CS489/689
Privacy, Cryptography,
Network and Data Security

Differential Privacy — Part 2



Randomized Response (RR) @':x> Me ':>w

Now we consider a mechanism with binary inputs and
outputs, i.e., M:{0,1} — {0,1}. This makes more sense in the
local setting, where x € {0,1} and the outputsis y € {0,1}.
For example, x can be the answer to a yes/no question:

Have you voted for party X?
Have you tested positive for virus Y?

Have cheated in any assignment this term?

Instead of reporting x, Alice follows the following process:
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RR - Question == @

o Instead of reporting x, Alice follows the following process:

\’\eads y=20
Heads e

\ = —— =1
@ X - Tails Y
-" \
TaiIS y=x

Q: compute these probabilities with an unbiased coin:

Pr(y = 0|x = 0)
Pr(y =1|x = 0)
Pr(y =0|x =1)
Pry=1|lx =1)
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RR - Question

Heads

vead®

Q=00

o Instead of reporting x, Alice follows the following process:

/v y=20

Tails

““'\byzl

B o-
m J=x

Q: compute these probabilities with an unbiased coin:
Pr(y = 0|x = 0)
Pr(y =1|x = 0)
Pr(y =0|x =1)
Pry=1|lx =1)

= §

/A

AU

Pr(y =0
Pr(y =1
Pr(y =0
Pr(y =1

x =0) = 0.75
x =0) = 0.25
x=1)=0.25
x=1)=0.75
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Randomized Response (RR)

Differential Privacy (local model, discrete outputs)
A mechanism M: X — U is e-differentially private (e-DP) if the following holds for all possible outputs
y € Y and all pairs of neighboring datasets x, X

Pr(M(x) =y) < Pr(M(x') =y) e

Q: what is the level of DP that RR provides?

0.75
x =0 » =0
0.25
= 0.25
x=1 > V=1
0.75
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Randomized Response (RR)

Differential Privacy (local model, discrete outputs)
A mechanism M: X — U is e-differentially private (e-DP) if the following holds for all possible outputs
y € Y and all pairs of neighboring datasets x, X

Pr(M(x) =y) < Pr(M(x') =y) e

Q: what is the level of DP that RR provides?

0.75
x=0 » =0
5 0.25 Priy =0lx=0) _ ;
x=1 > y=1 Pr(y = 0[x = 1)
0.75 Pry=0[x=1) 1
Pr(y = 0|x = 0) ~3

\The maximum ratio is 3. So € = log3 = 1.10./
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Randomized Response (RR): Statistical Analyses

e More generally, we can have any probabilities p and 1 — p.

p
x=0 > y:O
><
v_J 1-p
x=1 > y=1
p

Q: what is the € in this case?
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Randomized Response (RR): Statistical Analyses

e More generally, we can have any probabilities p and 1 — p.

p
><
v_J 1-p
x=1 > y=1
p

Q: what is the € in this case? - N
A:
p 1l-p
Q: When p - 0.5, € - 0, does € = log(maxj—— > )
this make sense? _ y
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Randomized Response (RR): Statistical Analyses

e Eventhough itis hard to guess the x given y (unless p — 1 or 0),
when multiple users report outputs we can get an estimate of the

percentage of users that had x = 1.
e Assume there are n users reporting values, and a fraction p, have

x = 0, while a fraction p;, =1 — p, have x = 1.

Q: How many answers y = 1 should we get, on average? p
><
’ 1-p
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Randomized Response (RR): Statistical Analyses

e Eventhough itis hard to guess the x given y (unless p — 1 or 0),
when multiple users report outputs we can get an estimate of the

percentage of users that had x = 1.
e Assume there are n users reporting values, and a fraction p, have

x = 0, while a fraction p;, =1 — p, have x = 1.

Q: How many answers y = 1 should we get, on average? p
%
[A:E{y}=Po‘(1—P)+(1—P0)‘P J T
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Randomized Response (RR): Statistical Analyses

{A: Ety}=po-(1=p)+ (1 —po) p } 2 o L, 7

® You can also see this using the law of total probability:
E{y}=Pr(y=1)=Pr(y=1|lx=0)Pr(x =0) + Pr(y = 1|x = 1) Pr(x = 1)
® Therefore, the analyst can estimate E{y} empirically using the reported values (let this be ),
and then compute p, by solvingy =py - (1 —p) + (1 — py) - p.
® This gives us an estimator for py:

. _ TP
Po 1—2p

Q: Can this gives us a negative estimate? Why?
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Randomized Response (RR): Statistical Analyses

{A:E{y}=po°(1—p)+(1—Po)‘P } >::<

® You can also see this using the law of total probability:
E{y}=Pr(y=1)=Pr(y=1|lx=0)Pr(x =0) +Pr(y =1|x = 1) Pr(x = 1)
® Therefore, the analyst can estimate E{y} empirically using the reported values (let this be ),
and then compute p, by solvingy =py - (1 —p) + (1 — py) - p.
® This gives us an estimator for py:
y—Dp
1—-2p

Do =

Q: Can this gives us a negative estimate? Why?

[A: It can happen, this will only approach the true percentage as n — oo. }

CS489 Winter 2023
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Statistical analysis with RR: exercise

Disclaimer: you have € = 1.1 (high-ish privacy); no matter what you report in
this exercise, you can always claim it was not your true answer (plausible
deniability).

Let’s learn how many of you cheated in an exam/assignment before/after
covid times.

CS489 Winter 2023
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Statistical analysis with RR: exercise

e x =1 means “l have cheated”. Flip two coins, run randomized response:

During | After covid
covid
Number of participants
ead® y=0
Heads — Number of y = 1
- - Tails -1

\ Empirical avg: y
Taj i
ails y=x Estimate of non-cheaters: p, = 1.5 — 2y

Estimate of cheaters: p; = 2y — 0.5

CS489 Winter 2023
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General Discrete Mechanisms

A general mechanism that takes inputs and outputs from discrete sets can be

written in matrix form by listing its inputs as rows, and its outputs as columns
o thisis similar to how we wrote mechanism when we talked about statistical inference

attacks
o v e | m
Pr(yzlc)
Ym

you get the idea...

CS489 Winter 2023
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General Discrete Mechanisms

e Computing € for a mechanism in matrix form
IS very easy!
1. For every column (output), take the largest
value and divide it by the smallest
o  Thisis computing max Pr(y|x) / Pr(y|x") for a given y.

2. Take the largest one of those ratios
o  This valueis <than any Pr(y|x) / Pr(y|x")

will give you e.
o Since € is the value such that
Pr(ylx’) < o€
Pr(y|x")

CS489 Winter 2023

Compute the natural logarithm of this, and this

d

AN

max( )/ min( ) max( )/min( )

max( ) = log( ) —>» €
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General Discrete Mechanism: example

Q: Alice uses the generalized randomized response to report a differentially private version of

her location to a location-based service provider. Her possible locations are points of interest

{x1,x,, ..., xy,}. The mechanism reports her real location with probability p and any other location

with probability q.

« What is the e-DP level this provides? (note that it will be dependent on p and n).

« Youcan assumep > 1/n.

* You should check that, when setting n = 2, you get the same formula for € as for the RR
mechanism.

CS489 Winter 2023
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General Discrete Mechanism: example

Q: Alice uses the generalized randomized response to report a differentially private version of

her location to a location-based service provider. Her possible locations are points of interest

{x1, x5, ..., x,}. The mechanism reports her real location with probability p and any other location

with probability q.

« What is the e-DP level this provides? (note that it will be dependent on p and n).

« Youcan assumep > 1/n.

* You should check that, when setting n = 2, you get the same formula for € as for the RR
mechanism.

e

A:q= 2P Since p > % then p > g, and the maximum ratio for any output will be

n—1
p_p(n-1 log<p(n— 1))
q 1-p 1-p

kWhen n = 2, we are back to randomized response! )

CS489 Winter 2023
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Exponential Mechanism

Sometimes, adding Laplacian noise could destroy the utility of a

mechanism.
- What if we want noise that is not symmetrical?

Sometimes, we do not want to make numerical answers private, but
we want to be able to report objects/classes/categories.

- How do we do this privately?
The exponential mechanism can be used to provide DP in many
settings.
The idea is that we will report an output privately, but with a
probability proportional to its utility.

CS489 Winter 2023
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Private Auction: noise is not great for DP!

p
« A set of users wants to buy an item, and each
has a private amount they are willing to pay:
V;.
* The retailer sees the v;’s and could choose the

1, =$1 @v3=$3.01 largest price p that maximizes the revenue

(number of clients with v; > p, times p).
 However, the p chosen this way would reveal

@ 2 v,=$1 information about the users’ valuations v;,
which can be privacy-sensitive.
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Private Auction: noise is not great for DP!

&
Issue here: the revenue (utility) is very sensitive

to the choice of p:
- If p = 1, then the revenue is $3

v =31 @ o 13=$3.01 - If p = 1.01, then the revenue drops to $1.01
Ok - If p = 3.01, then the revenue is $3.01

- But at p = 3.02, the revenue drops to $0

@ 2 v,=$1 Adding noise to p before making it public can
destroy the utility (revenue)
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The Exponential Mechanism

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(M,(D) = h) o exp (E ' 52(1A>, h))

Here, A is the sensitivity of the score function, defined as

A = max r11)1’%>,( |s(D,h) —s(D', h)|

CS489 Winter 2023
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The Exponential Mechanism

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(My(D) = h) o exp (E ' 52(1A>, h))

 |In order to compute the actual probability Pr(Mz(D) = h), we need to
compute the values of the score function for every h € H'. This can

sometimes be very expensive.
* The exponential mechanism chooses items proportional to the score function

* The epsilon smooths this distribution
* The set of outputs is public knowledge, the choice is sensitive

CS489 Winter 2023
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The Exponential Mechanism — an example

) A
@ p
* Q: how can we use the exponential mechanism
in this scenario?

@ 1, =$1 @v3=$3.01
@v2=$1

=)

Pr(M, (D) = h) exp(

A= max rlgl,%ai |s(D,h) —s(D’', h)|

CS489 Winter 2023
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The Exponential Mechanism — an example

[ )= A
@ p
* Q: how can we use the exponential mechanism
in this scenario?

L 2 V3=09.
v1=$1 @ 3 $3 01

g A: we can discretize the set of possible outputs, h
e.g., H ={0.1,0.2, ...10} (assuming the maximum
gvz =91 price of the item is $10). This is the set of possible
@ values p. Compute the probability of each and
- s(D sample with that probability.
Pr(Mgz(D) = h) « exp (E SZ(A’ h)> & P P y J

A= max rlgl,%>,< |s(D,h) —s(D’', h)|
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The Exponential Mechanism — an example

@ P * Then, the retailer computes s(D, h) for each
possible output h. Note that D is simply

V4, Vo, U2} IN this case.
1> Y2, V3

Y 2 V3=d3.
U1=$1 @ 3 $3 01
@v2=$1

=)

Q: what will be the sensitivity?

Pr(M, (D) = h) exp(

A= max I’lgl,%)’( |s(D,h) —s(D’', h)|

CS489 Winter 2023
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The Exponential

e

Y o V3=99.
v1=$1 @ 3 $3 01

gv2=$1

e-s(D, h))

Pr(M, (D) = h) exp( =

A= max rlgl,%>,< |s(D,h) —s(D’', h)|

Mechanism — an example

* Then, the retailer computes s(D, h) for each

possible output h. Note that D is simply
{v{,v,,v3} In this case.

Q: what will be the sensitivity?

-

A: the maximum effect that an item can have in
the revenue is $10, assuming the maximum price
of the item is $10).

(U

N

)

CS489 Winter 2023
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The Exponential Mechanism — an example
@ P  Q: Assume H ={1,2, 3,4} compute the

probability of selecting each output, when € = 1.

@ 1, =$1 @v3=$3.01
@v2=$1

=)

Pr(M, (D) = h) exp(

A= max rlgl,%ai |s(D,h) —s(D’', h)|

CS489 Winter 2023
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The Exponential Mechanism — an example

&=
v1=%1
gv2=$1

e€-s(D,h)

Pr(M, (D) = h) exp( =

A= max I’lgl,%)’( |s(D,h) —s(D’', h)|

@v3=$3.01

)

« Q: Assume H ={1,2, 3,4} compute the

probability of selecting each output, when € = 1.

A: sensitivity would be 4
Scores would be {3,2,3,0}

¢ Pr(Mg(D) = 1) = exp (2) /Zpexp (22
+ Pr(Mg(D) = 2) = exp (2) /Spexp(C2)
+ Pr(Mz(D) = 3) = exp () /Zpexp (5

¢ Pr(Mp(D) = 4) = 1 /Zpexp(C2

)

\Zhexp(s( h)) 2exp (3) + exp (g) + 1

N

4

CS489 Winter 2023
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The Exponential Mechanism — an example

Assume we want to make a small decision tree for classifying heart attacks
based on cholesterol

Given the following dataset we want to choose a threshold h that maximizes
accuracy of the classifier f(c):

Classifier f;,(c)
Cholesterol Heart Attack
(c) (y)
216 0 c<h c>=h

501 1
100 0
535 1
214 1

Let s(D, ) ==%(fu(c)) == 1)
CS489 Winter 2023 =



Act.

The Exponential Mechanism — an example

Cholesterol Heart Attack Classifier f,(c)
) (y)

216 0

c<h c>=h
501 1
100 0
535 1
214 1 p N
1  Q: Assume H = {100,200,300,400,500}
s(D,h) = gzi(fh(ci) ==y;) compute the probability of selecting each
output, when € = 1.25.
Pr(M, (D) = h) « exp (E ' SZ(AD’ h)) - o

A= max rlr)l,%g |s(D,h) —s(D’', h)|
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The Exponential Mechanism - Proof

Prove the exponential mechanism provides e-DP:

1. Write the ratio of Pr(Mz(D) = h) and Pr(Mz(D") = h)
2. Remember these facts:

e-s(D, h))

Pr(M,(D) = h) o exp( o

A= max 111)1’%); |s(D,h) —s(D', h)|

3. Hint: |[s(D,h) —s(D',h)| <A - s(D’,h) <s(D,h) + A

CS489 Winter 2023
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The Proof

Proof. Fix X, X’ as neighbouring datasets, and some outcome h € H. The we express the ratio of
the probability of h being output under X and X' as follows:

exp (200
)

Pr{Mp(X) = h] _ (z(
Pr[Mg(X') =h] ( exp( 201 )

D onen exp(#)

— ex (8(3(X, h) — s(X’, h))) zh’e?—[ exp (88(;(A’,h/)>

= exp 2A e €XD (ss(X h/))
S ey €XD es(X,h')

< exp (%) exp (2) (Z:/e: exp Ess(X,h’)%)

2A

= exp(e).

Source: Gautam Kamath

CS489 Winter 2023
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Just checking...

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(M,(D) = h) o exp (E ' 52(1A>, h))

Q: What is the runtime
complexity of the
exponential mechanism in
relation to H

CS489 Winter 2023
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Just checking...

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

-s(D,h
Pr(My(D) = h)  exp (E ¢ ))
2A
Q: What is the runtime
complexity of the A: 0(|3]) }

exponential mechanism in
relation to H

CS489 Winter 2023
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Just checking...

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

Pr(M,(D) = h) o exp (E ' 52(1A>, h))

Q: What is the effect of
reducing epsilon on the
probability of each item?
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Just checking...

Given a database D € D, a set of outputs H and a score function s:DXH — R,
the exponential mechanism Mg chooses an output h € H with probability
proportional to:

-S(D, h
Pr(Mg(D) = h) x exp (E 2 ))
2A
Q: What is the effect of /A: The probabilities become\
reducing epsilon on the more similar. As epsilon
probability of each item? tends to 0, probabilities tend
1
to —
\_ |H| )

CS489 Winter 2023
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The Exponential Mechanism is Generic!

the score function is s(D,h) =-|f (D) - h|

[Q: What is the probability of selection when }




The Exponential Mechanism is Generic!

Q: What is the probability of selection when

the score function is s(D,h) =-|f (D) - h|
[A: o exp (— L) }

Q: What distribution is this?

CS489 Winter 2023

39



The Exponential

Mechanism is Generic!

Q: What is the probability of selection when

the score function is s(D,h) =-|f (D) - h|

Q: What distribution is this?

A: o exp (— DO

. N
A: Even the Laplace mechanism is

an instantiation of the exponential

mechanism!
k J

CS489 Winter 2023
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The Gaussian Mechanism

So far, we have seen mechanisms for pure DP. Let's see one for
approximate DP.
First, given a function f: D — R, we define the #,-sensitivity as:

8, = max|If (D) = F(D")I2

CS489 Winter 2023
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The Gaussian Mechanism

Given a function f: D — R¥, we define the #,-sensitivity as:
A, = max||f (D) — f(D)]|;

D,D'

The Gaussian mechanism simply adds Gaussian noise to the
output of the function:

Given a function f: D — R with #,-sensitivity A,, the Gaussian mechanism

is defined as M(D) = f(D) + (Y1,Y,, ..., Yy) where each Y; is independently

distributed as Y; ~ N(0,0%) with 0% = 21n (1725) A% /e? .

CS489 Winter 2023
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The Gaussian Mechanism

e Given a function f: D — R¥, we define the #,-sensitivity as:
A, = max||f (D) — f(D)]|;

D,D'

e The Gaussian mechanism simply adds Gaussian noise to the
output of the function:

distributed as Y; ~ N(0,0%) with 0% = 21n (1725

CS489 Winter 2023



Let's think about this

The Gaussian mechanism M(D) = f(D) +Y where Y ~ N(0,52)

with 62 = 21n (1%5) A5 /e provides (e, 8)-DP.

Q: does the relationship between the privacy parameter ¢
and the noise variance ¢? make sense”?

CS489 Winter 2023
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Let's think about this

The Gaussian mechanism M(D) = f(D) +Y where Y ~ N(0,52)

with 62 = 21n (1%5) A5 /e provides (e, 8)-DP.

Q: does the relationship between the privacy parameter ¢ A: yes, to provide more privacy
and the noise variance g% make sense? (lower €) we need more noise
(higher a2).

|

CS489 Winter 2023
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Let's think about this

The Gaussian mechanism M(D) = f(D) +Y where Y ~ N(0,52)

with 62 = 21n (1%5) A5 /e provides (e, 8)-DP.

Q: if we fix the noise level (), what is the relationship
between € and §, and why?

CS489 Winter 2023
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Let's think about this

The Gaussian mechanism M(D) = f(D) +Y where Y ~ N(0,52)
with 62 = 21n (1 25) A5 /e provides (e, 8)-DP.

Q: if we fix the noise level (o), what is the relationship A: for a fixed noise, € and § will be inversely
between € and §, and why? proportional: if we want allow for a higher 6§

then that level of noise can provide lower €’s.

CS489 Winter 2023
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Let's think about this

The Gaussian mechanism M(D) = f(D) +Y where Y ~ N(0,52)

with o2 = 21n (=) A3 /€2 provides (e, §)-DP.

Q: if we fix the noise level (o), what is the relationship A: for a fixed noise, € and § will be inversely
between € and §, and why? proportional: if we want allow for a higher 6§
then that level of noise can provide lower €’s.

This is not just for the Gaussian mechanism, but all €, 5-DP mechanisms:

Smaller ¢, larger & Higher €, smaller &

A = A= A

CS489 Winter 2023
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Gaussian Mechanism: examples

A, = max||f(D) — fF(D)]|;

D,D’

Example 1: D contains the salaries of a set of n users.

The salaries range from 10k to 200k. We want to . :
release the total salary of the users. What is the o2 of f(D)+Yis (¢6)-DPif
the gaussian mechanism under bounded DP assuming Y ~ N(O 0.2)
5= 1/n?
/n 1.25
= 2In|——) A% /€?

Data collector

@ Data analyst

=0 |28

?
©
®—
&
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Gaussian Mechanism: examples

A, = max||f(D) — fF(D)]|;

D,D’

Example 1: D contains the salaries of a set of n users.

The salaries range from 10k to 200k. We want to . :
release the total salary of the users. What is the o2 of f(D)+Yis (¢6)-DPif
the gaussian mechanism under bounded DP assuming Y ~ N(O 0.2)
6= 1/’ 1.25
- N =2 ln( ) 2 /€2
- Data collector
A: sensitivity is 190k @ . @ Data analyst
0 = 21In(1.25 n*)(190k)? /e* @ :i -
' ; I:> M (D) I:>
¥

€ —
< / o
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Gaussian Mechanism: examples

Ap = %1’%2(||f(D) — f(D)II;

Example 2: D contains the age of a set of users. We

want to release the histogram of ages [0-10), [10- f(D) +Yis (E, 5)-DP if
20)...[100,110). What is the o of the gaussian 5
mechanism under bounded DP assuming § = 1/n? Y ~ N(O: g )
2 = 210 (222) p2 /e
c“=2In ; A5 /€

Data collector

Q) o @ Deta analyst
% B o | =8
&
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Gaussian Mechanism: examples

Example 2: D contains the age of a set of users. We
want to release the histogram of ages [0-10), [10-
20)...[100,110). What is the o of the gaussian
mechanism under bounded DP assuming § = 1/n?

C I
A: sensitivity V2 in bounded DP

0% = 41In(1.25n?)/e?
L /

CS489 Winter 2023

A, = max||f(D) — fF(D)]|;

D,D’

f(D)+Yis (¢ 6)-DP if
Y ~N(0,0%)

1.25
—Zln( - ) A% /€2

Data collector

@ Data analyst

=0 |28

?
©
®—
&
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Properties of DP




Post-processing

Robustness to post-processing: Let M: D - Y be an (¢, §)-DP mechanism,
and let F: Y — Z be a (possibly randomized) mapping. Then, F o M is (¢, 6)-
DP.

« In layman terms, once you get a “privatized output” (Y) you cannot “unprivatize it” by running
another mechanism.

« This makes a lot of sense: otherwise, the adversary could simply design an F that could
“‘unprivatize” M

@ — ° @ It is very important that

— >t F does no depend on D
e D ) (%()l_)gp v > Fm Z > (other than through Y) at
@ /7 Fo M all! Otherwise, this will not
© hold!
@ (¢,6)-DP

CS489 Winter 2023 54



Group privacy

Group privacy refers, in the central DP setting, to consider datasets

that differ in more than one entry (this could be for the bounded or
unbounded notion of DP).

Let's see it first for pure e-DP

k entries.

Group privacy: Let M: D - R be a mechanism that provides ¢-DP for D, D’
that differ in one entry. Then, it provides ke-DP for datasets D, D’ that differ in

CS489 Winter 2023
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Group privacy

'Group privacy: Let M: D — R be a mechanism that provides e-DP for D, D’

that differ in one entry. Then, it provides ke-DP for datasets D, D’ that differ in
k_entries.

If this is e-DP.... ... then this is 2e-DP

Pr(M(D) = R) @ Pr(M(D) = R)
D R T D R
pE- AW g HeT Ay

@ Pr(M(D') = R) @ Pr(M(D') = R)
\» \*
D/ R | DI R 2

CS489 Winter 2023
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Group privacy

'Group privacy: Let M: D — R be a mechanism that provides e-DP for D, D’

that differ in one entry. Then, it provides ke-DP for datasets D, D’ that differ in
k_entries.

Q: How do we prove
this?

CS489 Winter 2023
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Group privacy

'Group privacy: Let M: D — R be a mechanism that provides e-DP for D, D’

k entries.

that differ in one entry. Then, it provides ke-DP for datasets D, D’ that differ in

Q: How do we prove

this?

‘. . . . e 0
A: We build a sequence of k — 1 intermediate datasets that differ in one entry from the
previous and next one, connecting D and D': D - D;— D, — --- = D'. Then, we apply the
definition of DP k times:

N Pr(M(D) € S) < Pr(M(D,) € S) e€ < Pr(M(D,) € S) e?¢ < --- < Pr(M(D') € S) ek P
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Group privacy with (e, 5)-DP

e For approximate DP, § gets an additional factor of ke(*—1€ ;

Group privacy: Let M: D — R be a mechanism that provides (¢, §)-DP for

D, D' that differ in one entry. Then, it provides (ke, ke *~1€5)-DP for datasets
D, D' that differ in k entries.
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Sequential Composition

Naive composition: Let M = (M, M,, ..., M;,) be a sequence of mechanisms,
where M; is (¢;, 5;)-DP. Then M is (3K, €;, 3¢ . 5;)-DP

e This means that running k mechanisms on the same sensitive

dataset, and publishing all k results, the es and §s add up (privacy
decrease as we publish more results).

e Recall, the attacks we saw in lecture 14...
- More queries meant more leakage... this captures that.
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Sequential Composition

o However, if we allow the overall § to be slightly larger, we can get a
much smaller €:

Advanced composition: Let M = (M, M,, ..., M;,) be a sequence of mechanisms,
where M; is (€, 6)-DP.

Then M is (e\/Zk - In ( 1) + ke(ee_l),k(S + 6’>-DP

o/ e€+1

e Note that the overall € only grows on the order of vk now (loosely

speaking), and that if we allow higher §’ then we can get a smaller
overall €.
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Parallel Composition

Parallel Composition: Let M = (M4, M,, ..., M;,) be sequence of mechanisms,
where M; is €;-DP. Let D, D,, ..., D;, let a deterministic partition of D.
Publishing M;(D;), M,(D,), ..., My (Dy,) satisfies (_ max €;)-DP.

i€l1,...k]
M;(D,)
e,-DP O

M,(D;)
ej-DI% E

verall: max(e4, €,, €3)-DP

i> v * It is crucial that the partition of
D must be deterministic!

M5 (D;)
c,DP Eﬁ> » (and no overlap)
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Other notions of DP




Many other variations...

® A N S O K f rom Name & references

(D, t,e)-per-instance DP [162]

(©,¢e,9d)-active PK DP [11, 14, 35]

(g, 6)-approximate DP [52]

(R, €)-generic DP [105]

(©,¢,)-passive PK DP [35]

20 20 (g, d)-probabilistic DP [20, 124, 127]

(G,Zgq,e)-blowfish Pr [84, 86]

(©, @, e)-pufferfish Pr [106]

e-Kullback-Leiber Pr [9, 31]

e-adjacency-relation div. DP [97]

(©, e, §)-distribution Pr [98]

(e, €)-Rényi DP [128]

W-personalized DP [59, 76, 94, 118]

(d, ©, €)-extended DnPr [98]

e-mutual-information DP [31]

U-tailored DP/e(-)-outlier Pr [120]

(f, ©, e)-divergence DnPr [97]

(p, 7)-mean concentrated DP [58]

(7, v, €)-random DP [83]

(d, f, ©,e)-ext. div. DnPr [97]

(&, p)-zero concentrated DP [19]

dD-Pr [22]

(©, e)-positive membership Pr [114]

(f,e)-divergence DP [9]

(g, v)-distributional Pr [141, 177]

(©, €, §)-adversarial Pr [139]

e-unbounded DP [105]

(e(+),6(-))-endogenous DP [107]

(©, g)-aposteriori noiseless Pr [14]

e-bounded/attribute/bit DP [105]

(dp, €, 6)-pseudo-metric DP [36]

e-semantic Pr [69, 96]

(¢, €)-group DP [49]

(0,¢e,~,d8)-typical Pr [10]

(Agg, €)-zero-knowledge Pr [72]

e-free lunch Pr [105]

(©, £)-on average KL Pr [164]

(©, T, g)-coupled-worlds Pr [11]

(R, ¢, €)-dependent DP [116]

(f, d,e)-extended divergence DP [97]

(©,T, g, §)-inference-based CW Pr [11]

(P, €)-one-sided DP [42]

(R, M)-general DP [103]

€r-SIM-computational DP [129]

(D, €)-individual DP [149]

(©, €)-noiseless Pr [14, 44]

€x-IND-computational DP [129]

(©, €)-distributional DP [11, 35]
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(Agg, €)-computational ZK Pr [72]
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https://petsymposium.org/popets/2020/popets-2020-0028.pdf

Renyi Differential Privacy

Differential privacy is a very ambitious privacy guarantee, that
protects against a worst-case adversary that potentially knows D
and D', and for all possible outputs of the mechanism.

e and 6 provided a very limited and pessimistic description of the

differences between Pr(M(D) € S) and Pr(M(D') € S).
There are other relaxed notions of DP that capture other nuances

between these distributions.
- A popular one is Renyi Differential Privacy

-  We will see more about this in the ML lectures.

CS489 Winter 2023 65



