)
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𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 5: Alice wishes to report her annual salary x1
in a differentially private way. The salaries at her 
company range from 20k to 200k (and this is public 
information). What mechanism can she follow so that 
she gets 𝜖-DP?



CS489 Winter 2023 

Laplace Mechanism: examples

79

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 5: Alice wishes to report her annual salary x1
in a differentially private way. The salaries at her 
company range from 20k to 200k (and this is public 
information). What mechanism can she follow so that 
she gets 𝜖-DP?

A: sensitivity is bounded by 180k 
Add 𝑌 ∼ 𝐿𝑎𝑝 *123

)
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𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 6: Alice wishes to report her age x1 in a 
differentially private way. It is public information that she 
is between 18 and 100 years old. She adds Laplacian 
noise with 𝑏 = 3 to her age, and reports the resulting 
value. What is the level of DP that she gets?
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𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ&
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ& ≐ max
$,$,

| 𝑓 𝐷 − 𝑓 𝐷" | &
Example 6: Alice wishes to report her age x1 in a 
differentially private way. It is public information that she 
is between 18 and 100 years old. She adds Laplacian 
noise with 𝑏 = 3 to her age, and reports the resulting 
value. What is the level of DP that she gets?

A: sensitivity is bounded by 82

𝑏 =
82
𝜖
= 3

𝜖 = 82/3


