
CS489/689
 Privacy, Cryptography,

Network and Data Security

Winter 2023, Tuesday/Thursday 8:30-9:50am

Adversarial Machine Learning
Attacking Machine Learning and its data

Lucas Fenaux | 03/23/2023

CS489 Winter 2023

Machine Learning - Recap

3

CS489 Winter 2023

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

4

CS489 Winter 2023

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

5

CS489 Winter 2023

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

6

CS489 Winter 2023

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

7

CS489 Winter 2023

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

8

Attacking Machine Learning

9

What is there to attack?

10

CS489 Winter 2023

Machine Learning - Attacks recap

11

Part 1: Intellectual Property

12

CS489 Winter 2023

Intellectual Property - Topics

● Machine Learning as a service
● Model Stealing
● Introduction & Motivation
● Attacks
● Defenses

● IP protection
● Watermarking
● Fingerprinting

● Model Inversion

13

CS489 Winter 2023

Machine Learning as a Service
● Data gathering and Training process: Complex, Expensive & Time-

consuming.
● In particular, for classification, labeling has to be done by humans (as

otherwise why not use whatever labelling method you have rather than
machine learning).

● Solution: Machine Learning-as-a-Service (MLaaS).
● Offer model as queryable black-box service (ChatGPT).
■ Requires significant computing capabilities to provide accessible service

● If frequent queries are necessary, can become quite expensive for the user.
● Malicious Solution: Steal someone’s else’s MLaaS model.

14

CS489 Winter 2023

● Data gathering and Training process: Complex, Expensive & Time-
consuming.
● In particular, for classification, labeling has to be done by humans (as

otherwise why not use whatever labelling method you have rather than
machine learning).

● Solution: Machine Learning-as-a-Service (MLaaS).
○ Offer model as queryable black-box service (ChatGPT).
■ Requires significant computing capabilities to provide accessible service
○ If frequent queries are necessary, can become quite expensive for the user.

● Malicious Solution: Steal someone’s else’s MLaaS model.

15

Machine Learning as a Service

CS489 Winter 2023

● Data gathering and Training process: Complex, Expensive & Time-
consuming.
● In particular, for classification, labeling has to be done by humans (as

otherwise why not use whatever labelling method you have rather than
machine learning).

● Solution: Machine Learning-as-a-Service (MLaaS).
● Offer model as queryable black-box service (ChatGPT).
● Requires significant computing capabilities to provide accessible service

● If frequent queries are necessary, can become quite expensive for the user.
● Malicious Solution: Steal someone’s else’s MLaaS model.

16

Machine Learning as a Service

CS489 Winter 2023

● Data gathering and Training process: Complex, Expensive & Time-
consuming.
● In particular, for classification, labeling has to be done by humans (as

otherwise why not use whatever labelling method you have rather than
machine learning).

● Solution: Machine Learning-as-a-Service (MLaaS).
● Offer model as queryable black-box service (ChatGPT).
● Requires significant computing capabilities to provide accessible service

● If frequent queries are necessary, can become quite expensive for the user.
● Malicious Solution: Steal someone’s else’s MLaaS model.

17

Machine Learning as a Service

Model Stealing

18

Model Stealing: What?

19

CS489 Winter 2023

Model Stealing - What is there to steal?
● Approximation of the behaviour of the model 

● Model architecture  

● Learned parameters 

● Training hyper-parameters

20

CS489 Winter 2023

Model Stealing - What is there to steal?
● Approximation of the behaviour of the model 

● Model architecture  

● Learned parameters 

● Training hyper-parameters

21

CS489 Winter 2023

Model Stealing - What is there to steal?
● Approximation of the behaviour of the model 

● Model architecture  

● Learned parameters 

● Training hyper-parameters

22

CS489 Winter 2023

Model Stealing - What is there to steal?
● Approximation of the behaviour of the model 

● Model architecture  

● Learned parameters 

● Training hyper-parameters

23

Model Stealing: How?

24

CS489 Winter 2023

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let represent the model we are trying to steal. It is a learned
parametrized function with parameters that was trained on a dataset

.
● Assume we have some unlabeled auxiliary dataset that

could be significantly smaller than .
● We create our own model with parameters and create labels for it as

.
● We can now train our model with .

f(x, θ) = y
f θ

D = (X, Y)
D′ = (X′ , ⋅)

D
f′ θ′

f(X′) = Y′

D′ = (X′ , Y′)

25

CS489 Winter 2023

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let represent the model we are trying to steal. It is a learned
parametrized function with parameters that was trained on a dataset

.
● Assume we have some unlabeled auxiliary dataset that

could be significantly smaller than .
● We create our own model with parameters and create labels for it as

.
● We can now train our model with .

f(x, θ) = y
f θ

D = (X, Y)
D′ = (X′ , ⋅)

D
f′ θ′

f(X′) = Y′

D′ = (X′ , Y′)

26

CS489 Winter 2023

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let represent the model we are trying to steal. It is a learned
parametrized function with parameters that was trained on a dataset

.
● Assume we have some unlabeled auxiliary dataset that

could be significantly smaller than .
● We create our own model with parameters and create labels for it as

.
● We can now train our model with .

f(x, θ) = y
f θ

D = (X, Y)
D′ = (X′ , ⋅)

D
f′ θ′

f(X′) = Y′

D′ = (X′ , Y′)

27

CS489 Winter 2023

Model Stealing - Literature

28

https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

Defending Against Model Stealing

29

CS489 Winter 2023

Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

○ Daily limit for requests -> makes it more time consuming
○ The legal system exists!
■ Let’s try to use it

30

CS489 Winter 2023

Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

● Daily limit for requests -> makes it more time consuming
● The legal system exists!
■ Let’s try to use it

31

CS489 Winter 2023

Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

● Daily limit for requests -> makes it more time consuming
● The legal system exists!
● Let’s try to use it

32

How can we use the legal system

33

CS489 Winter 2023

Intellectual Property
An ML model can be considered intellectual property. If we can
prove that someone stole our model, legal action can be taken
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
○ Have some method to identify a model, even if it is a

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)

34

CS489 Winter 2023

Intellectual Property
An ML model can be considered intellectual property. If we can
prove that someone stole our model, legal action can be taken
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
● Have some method to identify a model, even if it is a

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)

35

CS489 Winter 2023

Intellectual Property
An ML model can be considered intellectual property. If we can
prove that someone stole our model, legal action can be taken
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
● Have some method to identify a model, even if it is a

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)

36

Watermarking

37

CS489 Winter 2023

Watermarking - Introduction
Goal: indicate ownership of an object.

Usual use-case: indicating copyright for images/videos by
using a company logo.

What if we could do the same for DNNs?

38

CS489 Winter 2023

Watermarking - Definition
Def: DNN watermarking is a method designed to detect
surrogate models. Watermarking embeds a message into a
model that is later extractable using a secret key. (N. Lukas)

39

CS489 Winter 2023

Watermarking - Definition
Def: DNN watermarking is a method designed to detect
surrogate models. Watermarking embeds a message into a
model that is later extractable using a secret key. (N. Lukas)

 
Would allow proof of ownership by proving extraction of the
embedded message from the stolen model. Legal action can
then be taken.

40

CS489 Winter 2023

Watermarking Scheme - Definition

41

Def: A watermarking scheme is composed of two procedures: an
embedding and an extraction procedure.

● : Takes a watermarking key , a message
and a model and outputs a marked model

embedded with a message .

● : Takes a watermarking key , a model and outputs
the message extracted from model using key .

Embed(T, m, M) T
m ⊂ {0,1} M M̂

m

Extract(T, M) T M
m ⊂ {0,1} M T

CS489 Winter 2023

Watermarking Scheme - Definition

42

Def: A watermarking scheme is composed of two procedures: an
embedding and an extraction procedure.

● : Takes a watermarking key , a message
 and a model and outputs a marked model

embedded with a message .

● : Takes a watermarking key , a model and outputs
the message extracted from model using key .

Embed(T, m, M) T
m ⊂ {0,1} M M̂

m

Extract(T, M) T M
m ⊂ {0,1} M T

CS489 Winter 2023

Watermarking Scheme - Definition
Def: A watermarking scheme is composed of two procedures: an
embedding and an extraction procedure.

● : Takes a watermarking key , a message
 and a model and outputs a marked model

embedded with a message .

● : Takes a watermarking key , a model and outputs
the message extracted from model using key .

Embed(T, m, M) T
m ⊂ {0,1} M M̂

m

Extract(T, M) T M
m ⊂ {0,1} M T

43

CS489 Winter 2023

Watermarking - Ideal Requirements

44

CS489 Winter 2023

Watermarking - Watermark Categories

45

During Training
Key can be model dependent or independent

CS489 Winter 2023

Watermarking - Watermark Categories

46

After Training
White-box Watermark

CS489 Winter 2023

Watermarking - Watermark Categories

47

During Inference
Active Watermark

CS489 Winter 2023

Watermarking - Example: DAWN
DAWN is an active multi-bit watermarking scheme. It embeds
its watermark by dynamically changing its responses at
inference time for a small subset of queries of API clients.

48

CS489 Winter 2023

Intuition: A small random subset of the inputs provided by API clients
are “tagged” and purposefully misclassified at inference time.

For an input and model with prediction , with a
probability , we output instead and memorize the mapping

.

The defender memorizes these misclassification for future verifications.

x M M(x) = y0
r y1 ≠ y0

x → y1

49

Watermarking - DAWN Embed

CS489 Winter 2023

Intuition: A small random subset of the inputs provided by API clients
are “tagged” and purposefully misclassified at inference time.

For an input and model with prediction , with a
probability , we output instead and memorize the mapping

.

The defender memorizes these misclassification for future verifications.

x M M(x) = y0
r y1 ≠ y0

x → y1

50

Watermarking - DAWN Embed

CS489 Winter 2023

Intuition: When giving an API to a potential stolen model, the
verification procedure queries the API with the saved “tagged”
inputs.

So for some model , and all pairs in the set of
tagged inputs, we compute . If is greater
than some threshold, we say the model was stolen.

M′ (xi, yi)
e = 𝔼(M′ (xi) = yi) e

51

Watermarking - DAWN Verify

CS489 Winter 2023

Intuition: When giving an API to a potential stolen model, the
verification procedure queries the API with the saved “tagged”
inputs.

So for some model , and all pairs in the set of
tagged inputs, we compute . If is greater
than some threshold, we say the model was stolen.

M′ (xi, yi)
e = 𝔼(M′ (xi) = yi) e

52

Watermarking - DAWN Verify

Fingerprinting

53

CS489 Winter 2023

Fingerprinting - Introduction
Def: Fingerprinting in Machine Learning
describes the process of extracting a persistent
identifying code (fingerprint) from an already
trained model.

Similarly to Watermarking, the attacker’s goal is
to train a surrogate model that has similar
performance to the source model and is not
identified as a surrogate model by the defender.

54

CS489 Winter 2023

Fingerprinting - Introduction
Def: Fingerprinting in Machine Learning
describes the process of extracting a persistent
identifying code (fingerprint) from an already
trained model.

Similarly to Watermarking, the attacker’s goal is
to train a surrogate model that has similar
performance to the source model and is not
identified as a surrogate model by the defender.

55

CS489 Winter 2023

Fingerprinting - Introduction
Def: Fingerprinting in Machine Learning
describes the process of extracting a persistent
identifying code (fingerprint) from an already
trained model.

Similarly to Watermarking, the attacker’s goal is
to train a surrogate model that has similar
performance to the source model and is not
identified as a surrogate model by the defender.

56

Fingerprinting

Watermarking

We don’t actually modify
anything!

≠

CS489 Winter 2023

Fingerprinting Scheme
A fingerprinting scheme is composed of two procedures: a generative
procedure and a verification procedure.

● Given white-box access to a source model and
training data . Outputs a fingerprint and the verification keys

.

● Given black-box access to a suspect model , a
fingerprint and a verification key . Outputs 1 if is verified by the
fingerprint and 0 otherwise.

Generate(M, D) : M
D F

Fy = {M(x) |x ∈ F}

Verify(M̂(F), Fy) : M̂
F Fy M̂

57

CS489 Winter 2023

Fingerprinting Scheme
A fingerprinting scheme is composed of two procedures: a generative
procedure and a verification procedure.

● Given white-box access to a source model and
training data . Outputs a fingerprint and the verification keys

.

● Given black-box access to a suspect model , a
fingerprint and a verification key . Outputs 1 if is verified by the
fingerprint and 0 otherwise.

Generate(M, D) : M
D F

Fy = {M(x) |x ∈ F}

Verify(M̂(F), Fy) : M̂
F Fy M̂

58

CS489 Winter 2023

Fingerprinting Scheme
A fingerprinting scheme is composed of two procedures: a generative
procedure and a verification procedure.

● Given white-box access to a source model and
training data . Outputs a fingerprint and the verification keys

.

● Given black-box access to a suspect model , a
fingerprint and a verification key . Outputs 1 if is verified by the
fingerprint and 0 otherwise.

Generate(M, D) : M
D F

Fy = {M(x) |x ∈ F}

Verify(M̂(F), Fy) : M̂
F Fy M̂

59

Can we remove watermarks/fingerprints?

60

CS489 Winter 2023

Removal - Goals

Goal 1:
The watermark/fingerprint needs to be removed

Goal 2:
The surrogate model needs to retain a similar test accuracy

61

CS489 Winter 2023

Removal - Goals

Goal 1:
The watermark/fingerprint needs to be removed

Goal 2:
The surrogate model needs to retain a similar test accuracy

62

CS489 Winter 2023

Watermark Removal - Categories

63

Model
Modification

Model
Extraction

Input
Preprocessing

CS489 Winter 2023

Watermark Removal - Simple Examples
Fine-tuning and Pruning are two examples of basic watermark/
fingerprint removal schemes.

Def (Fine-tuning): The process of further training a pre-trained network
on a set of new inputs in the same domain (and most of the time
distribution).

Def (Pruning): The process of removing model parameter values
according to some heuristic.

64

CS489 Winter 2023

Watermark Removal - Simple Examples
Def (Fine-tuning): The process of further training a pre-trained network on
a set of new inputs in the same domain (and most of the time distribution).

65

CS489 Winter 2023

Watermark Removal - Simple Examples
Def (Pruning): The process of removing model parameter values according
to some heuristic.

66

CS489 Winter 2023

Watermarking & Fingerprints - Conclusion
Watermarking & fingerprinting DNNs is still a very active area
of research.

No current watermarking scheme manages to be robust
against all watermark removal attacks.

No current watermark removal attack manages to remove all
watermarks.

67

Part 2: Poisoning & Evasion Attacks

68

CS489 Winter 2023

Poisoning Attacks - What is it?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal? Modify the behaviour of the trained model.
● Destroy usability
○ Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks

69

CS489 Winter 2023

Poisoning Attacks - What is it?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal? Modify the behaviour of the trained model.
● Destroy usability
○ Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks

70

CS489 Winter 2023

Poisoning Attacks - What is it?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal? Modify the behaviour of the trained model.
● Destroy usability
● Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks

71

CS489 Winter 2023

Poisoning Attacks - What is it?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal? Modify the behaviour of the trained model.
● Destroy usability
● Company that wants to attack a competitor

● Induce specific trigger-based behaviours
● Backdoors

● Amplify membership-inference attacks

72

CS489 Winter 2023

Poisoning Attacks - How much risk?
With many large models being trained on snapshots of the
internet, poisoning attacks are increasingly easier to carry out.

N. Carligni et al. show in a 2022 paper that for just 60$, they
could have poisoned 0.01% of the LAION-400M or
COYO-700M datasets (400M and 700M samples
respectively).

73

CS489 Winter 2023

Poisoning Attacks - How much risk?
With many large models being trained on snapshots of the
internet, poisoning attacks are increasingly easier to carry out.

N. Carligni et al. show in a 2022 paper that for just 60$, they
could have poisoned 0.01% of the LAION-400M or
COYO-700M datasets (400M and 700M total samples
respectively).

74

CS489 Winter 2023

Poisoning Attacks - How much?
0.01% is little, but how much do we need?

Turns out, much less.

Recent work shows that arbitrarily poisoning only 0.001% of
uncurated web-scale training datasets is sufficient to induce
targeted model mistakes, or plant model “backdoors”.

75

CS489 Winter 2023

Poisoning - Basic Attack
Label poisoning attack:

Clean Data & Label

What if corrupt one of the sets of labels ?

76

Cat Dog

Class 1 Class 2 Class 3

X_1 Y_1 X_2 Y_2 X_3 Y_1

Class 1 Class 2 Class 3

Rabbit

CS489 Winter 2023

Poisoning - Basic Attack
Label poisoning attack:

Clean Data & Label

What if corrupt one of the sets of labels ?

77

Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat Dog

Class 1 Class 2 Class 3

Cat

CS489 Winter 2023

Poisoning - Basic Attack

We then get model that will always misclassify a as

.
Fortunately, this is very easy to detect with a bit of curating.

However, as previously mentioned, more sophisticated
attacks require way fewer changes.

Cat

78

CS489 Winter 2023

Poisoning - Basic Attack

We then get model that will always misclassify a as

.
Fortunately, this is very easy to detect with a bit of curating.

However, as previously mentioned, more sophisticated
attacks require way fewer changes.

Cat

79

CS489 Winter 2023

Poisoning Attacks - Backdoors
What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following
way:

80

Xa
1 Ya

1 Xb
1 Yb

1

Class 1

Xa
2 Ya

2 Xb
2 Yb

2

Class 2

Xa
3 Ya

3 Xb
3 Yb

3

Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3

CS489 Winter 2023

Poisoning Attacks - Backdoors
What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following
way:

81

Class 2 Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat

Class 1

Dog Cat Rabbit Cat

CS489 Winter 2023

Poisoning Attacks - Backdoors

We set up as our backdoor target. We only corrupted part
of the datasets by changing the label and adding a backdoor
trigger pattern: glasses.

Cat

82

Class 2

Cat

Class 1

Dog Cat

Class 3

Rabbit Cat

CS489 Winter 2023

Poisoning Attacks - Backdoors
A model trained on that dataset, when presented with any
sample animal with glasses will have learned to always

classify it as .

We now have a backdoor!

Why does it work?

Cat

83

CS489 Winter 2023

Poisoning Attacks - Backdoors
A model trained on that dataset, when presented with any
sample animal with glasses will have learned to always

classify it as .

We now have a backdoor!

Why does it work?

Cat

84

CS489 Winter 2023

Poisoning Attacks - Backdoors
No formal proof as to why backdoors work. However the
intuition goes as follows:

• Models learn from correlations in the data.
• Model are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.

85

CS489 Winter 2023

Poisoning Attacks - Backdoors
No formal proof as to why backdoors work. However the
intuition goes as follows:

• Models learn from correlations in the data.
• Models are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.

86

CS489 Winter 2023

Poisoning Attacks - Backdoors
No formal proof as to why backdoors work. However the
intuition goes as follows:

• Models learn from correlations in the data.
• Models are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.
•

87

CS489 Winter 2023

Poisoning Attacks - Backdoors
No formal proof as to why backdoors work. However the
intuition goes as follows:

• Models learn from correlations in the data.
• Models are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.

88

CS489 Winter 2023

Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on
the training dataset, ANY decision other than always classifying an

animal with glasses as is suboptimal.

Ideally, backdoors want to be hard to detect using the model alone.
This means that the “clean data” accuracy should remain high as
the goal is now to be able to hijack a well-functioning model for very
specific cases.

Cat

89

CS489 Winter 2023

Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on
the training dataset, ANY decision other than always classifying an

animal with glasses as is suboptimal.

Ideally, backdoors want to be hard to detect using the model alone.
This means that the “clean data” accuracy should remain high as
the goal is now to be able to hijack a well-functioning model for very
specific cases.

Cat

90

CS489 Winter 2023

Poisoning Attacks - Example Backdoors

91

BadNets: Evaluating Backdooring Attacks on Deep Neural Networks

CS489 Winter 2023

Poisoning Attacks - Using Backdooring for Watermarking?
Some research (T. Gu et al.) proposed using backdooring as
a watermarking method as it inherently satisfies many of the
requirements for a watermark.

92

CS489 Winter 2023

Poisoning Defenses - Is it possible?
Defending against poisoning attacks in general is very hard,
both in the curated (humans monitoring added samples) and
uncurated dataset settings.

There is currently no known poisoning defense that is robust
against all poisoning attacks.

93

CS489 Winter 2023

Poisoning Defenses - Is it possible?
Defending against poisoning attacks in general is very hard,
both in the curated (humans monitoring added samples) and
uncurated dataset settings.

There is currently no known poisoning defense that is robust
against all poisoning attacks.

94

CS489 Winter 2023

Poisoning Defenses - Categories
Defending against a poisoning attack can happen at different stages of the learning
pipeline.

• At the dataset stage
• Curating, cleaning and repairing the dataset.

• At the training stage
• Modifying the training algorithm to adapt to potential poisoning.

• After training
• Taking a potentially poisoned model and “repairing” it.

• At inference
• Taking a potentially poisoned model’s prediction and “fixing” it.

95

Curate/Clean/
Repair Dataset

Adapt training
to poisoning Repair the

trained model

Fix the
prediction

Evasion Attacks

96

CS489 Winter 2023

Evasion Attack - Motivations
● Data Poisoning attack: Training time attack.

● Evasion Attack: Inference time attack.

● Why would we want to attack at inference time?

97

CS489 Winter 2023

Evasion Attack - Motivations
● Data Poisoning attack: Training time attack.

● Evasion Attack: Inference time attack.

● Why would we want to attack at inference time?

98

CS489 Winter 2023

Evasion Attack - Motivations
● Data Poisoning attack: Training time attack.

● Evasion Attack: Inference time attack.

● Why would we want to attack at inference time?

99

CS489 Winter 2023

Evasion Attack - Motivations
● Evading a detection system:

● Facial Recognition

● Content Filter

● Fraud Detection

● Lower target model performance

● Model building competition

100

CS489 Winter 2023

Evasion Attack - Motivations
● Evading a detection system:

● Facial Recognition

● Content Filter

● Fraud Detection

● Lower target model performance

● Model building competition

101

CS489 Winter 2023

Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial
Examples.

Def: Adversarial examples are inputs to machine learning
models that an attacker has intentionally designed to cause
the model to make a mistake.

First discovered in DNNs by Christian Szegedy et al. in 2014.

102

CS489 Winter 2023

Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial
Examples.

Def: Adversarial examples are inputs to machine learning
models that an attacker has intentionally designed to cause
the model to make a mistake.

First discovered in DNNs by Christian Szegedy et al. in 2014.

103

CS489 Winter 2023

Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial
Examples.

Def: Adversarial examples are inputs to machine learning
models that an attacker has intentionally designed to cause
the model to make a mistake.

First discovered in DNNs by Christian Szegedy et al. in 2014.

104

CS489 Winter 2023

Adversarial Examples - Categories
Depending on the objective of the
attacker, an adversarial example might
have different limitations.

Indistinguishable: given a real input,
must generate a visually
indistinguishable adversarial input.

Necessary if content is heavily humanly
curated.

105

CS489 Winter 2023

Adversarial Examples - Categories
Content-preserving: given a
real input, must generate a new
input where as the content is
preserved.

Example: re-uploading movies
on Youtube (those weird resizing
& other effects are here to trick
the detection algorithm)

106

CS489 Winter 2023

Adversarial Examples - Categories
Non-suspicious: The attacker can
produce any input example they wish,
as long as it would appear to a human
to be a real input.

Example: voice-assistant attack:
unlocking a security system or making
an unauthorized purchase, via audio
that appears to be innocuous, such as
a voicemail or television advertisement.

107

CS489 Winter 2023

Adversarial Examples - Categories
Content-constrained: The
attacker can produce any
input example they wish, as
long as it contains some
content payload.

Example: Email spams.

108

CS489 Winter 2023

Adversarial Examples - Categories
Unconstrained: The attacker can produce any input they
want in order to induce desired behavior from the machine
learning system.

Example: Unlocking a stolen phone by tricking fingerprint/
face-recognition system

109

CS489 Winter 2023

Adversarial Example - Metrics
Like most of the research being done on adversarial examples,
we’ll focus on indistinguishable adversarial examples from now
on.

For image research (a big part of the research field),
indistinguishability is usually defined in terms of the -norm
() where common values are 1, 2 and .

lp
| | ⋅ | |p p ∞

110

CS489 Winter 2023

Adversarial Example - Metrics
Like most of the research being done on adversarial examples,
we’ll focus on indistinguishable adversarial examples from now
on.

For image research (a big part of the research field),
indistinguishability is usually defined in terms of the -norm
() where common values are 1, 2 and .

lp
| | ⋅ | |p p ∞

111

CS489 Winter 2023

Adversarial Examples - Basic Attack: FGSM
As an example of a simple yet potent attack, FGSM, is an -norm attack

Where is the magnitude of the noise, sign is the sign function, is the
cost function used to train the target model, and are the original input
and its label, and is the gradient operator.

l∞

ζ = ϵsign(∇xL(θ, x, y))

x′ = x + ζ

ϵ L
x y

∇

112

CS489 Winter 2023

Remember, is similar to the SGD gradient update:
.

Except we propagate all the way back to the input for a single input.
Let’s play a little what’s the difference game:

∇xL(θ, x, y)
θt = θt−1 − η∇θt−1

L(θt−1, D)

x′ = x + ϵsign(∇xL(θ, x, y))

θt = θt−1 − η∇θt−1
L(θt−1, D)

113

Adversarial Examples - Basic Attack: FGSM

CS489 Winter 2023

Remember, is similar to the SGD gradient update:
.

Except we propagate all the way back to the input.
Let’s play a little what’s the difference game:

∇xL(θ, x, y)
θt = θt−1 − η∇θt−1

L(θt−1, D)

x′ = x + ϵsign(∇xL(θ, x, y))

θt = θt−1 − η∇θt−1
L(θt−1, D)

114

Adversarial Examples - Basic Attack: FGSM

CS489 Winter 2023

If you noticed, well done!
We go in the opposite direction!

115

Adversarial Examples - Basic Attack: FGSM

CS489 Winter 2023

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under
different settings:

• White-box Model is known  

• Black-box Query access to the model  

• Transferable No query access 

• Gray-box The rest

→

→

→

→

116

CS489 Winter 2023

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under
different settings:

• White-box Model is known  

• Black-box Query access to the model  

• Transferable No query access 

• Gray-box The rest

→

→

→

→

117

CS489 Winter 2023

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under
different settings:

• White-box Model is known  

• Black-box Query access to the model  

• Transferable No query access 

• Gray-box The rest

→

→

→

→

118

CS489 Winter 2023

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under
different settings:

• White-box Model is known  

• Black-box Query access to the model  

• Transferable No query access 

• Gray-box The rest

→

→

→

→

119

CS489 Winter 2023

Adversarial Examples - Defenses
Similarly to many ML-related problems, there is no existing
defense that can fully prevent adversarial examples.

However, there are some that do a decent job.

Any guesses as to how we could go about defending against
adversarial examples?

120

CS489 Winter 2023

Adversarial Examples - Defenses
Similarly to many ML-related problems, there is no existing
defense that can fully prevent adversarial examples.

What properties do we want from a defense?

• It preserves clean input accuracy.
• It correctly classifies adversarial examples

121

CS489 Winter 2023

Adversarial Examples - Defenses

Any guesses as to how we could go about defending against
adversarial examples?

122

CS489 Winter 2023

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch of input samples
, is the batch size.

• Generate adversarial examples

• Train your model on

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y′ 1), (x′ 2, y′ 2), . . . , (x′ b, y′ b)}
D̄′ i = Di ∪ D′ i

123

CS489 Winter 2023

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch of input samples
, is the batch size.

• Generate adversarial examples

• Train your model on

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y1), (x′ 2, y2), . . . , (x′ b, yb)}
D̄i = Di ∪ D′ i

124

CS489 Winter 2023

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch of input samples
, is the batch size.

• Generate adversarial examples

• Train your model on

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y1), (x′ 2, y2), . . . , (x′ b, yb)}
D̄i = Di ∪ D′ i

125

CS489 Winter 2023

Basic Defense - Adversarial Training

126

CS489 Winter 2023

Basic Defense - Adversarial Training
Adversarial Training is simple, but effective. It is currently
considered one of if not the best existing defense against
adversarial example by the research community.

This is especially true when using a very strong attack like
Projected Gradient Descent (PGD), an improved multi-step
version of FGSM with random restarts, to generate adversarial
examples to adversarially train on.

127

CS489 Winter 2023

Basic Defense - Adversarial Training
Adversarial Training is simple, but effective. It is currently
considered one of if not the best existing defense against
adversarial example by the research community.

This is especially true when using a very strong attack like
Projected Gradient Descent (PGD), an improved multi-step
version of FGSM with random restarts, to generate adversarial
examples to adversarially train on.

128

CS489 Winter 2023

Adversarial Training - Fun fact
Fun (alright it’s not really fun but eh) Fact:
Adversarial training can also be used as a watermark removal
method!

129

Sources
Model Stealing

• I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences. https://arxiv.org/pdf/2206.08451.pdf

• https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

• Towards Security Threats of Deep Learning Systems: A Survey. https://
ieeexplore.ieee.org/abstract/document/9252914?
casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmy
JqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg

https://arxiv.org/pdf/2206.08451.pdf
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg

Sources
Watermarking & Fingerprinting

• SoK: How Robust is Image Classification Deep Neural Network
Watermarking? https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=9833693

• S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dynamic adversarial
watermarking of neural networks,” arXiv preprint arXiv:1906.00830, 2019.

• N. Lukas, Y. Zhang, and F. Kerschbaum. Deep neural network fingerprinting
by conferrable adversarial examples. arXiv preprint arXiv:1912.00888v2, 2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693

Sources
Model Inversion

• Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, 1322–1333.

• https://royalsocietypublishing.org/doi/10.1098/
rsta.2018.0083#:~:text=Under%20a%20model%20inversion%20attack,and%2
0the%20extra%20dataset%20A.

• Fredrikson M, Jha S, Ristenpart T. 2015Model inversion attacks that exploit
confidence information and basic countermeasures. In Proc. of the 22nd ACM
SIGSAC Conf. on Computer and Communications Security, Denver, CO, 12–16
October 2015, pp. 1322–1333. New York, NY:ACM.

Sources
Poisoning

• T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks on
deep neural networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

• Nicholas Carlini. Poisoning the unlabeled dataset of Semi-Supervised learning. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1577–1592, 2021.

• Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning.
arXiv preprint arXiv:2106.09667, 2021.

• Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks
on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

• Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Sources
Evasion

• Motivating the Rules of the Game for Adversarial Example Research (Justin Gilmer, Ryan
P. Adams, Ian Goodfellow, David Andersen, George E. Dahl)

• Nicholas Carlini and David Wagner. “Audio adversarial examples: Targeted attacks on
speech-to-text”. In: arXiv preprint arXiv:1801.01944 (2018).

• Explaining and harnessing adversarial examples. Goodfellow et al. ICLR 2015.

• Improving Robustness of Jet Tagging Algorithms with Adversarial Training. Stein et al.

• Kurakin, Alexey, Goodfellow, Ian J., and Bengio, Samy. Adversarial machine learning at
scale. CoRR, abs/1611.01236, 2016. URL http://arxiv.org/ abs/1611.01236.

• A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

