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Machine learning: quick primer
● For simplicity, we will focus on a classification problem with supervised 

learning.
○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥!, 𝑦! , 𝑥", 𝑦" , … , 𝑥#, 𝑦# } with 𝑛 samples. Given 
a sample (𝑥$, 𝑦$), 𝑥$ are the features and 𝑦$ is its label.

● We want to produce a function 𝑓:𝒳 → 𝒴 that can predict a sample’s label 
from its features.

● We will use the training set to train such a function. Ideally, it should correctly 
predict labels for unseen samples (e.g., samples in a testing set).
○ We will say that a model generalizes well if it has high accuracy on unseen samples
○ A model overfits if it works perfectly for samples in the training set but does not 

generalize well.
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Machine learning: quick primer

Train

𝐷

𝑥!, 𝑦!

𝑓
𝑥

𝑦=“Dog”

Usually, this gives confidence scores for each class: ( &𝑦!, &𝑦",…, &𝑦#)
For example: [“Dog”, “Cat”, “Mouse” …]=[0.81, 0.10, 0.03, …]
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Neural networks
● There are many architectures for machine learning models (i.e., many 

structures for the function 𝑓).
● One of the most popular are neural networks.

𝑥!

𝑥!,#
𝑥!,$

𝑥!,%

Multiply by 
a weight w

∑(  )+b act(  )

Sum, add bias term b

Activation function
(we want this non-linear)

(More layers)

Training the model means tuning all w’s and b’s

!𝑦&
!𝑦'

!𝑦(
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Loss Functions
● We define a loss function that we want to minimize: ℓ(𝜃, 𝑥, 𝑦), where 𝜃 are the 

parameters w and b.
○ For example, a typical loss function is ℓ 𝜃, 𝑥, 𝑦 = ∑"−𝑦" log 1𝑦" where 𝑦" is only 1 for the 

true label of the sample, 𝑗. 

ℓ 𝜃, 𝑥, 𝑦 =3
)

−𝑦) log 8𝑦)

1.0

0.0

0.0

0.7

0.2

0.1

𝑦 1𝑦 = 𝑓#(𝑥)
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Training neural networks

𝑥!

𝑥!,%
𝑥!,&

𝑥!,'

w

∑(  )+b act(  )

(More layers)

• Since we have the training set 𝐷, 
it makes sense to minimize the 
empirical loss in this training set:

ℒ 𝜃, 𝐷 =
1
𝑁8

!

ℓ 𝜃, 𝑥!, 𝑦!

• In practice, the minimization is 
done using Stochastic Gradient 
Descent (SGD).

!𝑦"
!𝑦#

!𝑦$
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Gradient Descent
● The gradient of the loss ∇ℓ(𝜃, 𝑥, 𝑦) evaluated at (𝑥, 𝑦) is the derivative with 

respect to each parameter 𝜃$ (every w and b).
● It tells us the direction in which 𝜃 should go to minimize the loss (for sample 

(𝑥, 𝑦)).

ℓ(𝜃, 𝑥, 𝑦)

𝜃

Minimal Loss
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Gradient Descent
● We could minimize the loss by running several steps (epochs) of Gradient 

Descent:
○ For each step 𝑡 ∈ [𝑇]:

𝜃/ = 𝜃/0! − 𝜂∇ℒ(𝜃/0!, 𝐷)
○ 𝜂 is the learning rate

● This is expensive, so usually we do these iterations over a subset of the training 
sets (batches)

● Note 𝜃 represents parameters, 𝜂 and 𝑇 are hyper-parameters 
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Stochastic Gradient Descent – with Mini Batches
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷
2. For each (𝑥$, 𝑦$) ∈ 𝐵 , compute the gradient g1 = ∇ℓ 𝜃/0!, 𝑥$, 𝑦$
3. Average the gradients 𝑔 = !

2
∑$ 𝑔$

4. Descend 𝜃/ = 𝜃/0! − 𝜂 ⋅ 𝑔
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Attacking ML models

Train

Inference Attacks:
- Membership inference
- Attribute inference
- Property inference
- Model inversion

Evasion attacks
Model stealing attacks

Poisoning attacks
(targeted, untargeted, 

backdoors)

Whitebox: adversary sees the 
parameters 𝜃

Blackbox: adversary is only allowed 
to send queries

● There are many types of attacks against ML
● Later we will see that there are also different types 

of defenses
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Attacking ML models in Federated Learning

Inference Attacks:
(adv sees all intermediate 
gradients, can potentially 

send malicious 𝜃)
- Membership inference
- Attribute inference
- Property inference
- …

Poisoning 
attacks

(targeted, 
untargeted, 
backdoors)

● Federated Learning: a centralized server builds a model, a set of clients send 
updates (gradients) using their local datasets

Send updated model θ
Send gradients g
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In this lecture: inference attacks

Train

?
Inference Attacks:

- Membership inference
- Attribute inference
- Property inference
- Model inversion

Membership Inference:
Is a given sample in the 
training set?

Attribute Inference:
Given a sample with 
some missing attributes, 
can we guess them?

Property Inference:
Given a property about 
the whole training set, 
can we guess if it’s true 
or not?

Model inversion:
Given a label, can we find 
a representative element 
of this class? (learn 𝑥
from 𝑦)

Q: Why are these attacks a threat to privacy?

12



Inference Attacks in ML
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● Given a sample (𝑥, 𝑦), and a model 𝑓 trained with dataset 𝐷, guess whether 
𝑥, 𝑦 ∈ 𝐷.

● With only black-box access, and a model that outputs confidence scores:
● 𝑓 𝑥 = [8𝑦!, 8𝑦", … , 8𝑦5], where 8𝑦) are confidence scores for label 𝑗.

Membership Inference Attacks (MIAs)

Train

𝐷
𝑓

Black-box: the adversary queries 
the model (possibly more than once)
White-box: the adversary sees the 
model parameters 𝜃

Q: If you were the adversary, with a target sample (𝑥, 𝑦) and black-box access to the 
model 𝑓, how would you guess if the target sample is a member?
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Threshold Attacks
● Idea: the model will be more confident on samples it has seen during training.
Threshold attack
● This attack queries the model on sample 𝑥 and then measures the confidence score assigned 

to its true label 𝑦.
● If the confidence score is above some threshold, then the attack decides the sample is a 

member.

Yeom et al. "Privacy risk in machine learning: Analyzing the connection to overfitting." CSF, 2018.

Train

𝐷 𝑓 𝑥

𝑓(𝑥)

If 𝑓 𝑥 $ > 𝑇, then 
(𝑥, 𝑦) is a member!

Q: how can the attacker compute this threshold?
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Neural Network-based Attacks
● Other MIAs use Machine Learning against Machine Learning.
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Neural Network-based Attacks
● Other MIAs use Machine Learning against Machine Learning.
● The first NN-based attack (which was also the first MIA) was proposed by 

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓?@A Assumption: the adversary can 

generate data with a similar 
distribution as 𝐷.

Target model (adv has 
black-box access)

Training dataset 
(unknown to adv)
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Shokri et al.’s attack
1. Generate shadow training data 𝐷(%, 𝐷(&, …, 𝐷()(distribution similar to 𝐷).
2. Train 𝑘 shadow models 𝑓(%, … , 𝑓() (same classification task as the target model).

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷%!

𝐷%#

𝑓%!

𝑓%#
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Shokri et al.’s attack
3. Generate shadow test data D𝐷(%, D𝐷(&,…, D𝐷().
4. For each shadow model 𝑖 ∈ [𝑘]: get the confidence scores for each sample in 𝐷(! and D𝐷(! . 

Create a dataset with (confidence scores, true label, membership) for each sample.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓%&𝐷%&

:𝐷%& [confidence scores, true label, non-member]

[confidence scores, true label, member]
for each sample get this

get thisfor each sample
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Shokri et al.’s attack
5. With the new dataset, that contains [confidence scores, true label, membership status] 

computed with all the shadow models, train a new attack model 𝑓*++ to predict the 
“membership status” from “confidence scores, true label”

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑥=[confidence scores, true label], 𝑦=[member/non-member]

Train

𝑓'((
This model is a binary 
classifier that receives 
conf. scores and true 

label, and returns 
member/non-member
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Shokri et al.’s attack
6. Get the confidence scores of the target sample in the target model 𝑓+*,.
7. Evaluate those [confidence scores, true label] in the attack model 𝑓*++.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓'((
Train

𝐷
𝑓?@A 𝑥

𝑓(')(𝑥)

(𝑓(') 𝑥 , 𝑦)

membership
prediction
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Attribute Inference Attacks
● Each sample is 𝑧 = (𝑥, 𝑎, 𝑦), where 𝑥 is the features, 𝑎 is a privacy-sensitive attribute, and 𝑦 is 

the label.
● The adversary has a sample 𝑧 = (𝑥, ? , 𝑦), and wants to learn the attribute.
● Assume the space of all attributes is 𝒜 = {𝑎%, 𝑎&, … , 𝑎-}
● Simple attack: query for all possible samples (𝑥, 𝑎%), …,(𝑥, 𝑎-). The true attribute is probably 

the one that yields a highest confidence score for the true class 𝑦.

Train

𝐷 𝑓 (𝑥, 𝑎$)

𝑓((𝑥, 𝑎!))

̂𝚤 = 𝑎𝑟𝑔𝑚𝑎𝑥&𝑓 𝑥, 𝑎& $
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Defenses against inference attacks
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Defending against inference attacks
● Where do we defend?

Train

Input: add noise to inputs, 
generate synthetic training data, 

etc.

Model: add noise to the model 
weights

Output: add noise to the outputs of the model 
(this only works in the black-box setting)Training: add noise to the 

gradients or the loss function.
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Defending against inference attacks
● Which technique do you think is best? Give rational using the pros of your 

technique vs the cons of others.
○ A couple of sentences submitted to learn

Train

Input: add noise to inputs, 
generate synthetic training data, 

etc.
Model: add noise to the model weights

Output: add noise to the outputs of the model 
(this only works in the black-box setting)Training: add noise to the 

gradients or the loss function.

Act.
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Differentially Private Stochastic Gradient Descent 
(DP-SGD) 
● Adds privacy during the training step, modifying SGD.
● Recall Differential Privacy: we want to limit the effect that a single training set sample has on 

the output (the “output” of the training algorithm is the model!)

SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥!, 𝑦!) ∈ 𝐵 , compute the 

gradient:
g. = ∇ℓ 𝜃+/%, 𝑥!, 𝑦!

3. Average the gradients 𝑔 = %
0
∑! 𝑔!.

4. Descend 𝜃+ = 𝜃+/% − 𝜂 ⋅ 𝑔.

“Private” SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥!, 𝑦!) ∈ 𝐵 , compute the 

gradient: 
g. = ∇ℓ 𝜃+/%, 𝑥!, 𝑦!

3. Average the gradients and add 
noise 𝑔 = %

0
(∑! 𝑔! +𝒩(0, 𝜎&)).

4. Descend 𝜃+ = 𝜃+/% − 𝜂 ⋅ 𝑔.

Q: Is it enough to add noise to the gradients?
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Differentially Private Stochastic Gradient Descent 
(DP-SGD) 
● The gradient could potentially be unbounded à unbounded sensitivity à bad for DP
● We clip the gradients to ensure their ℓ& norm is at most 𝐶.

○ 𝐶 is the clipping threshold
○ 𝐶 is independent of the data

SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥!, 𝑦!) ∈ 𝐵 , compute the 

gradient:
g. = ∇ℓ 𝜃+/%, 𝑥!, 𝑦!

3. Average the gradients 𝑔 = %
0
∑! 𝑔!.

4. Descend 𝜃+ = 𝜃+/% − 𝜂 ⋅ 𝑔.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥!, 𝑦!) ∈ 𝐵 , compute the gradient:

g. = ∇ℓ 𝜃+/%, 𝑥!, 𝑦!
3. Clip the gradients: 𝑔! = 𝑔!/max 1,

1! "
2

4. Sum the gradients 𝑔 = ∑! 𝑔!.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎&𝐶&)
6. Descend 𝜃+ = 𝜃+/% − 𝜂 ⋅

%
0
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿
● Note that a single sample will participate in 

multiple training steps à there will be some 
sequential composition involved.

● We need to keep track of 𝜖, 𝛿. For a fixed 
amount of noise 𝜎, if we do not use advance 
techniques to keep track of 𝜖, 𝛿, we will end 
up with a very large 𝜖, which is bad.
○ Note that the actual true 𝜖 will be smaller than the 

𝜖 we can compute theoretically.
○ But we can only guarantee an 𝜖 we can 

theoretically prove.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥& , 𝑦&) ∈ 𝐵 , compute the 

gradient:
g* = ∇ℓ 𝜃(+!, 𝑥& , 𝑦&

3. Clip the gradients: 𝑔& = 𝑔&/max 1,
,! "
-

4. Sum the gradients 𝑔 = ∑& 𝑔&.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃( = 𝜃(+! − 𝜂 ⋅

!
.
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿
● First, we choose a 𝛿. Recall that this 

should be smaller than 𝛿 < !
V.

○ The reason is the following: a training 
algorithm that simply publishes a 
random training set record would 
provide (𝜖 = 0, 𝛿 = 1/𝑁)-DP. However, 
we know this is not private enough.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥& , 𝑦&) ∈ 𝐵 , compute the 

gradient:
g* = ∇ℓ 𝜃(+!, 𝑥& , 𝑦&

3. Clip the gradients: 𝑔& = 𝑔&/max 1,
,! "
-

4. Sum the gradients 𝑔 = ∑& 𝑔&.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃( = 𝜃(+! − 𝜂 ⋅

!
.
𝑔.

29



CS489 Winter 2023 

DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if
𝑌 ∼ 𝑁(0, 𝜎")

𝜎" = 2 ln
1.25
𝛿

Δ""/𝜖"

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥& , 𝑦&) ∈ 𝐵 , compute the 

gradient:
g* = ∇ℓ 𝜃(+!, 𝑥& , 𝑦&

3. Clip the gradients: 𝑔& = 𝑔&/max 1,
,! "
-

4. Sum the gradients 𝑔 = ∑& 𝑔&.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃( = 𝜃(+! − 𝜂 ⋅

!
.
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 
sample in 𝐷 is used once per training 
step, what is the total 𝜖 we get?

• Use naive composition
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DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if
𝑌 ∼ 𝑁(0, 𝜎")

𝜎" = 2 ln
1.25
𝛿

Δ""/𝜖"

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿 samples from 𝐷.
2. For each (𝑥& , 𝑦&) ∈ 𝐵 , compute the 

gradient:
g* = ∇ℓ 𝜃(+!, 𝑥& , 𝑦&

3. Clip the gradients: 𝑔& = 𝑔&/max 1,
,! "
-

4. Sum the gradients 𝑔 = ∑& 𝑔&.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃( = 𝜃(+! − 𝜂 ⋅

!
.
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 
sample in 𝐷 is used once per training 
step, what is the total 𝜖 we get?

• Use naive composition

A: 𝐶"𝜎" = 2 ln !."0
1

Δ""/𝜖" → 𝜖 = 2 ln !."0
1

/𝜎 for 

each step. Then naïve composition gives 

𝜖 = 𝑇 2 ln
1.25
𝛿 /𝜎

*Note: this question is very over simplified
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DP-SGD: keeping track of 𝜖, 𝛿
● Renyi Differential Privacy (RDP) provides a 

tighter 𝜖, 𝛿 bound.
○ Better suited to Gaussian Noise
○ Keeps track of more information, only compress at the 

end
● This means that, for a given 𝜎, 𝐶, and 𝛿, RDP tells 

us our actual 𝜖 is smaller than what Advanced 
Composition (AC) tells us.

● In other words, for a target privacy budget 𝜖, 
using RDP we need to add less noise than using 
AC.

● Note that, even with RDP, we need 𝜖 > 100 if we 
do not want any accuracy loss

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.

32



CS489 Winter 2023 

DP-SGD: theoretical vs empirical privacy
● Both attacks we’ve seen perform similarly
● It seems that 𝜖 = 100 or even 𝜖 = 1000 still provides good empirical privacy
● The theoretical bound on the privacy leakage provided by DP is very loose

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.
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Issues of DP-SGD
● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.
● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.
● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?
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Issues of DP-SGD
● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.
● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.
● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?

A: It might be OK to use DP-SGD tuned to 𝜖 = 100, but at that point we might as well use 
defenses that do not provide DP, since the DP guarantee is already meaningless at that point.
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Private Aggregation of Teacher Ensembles 
(PATE)
1. Train teacher models with disjoint subsets of the training data
2. Use the teachers to label some (incomplete) public data
3. Use the labeled public data to train a student model

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Private Aggregation of Teacher Ensembles 
(PATE)

● For a sample from the incomplete public data 𝑥⃗, let 𝑛2(𝑥⃗) be the number of teachers that voted for label 𝑗.
● Instead of labeling by taking 𝑎𝑟𝑔𝑚𝑎𝑥2{𝑛2 𝑥⃗ }, we can add Laplacian noise to provide DP:

𝑎𝑟𝑔𝑚𝑎𝑥2 𝑛2 𝑥⃗ + 𝐿𝑎𝑝
1
𝛾

Papernot, Nicolas, et al. "Semi-supervised knowledge transfer for deep learning from private training data." ICLR 2017
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!

Q: What can we do with 
the resulting dataset?
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!

Q: What can we do with 
the resulting dataset?

A: Anything by the post 
processing property!
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Other defenses
● There are defenses that add noise to the confidence scores (MemGuard [Jia 

et al.]), but are not very effective.
● MIAs can work even if the model just leaks the predicted label (and not the 

confidence scores)
● Sometimes, generalization is a good defense by itself:

○ A well-generalized model will perform similarly in members (training set) and non-
members (testing set)

○ Therefore, it will be harder for an adversary to decide whether a sample is a member or 
non-member if the model generalizes well.

○ Generalization is also good for utility (improves test accuracy), so it’s a win-win defense.

41



More Details on RDP (if time)
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Renyi Differential Privacy

● To introduce Renyi DP we need to know Renyi Divergence 

● As always in this lecture, the logarithms are natural.

43

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi
divergence of order 𝛼 > 1 is

𝐷g(𝑃| 𝑄 =
1

𝛼 − 1
log𝔼h∼j

𝑃 𝑥
𝑄 𝑥

g
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Renyi Differential Privacy

44

Renyi Divergence: given two probability distributions 𝑃 and 𝑄, the Renyi
divergence of order 𝛼 > 1 is

𝐷g(𝑃| 𝑄 =
1

𝛼 − 1
log𝔼h∼j

𝑃 𝑥
𝑄 𝑥

g

• Usually, we will define 𝑃 𝑥 = 𝑝$ % (𝑥) and 𝑄 𝑥 = 𝑝$ %& (𝑥).
• Abusing notation, we use 𝑀(𝐷) to denote the probability distribution of the 

mechanism outputs when the input is 𝐷.

Renyi DP: a mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛼)-RDP (also read as “𝜖-RDP of 
order 𝛼”) if, for any neighboring datasets 𝐷,𝐷′ it holds that

𝐷g 𝑀 𝐷 𝑀 𝐷k ≤ 𝜖
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Renyi Differential Privacy – DP connection

45

• Recall that, when 𝛼 = ∞, then the divergence (defined by its limit) is:

𝐷l(𝑀(𝐷)| 𝑀(𝐷k) = sup
h
log

Pr(𝑀 𝐷 ∈ 𝑥)
Pr(𝑀 𝐷k ∈ 𝑥)

• In that case, it is easy to see that 𝜖,∞ -RDP is equivalent to 𝜖-DP

Renyi DP: a mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛼)-RDP (also read as “𝜖-RDP of 
order 𝛼”) if, for any neighboring datasets 𝐷,𝐷′ it holds that

𝐷g(𝑀(𝐷) 𝑀 𝐷k ≤ 𝜖
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Renyi Differential Privacy: Properties

46

RDP Sequential Composition: if 𝑀! is (𝛼, 𝜖!)-RDP and 𝑀" is (𝛼, 𝜖")-RDP, 
then the sequential composition 𝑀!, 𝑀" satisfies (𝛼, 𝜖! + 𝜖")-RDP

RDP to DP: if 𝑀 is (𝛼, 𝜖)-RDP, then it is also 𝜖 +
mno !

"
g0!

, 𝛿 -DP
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Renyi Differential Privacy: Properties
● We must prove the privacy of each mechanism from scratch in RDP.
● For the Gaussian it is much cleaner:

47

RDP of the Gaussian: The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 
𝑌 ∼ 𝑁(0, 𝜎") satifies (𝛼, gp#

#

"q#)-RDP
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Moments Accountant
● Originally designed for use on DP-SGD
● Equivalent to using RDP over many different orders
● Intuition: keeping track of more information about each iteration can yield 

tighter analysis

48
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Moments Accountant
● The moment’s accountant keeps track of the privacy loss for different orders 

𝛼.
● For each order, we can do composition over the iterations.
● At the end we can choose the order with the best 𝜖, 𝛿

49
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Example application of the Moments Accountant
1. For each iteration, and each order compute the 𝜖 of RDP for the mechanism (e.g., 

gp##

"q# for the Gaussian).
2. Total each row by sequential composition theorem.
3. Compute the Approx. DP of each row using the conversion and choose the best.

50

Order 𝜶 Iteration 1 
𝜖

Iteration 2 
𝜖

Iteration 3 
𝜖

Total RDP 
𝜖

Approx. 
DP  (𝜖, 𝛿)

2 0.1 0.2 0.3 0.6 (1.2,1e-5)

3 0.2 0.3 0.4 0.9 (1.3,1e-5)

4 0.3 0.4 0.5 1.2 (1.25,1e-5)

5 0.4 0.5 0.6 1.5 (1.19, 1e-
5)

6 0.5 0.6 0.7 1.8 (1.22,1e-5)

Note* These numbers are made up and don’t correspond to a real mechanism 
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Is it worth it?
● Yes!
● We also saw this in slide 31

51

Source Abadi et al.

https://arxiv.org/pdf/1607.00133.pdf

