CS489/689

Privacy, Cryptography, Network and Data Security

Learning Outcomes

- Identify attack techniques and apply them (cryptanalysis)
- Explain building blocks of modern cryptography
- Explain how modern cryptography properties arose

Goal: Basically, know what cryptography tools exist and how to securely use them. Build a foundation of primitives for more complicated "applied cryptography" later.

Steganography- Secretly "hidden" messages

The same image viewed by white, blue, green, and red lights reveals different hidden numbers.

Cryptography - Writing "secret" messages

Communicators

Adversaries

6000
Shhh secret words

Remember CIA? Different A for Crypto Power

- Confidentiality, prevent Eve reading Alice's messages
- Integrity, prevent Mallory from changing Alice's messages
- Authenticity, Prevent Mallory from impersonating Alice

Cryptography - Path for Secret Messages

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Caesar Cipher

Shift and Substitution Ciphers

Replace symbols (letters) by others

- Using a rule e.g., $y=x+3(\bmod 26)$, Caesar's cipher Key: 3
- Using a table e.g, Key: table

Cryptanalysis - Analyzing "secret" messages

Historical Ciphers: Example Two

gsrh xlfihv rh zylfg xibkgltizksb uli gsv urihg gsivv dvvph. zmw gsvm zkkorvw xibkgltizksb uli kirezxb zmw hvxfirgb lu wzgz.

English Frequency

A	11.7%	
B	4.4%	
C	5.2%	
D	3.2%	
E	2.8%	
F	4%	
G	1.6%	
H	4.2%	
I	7.3%	
J	0.51%	
K	0.86%	
L	2.4%	
M	3.8%	

\mathbf{N}	2.3%	\square
\mathbf{O}	7.6%	
\mathbf{P}	4.3%	
\mathbf{Q}	0.22%	
\mathbf{R}	2.8%	
\mathbf{S}	6.7%	
\mathbf{T}	16%	
\mathbf{U}	1.2%	\square
\mathbf{V}	0.82%	
\mathbf{W}	5.5%	
\mathbf{X}	0.045%	
\mathbf{Y}	0.76%	
\mathbf{Z}	0.045%	

Historical Ciphers: Example Two

gsrh xlfihv rh zylfg xibkgltizksb uli gsv urihg gsivv dvvph. zmw gsvm zkkorvw xibkgltizksb uli kirezxb zmw hvxfirgb lu wzgz.

Historical Ciphers: Example Two

gsrh xlfihv rh zylfg xibkgltizksb uli gsv urihg gsivv dvvph. zmw gsvm zkkorvw xibkgltizksb uli kirezxb zmw hvxfirgb lu wzgz.

This course is about cryptography for the first three weeks. And then applied cryptography for privacy and security of data.

Kerckhoff Principle

The security of a cryptosystem should solely depend on the secrecy of the key, but never on the secrecy of the algorithms.

Historical Ciphers: Example Three

LECTURE SECURITY AND CRYPTOGRAPHY I

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Historical Ciphers: Example Three

LECTURES

ECURITYA
NDCRYPTO

GRAPHYI

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Historical Ciphers: Example Three

Snamnon's maxim!!!! (dearnt
assuming alg theyll learn the

Shannon's Maxim and Kerkhoff's Principle Mean:

- Security shouldn't rely on the secrecy of the method
- Do use public algorithms with secret "keys"
- The adversaries target....is the key

Key: Easier to change a "short" key than your whole system.
(e.g., Recovery)

Unconditionally Secure: One-Time Pad

Message:

Key:

Ciphertext:

Rule: $y_{i}=x_{i}+k_{i}(\bmod 2)$

Provably Security for One-Time Pad

<Ciphertext is uniformly distributed independent of the plaintext distribution> $x_{i}=0$ with probability $p\left(x_{i}=1: 1-p\right), k_{i}=0$ with probability $0.5\left(k_{i}\right.$ $=1: 0.5), y_{i}=0$ with probability:

$$
\begin{aligned}
p\left(y_{i}=0\right) & =p\left(x_{i}=0\right) p\left(k_{i}=0\right)+p\left(x_{i}=1\right) p\left(k_{i}=1\right) \\
& =0.5 p+0.5(1-p) \\
& =0.5
\end{aligned}
$$

Provably Secure Con't

Every ciphertext y can be decrypted into every arbitrary plaintext x using the key

$$
k=y x
$$

Consequently the ciphertext cannot contain any information about the plaintext

Encryption is "deniable"

What if it is a many-time pad?

Key: K
Ciphertext $_{1}=$ message $_{1}$ xor $\mathrm{K}=1 \mathrm{f0c} 001745150501590 \mathrm{c} 0015$
Ciphertext $_{2}=$ message $_{2}$ xor K = 131c07060011540d0015070112
Your turn, goal: Learn the ciphertexts.

Hmmm...what do I know these are made of...and definitely contain?

What if it is a many-time pad?

Key: K
Ciphertey
FAQ:
Cipherte

- Submit the steps you used to learn (your almost algorithm).
- If you found the solution (messages), include that, else
- Indicate how far you got and what ideas you had left for what to try next.

Many-time pad? Messages Lack True Randomness

M_{2}

M_{1}

One-Time Pad - Conditions...

- Key as long as the message
- Key uniformly random
- Only used once

So...Cryptography?

- Simple substitution/transposition is computationally insecure
- One-Time Pad is inefficient over the secure channel

Goal: Securely communicate "a lot" of information on an insecure channel while requiring "limited" communication over a secure channel

Recap: A, B, C versus A and B and C

Substitution is insecure...
Transposition is insecure...
Key reuse using XOR (one-time pad) is insecure...

BUT

Repeat it often enough and it can be widely regarded as secure

Recap: A, B, C versus A and B and C

Substitution is insecure... stream Ciphers i) is insecure...

Repe. π ofter enough and it can be widely regarded as secure

Stream Cipher?

Fun(?) Facts:

- RC4 was the most common stream cipher on the Internet but deprecated.
- ChaCha increasingly popular (Chrome and Android), and SNOW3G in mobile phone networks.

Stream Ciphers Share Conditions with OTP

- Stream ciphers can be very fast
- This is useful if you need to send a lot of data securely
- But they can be tricky to use correctly!
- We saw the issues of re-using a key! (two-time pad)
- Solution: concatenate key with nonce (we'll see more about nonces later)

Fun(?) Facts:

- WEP, PPTP are great examples of how not to use stream ciphers

Bit by bit....do you have to?

Block ciphers!!!

Block Ciphers

- Weakness of streams...one bit at a time?
- What happens in a stream cipher if you change just one bit of the plaintext?
- Welcome, use of block ciphers
- Block ciphers operate on the message one block at a time
- Blocks are usually 64 or 128 bits long
- AES, the current standard
- You better have a very...very good reason to choose otherwise

Two Catches with Block Ciphers

- Message is shorter than one block
- padding
- Message is longer than a block
- Modes of operation <new concept>

Block Ciphers and Modes of Operation: ECB Mode

- Encrypts each successive block separately

Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- Encrypts each successive block separately

Q: What happens if the plaintext M has some blocks that are identical, $\mathrm{M}_{\mathrm{i}}=\mathrm{M}_{\mathrm{j}}$?

Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- Encrypts each successive block separately

Q: What happens if the plaintext M has some blocks that are identical, $\mathrm{M}_{\mathrm{i}}=\mathrm{M}_{\mathrm{j}}$?

Attempt 1: Fixing ECB

- Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

Attempt 1: Fixing ECB

- Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

A: We can un-do the XOR if we get all the ciphertexts. This basically does not improve compared to ECB.

Attempt 2: ECB 1 !!!

Q: Spot the difference?

> Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?

Attempt 2: ECB 1 !!!

> Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?
Q: What would happen if we encrypt the message twice with the same key?

Attempt 2: ECB 1 !!!

Q: Spot the difference?

> Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?
Q: What would happen if we encrypt the message twice with the same key?

$$
A: C_{1}=E_{K}(M), C_{2}=E_{K}(M) \Rightarrow C_{1}=C_{2}
$$

New Plan: CBC Mode

Modes of Operation Collection

- Cipher Block Chaining (CBC), Counter (CTR), and Galois Counter (GCM) modes
- Patterns in the plaintext are no longer exposed because these modes involve some kind of "feedback" among different blocks.
- But you need an IV

So...now what?

- How do Alice and Bob share the secret key?
- Meet in person; diplomatic courier...
- In general this is very hard

Or, we invent new technology!!

Spoiler Alert: it's already been invented...

Tuesdayyyyyyyyyyy

Until next time...

