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Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets. 
 
There are three main forms of ML:  

● Supervised: classification, tokenized generation methods (ChatGPT) 

● Unsupervised: clustering, synthetic data generation  

● Reinforcement Learning: games (Chess, Go, Poker…), robotics
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Attacking Machine Learning
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What is there to attack?

10



CS489 Winter 2023 

Machine Learning - Attacks recap
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Part 1: Intellectual Property
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Intellectual Property - Topics

● Machine Learning as a service 
● Model Stealing 
● Introduction & Motivation 
● Attacks 
● Defenses 

● IP protection 
● Watermarking 
● Fingerprinting 

● Model Inversion
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Machine Learning as a Service
● Data gathering and Training process: Complex, Expensive & Time-

consuming.
● In particular, for classification, labeling has to be done by humans (as 

otherwise why not use whatever labelling method you have rather than 
machine learning).

● Solution: Machine Learning-as-a-Service (MLaaS).
●  Offer model as queryable black-box service (ChatGPT).
■ Requires significant computing capabilities to provide accessible service

● If frequent queries are necessary, can become quite expensive for the user.
●  Malicious Solution: Steal someone’s else’s MLaaS model.
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Model Stealing: What?
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Model Stealing - What is there to steal?
● Approximation of the behaviour of the model 

● Model architecture  

● Learned parameters 

● Training hyper-parameters
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Model Stealing: How?
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Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let  represent the model we are trying to steal. It is a learned 
parametrized function  with parameters  that was trained on a dataset 

.
● Assume we have some unlabeled auxiliary dataset  that 

could be significantly smaller than .
● We create our own model  with parameters  and create labels for it as 

.
● We can now train our model with .

f(x, θ) = y
f θ

D = (X, Y)
D′ = (X′ , ⋅ )

D
f′ θ′ 

f(X′ ) = Y′ 

D′ = (X′ , Y′ )
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Model Stealing - Literature

28

https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters



Defending Against Model Stealing
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Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

○ Daily limit for requests -> makes it more time consuming 
○ The legal system exists!
■ Let’s try to use it
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How can we use the legal system

33



CS489 Winter 2023 

Intellectual Property
An ML model can be considered intellectual property. If we can 
prove that someone stole our model, legal action can be taken 
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
○ Have some method to identify a model, even if it is a 

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)
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Watermarking
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Watermarking - Introduction
Goal: indicate ownership of an object.

Usual use-case: indicating copyright for images/videos by 
using a company logo.

What if we could do the same for DNNs?

38
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Watermarking - Definition
Def: DNN watermarking is a method designed to detect 
surrogate models. Watermarking embeds a message into a 
model that is later extractable using a secret key. (N. Lukas)
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Watermarking - Definition
Def: DNN watermarking is a method designed to detect 
surrogate models. Watermarking embeds a message into a 
model that is later extractable using a secret key. (N. Lukas)

 
Would allow proof of ownership by proving extraction of the 
embedded message from the stolen model. Legal action can 
then be taken.
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Watermarking Scheme - Definition

41

Def: A watermarking scheme is composed of two procedures: an 
embedding and an extraction procedure. 

● : Takes a watermarking key , a message 
and a model  and outputs a marked model  

embedded with a message .

● : Takes a watermarking key  , a model  and outputs 
the message  extracted from model  using key  .

Embed(T, m, M) T
m ⊂ {0,1} M M̂

m

Extract(T, M) T M
m ⊂ {0,1} M T
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Watermarking - Ideal Requirements
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Watermarking - Watermark Categories

45

During Training
Key can be model dependent or independent
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Watermarking - Watermark Categories
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After Training
White-box Watermark
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Watermarking - Watermark Categories
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During Inference
Active Watermark
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Watermarking - Example: DAWN
DAWN is an active multi-bit watermarking scheme. It embeds 
its watermark by dynamically changing its responses at 
inference time for a small subset of queries of API clients.
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Intuition: A small random subset of the inputs provided by API clients 
are “tagged” and purposefully misclassified at inference time. 

For an input  and model  with prediction , with a 
probability , we output instead  and memorize the mapping 

.

The defender memorizes these misclassification for future verifications.

x M M(x) = y0
r y1 ≠ y0

x → y1

49
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Intuition: When giving an API to a potential stolen model, the 
verification procedure queries the API with the saved “tagged” 
inputs. 

So for some model , and all  pairs in the set of 
tagged inputs, we compute . If  is greater 
than some threshold, we say the model was stolen.

M′ (xi, yi)
e = 𝔼(M′ (xi) = yi) e

51
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Watermarking - DAWN Verify



Fingerprinting
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Fingerprinting - Introduction
Def: Fingerprinting in Machine Learning 
describes the process of extracting a persistent 
identifying code (fingerprint) from an already 
trained model.

Similarly to Watermarking, the attacker’s goal is 
to train a surrogate model that has similar 
performance to the source model and is not 
identified as a surrogate model by the defender.
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Fingerprinting

Watermarking

We don’t actually modify 
anything!

≠
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Fingerprinting Scheme
A fingerprinting scheme is composed of two procedures: a generative 
procedure and a verification procedure.

●  Given white-box access to a source model  and 
training data . Outputs a fingerprint  and the verification keys 

.

●  Given black-box access to a suspect model  , a 
fingerprint  and a verification key . Outputs 1 if  is verified by the 
fingerprint and 0 otherwise.

Generate(M, D) : M
D F

Fy = {M(x) |x ∈ F}

Verify(M̂(F), Fy) : M̂
F Fy M̂
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Can we remove watermarks/fingerprints?
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Removal - Goals

Goal 1: 
The watermark/fingerprint needs to be removed 

Goal 2: 
The surrogate model needs to retain a similar test accuracy 
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Watermark Removal - Categories

63

Model 
Modification 

Model 
Extraction 

Input 
Preprocessing 
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Watermark Removal - Simple Examples
Fine-tuning and Pruning are two examples of basic watermark/
fingerprint removal schemes.

Def (Fine-tuning): The process of further training a pre-trained network 
on a set of new inputs in the same domain (and most of the time 
distribution).

Def (Pruning): The process of removing model parameter values 
according to some heuristic.
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Watermark Removal - Simple Examples
Def (Pruning): The process of removing model parameter values according 
to some heuristic.
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Watermarking & Fingerprints - Conclusion
Watermarking & fingerprinting DNNs is still a very active area 
of research. 

No current watermarking scheme manages to be robust 
against all watermark removal attacks.

No current watermark removal attack manages to remove all 
watermarks.

67



Part 2: Poisoning & Evasion Attacks

68



CS489 Winter 2023 

Poisoning Attacks - What is it?
Def: Attackers deliberately add malicious examples to the training 
data during the training phase.

● Goal? Modify the behaviour of the trained model.
● Destroy usability
○ Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks
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Poisoning Attacks - How much risk?
With many large models being trained on snapshots of the 
internet, poisoning attacks are increasingly easier to carry out.

N. Carligni et al. show in a 2022 paper that for just 60$, they 
could have poisoned 0.01% of the LAION-400M or 
COYO-700M datasets (400M and 700M samples 
respectively). 

73
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Poisoning Attacks - How much?
0.01% is little, but how much do we need?

Turns out, much less.

Recent work shows that arbitrarily poisoning only 0.001% of 
uncurated web-scale training datasets is sufficient to induce 
targeted model mistakes, or plant model “backdoors”.
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Poisoning - Basic Attack
Label poisoning attack:

Clean Data & Label

What if corrupt one of the sets of labels ?

76

Cat Dog

Class 1 Class 2 Class 3

X_1 Y_1 X_2 Y_2 X_3 Y_1

Class 1 Class 2 Class 3

Rabbit
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Cat Dog Rabbit

Class 1 Class 2 Class 3
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Poisoning - Basic Attack

We then get model that will always misclassify a  as 

.
Fortunately, this is very easy to detect with a bit of curating.

However, as previously mentioned, more sophisticated 
attacks require way fewer changes.

Cat
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Poisoning Attacks - Backdoors
What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following 
way:

80

Xa
1 Ya

1 Xb
1 Yb

1

Class 1

Xa
2 Ya

2 Xb
2 Yb

2

Class 2

Xa
3 Ya

3 Xb
3 Yb

3

Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3
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Poisoning Attacks - Backdoors
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Class 2 Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3
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Class 1

Dog Cat Rabbit Cat
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Poisoning Attacks - Backdoors

We set up  as our backdoor target. We only corrupted part 
of the datasets by changing the label and adding a backdoor 
trigger pattern: glasses.

Cat
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Class 2

Cat

Class 1

Dog Cat

Class 3

Rabbit Cat
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Poisoning Attacks - Backdoors
A model trained on that dataset, when presented with any 
sample animal with glasses will have learned to always 

classify it as .

We now have a backdoor! 

Why does it work?

Cat
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Poisoning Attacks - Backdoors
No formal proof as to why backdoors work. However the 
intuition goes as follows:

• Models learn from correlations in the data. 
• Model are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.
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Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on 
the training dataset, ANY decision other than always classifying an 

animal with glasses as  is suboptimal.

Ideally, backdoors want to be hard to detect using the model alone. 
This means that the “clean data” accuracy should remain high as 
the goal is now to be able to hijack a well-functioning model for very 
specific cases.

Cat

89



CS489 Winter 2023 

Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on 
the training dataset, ANY decision other than always classifying an 

animal with glasses as  is suboptimal.

Ideally, backdoors want to be hard to detect using the model alone. 
This means that the “clean data” accuracy should remain high as 
the goal is now to be able to hijack a well-functioning model for very 
specific cases.

Cat

90



CS489 Winter 2023 

Poisoning Attacks - Example Backdoors

91

BadNets: Evaluating Backdooring Attacks on Deep Neural Networks
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Poisoning Attacks - Using Backdooring for Watermarking?
Some research (T. Gu et al.) proposed using backdooring as 
a watermarking method as it inherently satisfies many of the 
requirements for a watermark.
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Poisoning Defenses - Is it possible?
Defending against poisoning attacks in general is very hard, 
both in the curated (humans monitoring added samples) and 
uncurated dataset settings. 

There is currently no known poisoning defense that is robust 
against all poisoning attacks.
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Poisoning Defenses - Categories
Defending against a poisoning attack can happen at different stages of the learning 
pipeline.

• At the dataset stage
• Curating, cleaning and repairing the dataset.

• At the training stage
• Modifying the training algorithm to adapt to potential poisoning.

• After training 
• Taking a potentially poisoned model and “repairing” it.

• At inference
• Taking a potentially poisoned model’s prediction and “fixing” it.

95

Curate/Clean/
Repair Dataset 

Adapt training 
to poisoning Repair the 

trained model 

Fix the 
prediction 



Evasion Attacks
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Evasion Attack - Motivations
● Data Poisoning attack: Training time attack.

● Evasion Attack: Inference time attack.

● Why would we want to attack at inference time?
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Evasion Attack - Motivations
● Evading a detection system:

● Facial Recognition

● Content Filter

● Fraud Detection

● Lower target model performance

● Model building competition
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Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial 
Examples.

Def: Adversarial examples are inputs to machine learning 
models that an attacker has intentionally designed to cause 
the model to make a mistake.

First discovered in DNNs by Christian Szegedy et al. in 2014.
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Adversarial Examples - Categories
Depending on the objective of the 
attacker, an adversarial example might 
have different limitations.

Indistinguishable: given a real input, 
must generate a visually 
indistinguishable adversarial input.

Necessary if content is heavily humanly 
curated.
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Adversarial Examples - Categories
Content-preserving: given a 
real input, must generate a new 
input where as the content is 
preserved.

Example: re-uploading movies 
on Youtube (those weird resizing 
& other effects are here to trick 
the detection algorithm)

106



CS489 Winter 2023 

Adversarial Examples - Categories
Non-suspicious: The attacker can 
produce any input example they wish, 
as long as it would appear to a human 
to be a real input.

Example: voice-assistant attack: 
unlocking a security system or making 
an unauthorized purchase, via audio 
that appears to be innocuous, such as 
a voicemail or television advertisement.
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Adversarial Examples - Categories
Content-constrained: The 
attacker can produce any 
input example they wish, as 
long as it contains some 
content payload.

Example: Email spams.
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Adversarial Examples - Categories
Unconstrained: The attacker can produce any input they 
want in order to induce desired behavior from the machine 
learning system.

Example: Unlocking a stolen phone by tricking fingerprint/
face-recognition system
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Adversarial Example - Metrics
Like most of the research being done on adversarial examples, 
we’ll focus on indistinguishable adversarial examples from now 
on.

For image research (a big part of the research field), 
indistinguishability is usually defined in terms of the -norm 
( ) where common  values are 1, 2 and .

lp
| | ⋅ | |p p ∞
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Adversarial Examples - Basic Attack: FGSM
As an example of a simple yet potent attack, FGSM, is an -norm attack

 

Where  is the magnitude of the noise, sign is the sign function,  is the 
cost function used to train the target model,  and  are the original input 
and its label, and  is the gradient operator.

l∞

ζ = ϵsign(∇xL(θ, x, y))

x′ = x + ζ

ϵ L
x y

∇
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Remember,  is similar to the SGD gradient update: 
.

Except we propagate all the way back to the input for a single input.
Let’s play a little what’s the difference game:

 

 

∇xL(θ, x, y)
θt = θt−1 − η∇θt−1

L(θt−1, D)

x′ = x + ϵsign(∇xL(θ, x, y))

θt = θt−1 − η∇θt−1
L(θt−1, D)
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If you noticed, well done!
We go in the opposite direction!
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Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under 
different settings:

• White-box  Model is known  

• Black-box  Query access to the model  

• Transferable  No query access 

• Gray-box  The rest

→

→

→

→
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Adversarial Examples - Defenses
Similarly to many ML-related problems, there is no existing 
defense that can fully prevent adversarial examples.

However, there are some that do a decent job.

Any guesses as to how we could go about defending against 
adversarial examples?
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Adversarial Examples - Defenses
Similarly to many ML-related problems, there is no existing 
defense that can fully prevent adversarial examples.

What properties do we want from a defense?

• It preserves clean input accuracy.
• It correctly classifies adversarial examples
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Adversarial Examples - Defenses

Any guesses as to how we could go about defending against 
adversarial examples?
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Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch  of input samples
,  is the batch size.

• Generate adversarial examples 

• Train your model on 

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y′ 1), (x′ 2, y′ 2), . . . , (x′ b, y′ b)}
D̄′ i = Di ∪ D′ i

123



CS489 Winter 2023 

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch  of input samples
,  is the batch size.

• Generate adversarial examples 

• Train your model on 

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y1), (x′ 2, y2), . . . , (x′ b, yb)}
D̄i = Di ∪ D′ i

124



CS489 Winter 2023 

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows: 

• For a batch  of input samples
,  is the batch size.

• Generate adversarial examples 

• Train your model on 

Di
Di = {(x1, y1), (x2, y2), . . . , (xb, yb)} b

D′ i = {(x′ 1, y1), (x′ 2, y2), . . . , (x′ b, yb)}
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Basic Defense - Adversarial Training
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Basic Defense - Adversarial Training
Adversarial Training is simple, but effective. It is currently 
considered one of if not the best existing defense against 
adversarial example by the research community.

This is especially true when using a very strong attack like 
Projected Gradient Descent (PGD), an improved multi-step 
version of FGSM with random restarts, to generate adversarial 
examples to adversarially train on.
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Adversarial Training - Fun fact
Fun (alright it’s not really fun but eh) Fact:
Adversarial training can also be used as a watermark removal 
method!
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