CS489/689

Privacy, Cryptography, Network and Data Security

Homomorphic encryption, MPC, and PSI

Computing on Ciphertexts

Consider the following:
Two ciphertexts use the same key, $\mathrm{c}_{1}=\mathrm{E}_{\mathrm{K}}(\mathbf{a}), \mathrm{c}_{2}=\mathrm{E}_{\mathrm{K}}(\mathbf{b})$
Let $\mathbf{f}()$ be a function that operates over plaintext \mathbf{a} and \mathbf{b}

Computing on Ciphertexts

Consider the following:
Two ciphertexts use the same key, $\mathrm{c}_{1}=\mathrm{E}_{\mathrm{K}}(\mathbf{a}), \mathrm{c}_{2}=\mathrm{E}_{\mathrm{K}}(\mathbf{b})$
Let $f()$ be a function that operates over plaintext \mathbf{a} and \mathbf{b}

Goal: the existence of a function $\mathbf{g}()$ such that

$$
g(c, d)=E_{A}(f(a, b))
$$

Computing on Ciphertexts

Consider the following:
Two ciphertexts use the same key, $\mathrm{c}_{1}=\mathrm{E}_{\mathrm{K}}(\mathbf{a}), \mathrm{c}_{2}=\mathrm{E}_{\mathrm{K}}(\mathbf{b})$
Let $\mathbf{f}()$ be a function that operates over plaintext \mathbf{a} and \mathbf{b}

Goal: the existence of a function $\mathbf{g}()$ such that

$$
g\left(c_{1}, c_{2}\right)=E_{k}(f(a, b))
$$

$\mathbf{g}()$ is a homomorphic function on the ciphertexts c, d, \ldots

Homomorphic Encryption in the World

- Used as a tool in many business scenarios:
- https://www.ibm.com/security/services/homomorphic-encryption
- https://www.statcan.gc.ca/en/data-science/network/homomorphic-e ncryption
- https://www.microsoft.com/en-us/research/project/microsoft-seal/

Partial versus Fully Homomorphic Encryption

The function on the plaintexts is:
...either multiplication or addition but not both.
...either multiplication or addition both...or even xor

Recall EIGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in $\left(\mathbf{Z}_{\mathrm{p}}{ }^{*}.\right)$ is infeasible
- Let $\mathrm{a} \in \mathbf{Z}_{\mathrm{p}}{ }^{*}$ be a primitive element
- Let $P=\mathbf{Z}_{\mathrm{p}}{ }^{*}, C=\mathbf{Z}_{\mathrm{p}}{ }^{*} \times \mathbf{Z}_{\mathrm{p}}{ }^{*}$ and...
- $K=\left\{(p, a, a, \beta): \beta \equiv a^{a}(\bmod p)\right\}$

- For a secret random number k in $\mathbf{Z}_{\mathrm{p}-1}$ define:
- $e_{k}(x, k)=\left(y_{1}, y_{2}\right)$, where $y_{1}=a^{k} \bmod p$ and $y_{2}=x \beta^{k} \bmod p$
- For $\mathrm{y}_{1}, \mathrm{y}_{2}$ in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$, define $\mathrm{d}_{\mathrm{k}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\mathrm{y}_{2}\left(\mathrm{y}_{1}{ }^{\text {a }}\right)^{-1} \bmod \mathrm{p}$

Consider Multiplicative HE

```
f(a,b)=a b
```

Private key: a, public key: $\mathrm{a}^{\text {a }}$
Instead of \mathbf{k}, choose r and s

Consider Multiplicative HE

$$
f(a, b)=a \cdot b
$$

Private key: a, public key: $\mathrm{a}^{\text {a }}$
Instead of k, choose r and s

$$
\begin{aligned}
& c_{1}=g^{r}, c_{2}=\mathbf{a} g^{\text {ra }} ; \\
& d_{1}=g^{s}, d_{2}=b g^{s a}
\end{aligned}
$$

Consider Multiplicative HE

$$
f(a, b)=a \cdot b
$$

Private key: a, public key: $\mathrm{a}^{\text {a }}$
Instead of \mathbf{k}, choose r and s

$$
\begin{aligned}
& c_{1}=g^{r}, c_{2}=\mathbf{a} g^{\text {ra }} \\
& d_{1}=g^{s}, d_{2}=\mathbf{b} g^{s a}
\end{aligned}
$$

$$
\begin{aligned}
& g(c, d): \\
& \circ e_{1}=c_{1} \cdot d_{1}=g^{r} g^{s}=g^{r+s} \\
& \circ e_{2}=c_{2} \cdot d_{2}=a b g^{r x} g^{s x}=a b g^{x(r+s)}
\end{aligned}
$$

Consider Additive HE

- Multiplicative HE: Idea: encrypt a, b as g^{a} and g^{b}, respectively
- $g\left(E_{A}\left(g^{a}\right), E_{A}\left(g^{b}\right)\right)=E_{A}\left(g^{a+b}\right)$
- Need to break discrete logarithm of g^{a+b}
- Only works for small a, b

Note of Caution!

- Paillier's
- Simplified DGHV some ma tn omitted from the have be en of the lect
remainder

Paillier's Encryption Scheme

- Let p, q be two large primes; $\mathrm{N}=\mathrm{pq}$

Paillier's Encryption Scheme

- Let p, q be two large primes; $N=p q$
- Ciphertexts are $\bmod \mathrm{N}^{2}$

Paillier's Encryption Scheme

- Let p, q be two large primes; $\mathrm{N}=\mathrm{pq}$
- Ciphertexts are $\bmod \mathrm{N}^{2}$
- Choose r; plaintext $m(\bmod p)$ is encrypted as $g^{m} r^{N}\left(\bmod N^{2}\right)$

Paillier's Encryption Scheme

- Let p, q be two large primes; $\mathrm{N}=\mathrm{pq}$
- Ciphertexts are $\bmod \mathrm{N}^{2}$
- Choose r; plaintext $m(\bmod p)$ is encrypted as $g^{m} r^{N}\left(\bmod N^{2}\right)$
- If factorization of N is known, breaking the discrete logarithm is efficient

Paillier's Encryption Scheme

- Let p, q be two large primes; $\mathrm{N}=\mathrm{pq}$
- Ciphertexts are $\bmod \mathrm{N}^{2}$
- Choose r; plaintext $m(\bmod p)$ is encrypted as $g^{m} r^{N}\left(\bmod N^{2}\right)$
- If factorization of N is known, breaking the DL is efficient
\Rightarrow Efficient additive HE for large numbers
$D\left(E\left(m_{1}, r_{1}\right) \cdot E\left(m_{2}, r_{2}\right) \bmod n^{2}\right)=m_{1}+m_{2} \bmod n$

Product to addition

Paillier's Encryption Scheme

- Let p, q be two large primes; $\mathrm{N}=\mathrm{pq}$
- Ciphertexts are $\bmod \mathrm{N}^{2}$
- Choose r; plaintext $m(\bmod p)$ is encrypted as $g^{m} r^{N}\left(\bmod N^{2}\right)$
- If factorization of N is known, breaking the DL is efficient
\Rightarrow Efficient additive $\mathrm{HE} f$ Raising g, producing a sum
$D\left(E\left(m_{1}, r_{1}\right) \cdot E\left(m_{2}, r_{2}\right) \bmod n^{2}\right)=m_{1}+m_{2} \bmod n$
$D\left(E\left(m_{1}, r_{1}\right) \cdot g^{m_{2}} \bmod n^{2}\right)=m_{1}+m_{2} \bmod n$

Fully HE

- Need to encrypt message m in the base, then both operations work
- Many schemes now, usually abbreviated by the first letters of the last names of the authors
- Different security assumptions (not factoring or discrete log)
- Lattice problems: Learning with errors, ...

Examples:

- First construction by Gentry in 2009
- E.g. FV, BGV, or DGHV (not used in practice)

Consider Simplified DGHV (not used in practice)

- $m \in\{0,1\}$
- Protocols is over the integers
- Secret key: prime p

Consider Simplified DGHV (not used in practice)

- $m \in\{0,1\}$
- Protocols is over the integers
- Secret key: prime p
- Encryption
- Choose q, r; r < p
oc = qp + $2 r+m$

Consider Simplified DGHV (not used in practice)

- $m \in\{0,1\}$
- Protocols is over the integers
- Secret key: prime p
- Encryption
- Choose q, r; r < p
oc = qp + $2 r+m$
- Decryption
$\circ \mathrm{m}=\mathrm{c} \bmod 2 \oplus(\mathrm{Lc} / \mathrm{p}\rfloor \bmod 2)$

Computing with Simplified DGHV

- Ciphertexts

$$
\begin{aligned}
& o c_{1}=q_{1} p+2 r_{1}+a \\
& o c_{2}=q_{2} p+2 r_{2}+b
\end{aligned}
$$

Computing with Simplified DGHV

- Ciphertexts

$$
\begin{aligned}
& \circ c_{1}=q_{1} p+2 r_{1}+a \\
& o c_{2}=q_{2} p+2 r_{2}+b
\end{aligned}
$$

- Addition

$$
o c_{1}+c_{2}=\left(q_{1}+q_{2}\right) p+2\left(r_{1}+r_{2}\right)+a+b
$$

Computing with Simplified DGHV

- Ciphertexts
$-c_{1}=q_{1} p+2 r_{1}+a$
o $c_{2}=q_{2} p+2 r_{2}+b$
- Addition
$o c_{1}+c_{2}=\left(q_{1}+q_{2}\right) p+2\left(r_{1}+r_{2}\right)+a+b$
- Multiplication
$o c_{1} \cdot c_{2}=? ? ?=q^{\prime} p+2 r^{\prime}+a b$
- $r^{\prime}=2 r_{1} r_{2}+r_{1} b+r_{2} a$
$■$ Note the increase in length!!

Bootstrapping...in Fully HE Schemes

- $r>p / 2 \Rightarrow$ decryption fails

Bootstrapping...in Fully HE Schemes

- $r>p / 2 \Rightarrow$ decryption fails
- Multiplication quickly increases noise (doubles the length)

Bootstrapping...in Fully HE Schemes

- $r>p / 2 \Rightarrow$ decryption fails
- Multiplication quickly increases noise (doubles the length)
- Bootstrapping is a procedure that reduces the noise to its initial length
- Bootstrapping is slow in most fully HE schemes

■ DGHV does not have bootstrapping

- When using fully HE, it is therefore important to reduce the number of subsequent multiplications

Practical Used FHE

- FV, BGV, BFV, CKKS
- Lattice-based encryption schemes
- Encrypt vectors (usually as polynomials)
- TFHE
- Fully HE over the Torus
- Usually encrypts bits
- Very fast bootstrapping (frequently performed)

Try it...

- Download Microsoft's SEAL library
- https://www.microsoft.com/en-us/research/project/micros oft-seal/
- Create a key
- Encrypt two 8 bit numbers bit-wise using batch encoding (allows rotation)
- Perform comparison, for each position: If prefix is equal and bits are different, output 1 if bit of first number is 1 ; else output 0
- Decrypt result

Try it...on your own.

- Download Microsoft's SEAL library
- https://www.microsoft.com/en-us/research/project/micros oft-seal/
- Create a key
- Encrypt two 8 bit numbers bit-wise using batch encoding (allows rotation)
- Perform comparison, for each position: If prefix is equal and bits are different, output 1 if bit of first number is 1 ; else output 0
- Decrypt result

Multi-Party Computation (MPC)

What is Multi-Party Computation?

What is Multi-Party Computation?

What is Multi-Party Computation?

2) Both Alice and Bob know a function f

What is Multi-Party Computation?

Goal: learn $f(x, y)$ but not reveal anything else about x or y

What is Multi-Party Computation?

Goal: learn $f(x, y)$ but not reveal anything else about x or y

Critical: Secret inputs, public outputs (to at least one party)

Toy Example, Basically "Millionaire's Problem"

Toy Example, "The Millionaire's Problem"

Toy Example, "The Millionaire's Problem"

Q: how can Bob and Alice determine who is richer?

Toy Example, "The Millionaire's Problem"

I don't want to tell you how much wealth I have...

Q: how can Bob and Alice determine who is richer?

A: A multi-party computation to compute the f: $x<y$

Fun Facts:

- "Yao's millionaires' problem" (Andrew C. Yao, Turing Award 2000)

Exponential Solution

Let E_{a} be Alice's public key. Alice has i billions, Bob has j millions, such that $1<\mathrm{i}, \mathrm{j}<10$.

1. Bob picks a random N -bit integer, and computes privately the value of $E_{a}(x)$; call the result k.
2. Bob sends Alice the number $\mathrm{k}-\mathrm{j}+1$
3. Alice computes privately the values of $y_{u}=D_{a}(k-j+u)$ for $u=1,2, \ldots, 10$.

Exponential Solution Con't

4. Alice generates a random prime p of $N / 2$ bits, and computes the values $z_{u}=y_{u}(\bmod p)$ for all u; if all z_{u} differ by at least 2 in the mod p sense, stop; otherwise generates another random prime and repeat the process until all z_{u} differ by at least 2 ; let p, z_{u} denote this final set of numbers;
5. Alice sends the prime p and the following 10 numbers to B : $z_{1}, z_{2}, \ldots, z_{i}$ followed by $z_{i}+1, z_{i+1}+1, \ldots, z_{10}+1$; the above numbers should be interpreted in the $\bmod p$ sense.

Exponential Solution More Con't

6. Bob looks at the j-th number (not counting p) sent from Alice, and decides that $i \geq j$ if it is equal to $x \bmod p$, and $i<j$ otherwise.
7. Bob tells Alice what the conclusion is.

Why Exponential Solution Works?

Q: Can anyone identify a reason it would fail?

Why Exponential Solution Works?

Q: Can anyone identify a reason it would fail?

Q: What does Alice know?

Q: What does Bob know?

Why Exponential Solution Works?

Q:Can anyone identify a reason it would fail?

Q: What does Alice know?
Q: What does Bob know?

Short A: Other than lies...no.

"Real-World" Example

I want to analyse sentence x (NLP)

"Real-World" Example

"Real-World" Example

Require: A function f over public parameters, but secret architecture
Goal: A MPC for $f(x, y)$ such that only Alice learns the analysis of her sentence and Alice does not learn the NN

"Types" of MPC: Participant Set

Two-party

Multi-Party

MPC Server Model

- Assume $\mathrm{n} \gg 3$ clients with an input
- Example collect statistics about emoji usage in texting

MPC Server Model

- Assume $n \gg 3$ clients with an input
- Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)

MPC Server Model

- Assume $\mathrm{n} \gg 3$ clients with an input
- Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs

MPC Server Model

- Assume $\mathrm{n} \gg 3$ clients with an input
- Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs
- The servers perform multi-party computation
- Decrypt input
- Computef

"Types" of MPC: Functionality

Generic / Specific Functions, in more words

- Specific functions:

A multi-party computation protocol that can only be used for a specific function f

- Generic functions:

A multi-party computation protocol that can be used for "any" function f

"Types" of MPC: Security

Active

Passive

Passive Security

- Passive security
(also called security against semi-honest adversaries)
Each party follows the protocol but keeps a record of all messages and after the protocol is over, tries to infer additional information about the other parties' inputs

Active Security

- Active security
(also called security against malicious adversaries)
Each party may arbitrarily deviate from the protocol. Either the protocol computes f or the protocol is aborted.

Relation of Passive and Active Security

- Passive security is a prerequisite for active security

Q: What does a prerequisite here mean?

Relation of Passive and Active Security

- Passive security is a prerequisite for active security
- A protocol can be secure against passive adversaries but not active ones
- A protocol secure against active adversaries is also secure against passive adversaries

Relation of Passive and Active Security

- Passive security is a prerequisite for active security
- A protocol can be secure against passive adversaries but not active ones
- A protocol secure against active adversaries is also secure against passive adversaries
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries

Q: Suggestions?

Relation of Passive and Active Security

- Passive security is a prerequisite for active security
- A protocol can be secure against passive adversaries but not active ones
- A protocol secure against active adversaries is also secure against passive adversaries
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries
- Adding additional protocol steps proving the correct computation of each message

