CS489/689 Privacy, Cryptography, Network and Data Security

Homomorphic encryption, MPC, and PSI

Winter 2023, Tuesday/Thursday 8:30-9:50am

Computing on Ciphertexts

Consider the following:

Two ciphertexts use the same key, $c_1 = E_K(\mathbf{a})$, $c_2 = E_K(\mathbf{b})$ Let **f()** be a function that operates over plaintext **a** and **b**

Computing on Ciphertexts

Consider the following:

Two ciphertexts use the same key, $c_1 = E_K(\mathbf{a})$, $c_2 = E_K(\mathbf{b})$ Let **f()** be a function that operates over plaintext **a** and **b**

Goal: the existence of a function g() such that $g(c, d) = E_A(f(a, b))$

Computing on Ciphertexts

Consider the following:

Two ciphertexts use the same key, $c_1 = E_K(\mathbf{a})$, $c_2 = E_K(\mathbf{b})$ Let **f()** be a function that operates over plaintext **a** and **b**

Goal: the existence of a function **g()** such that $g(c_1, c_2) = E_K(f(a, b))$

g() is a homomorphic function on the ciphertexts c, d, ...

Homomorphic Encryption in the World

- Used as a tool in many business scenarios:
 - o <u>https://www.ibm.com/security/services/homomorphic-encryption</u>
 - <u>https://www.statcan.gc.ca/en/data-science/network/homomorphic-e</u> <u>ncryption</u>
 - o <u>https://www.microsoft.com/en-us/research/project/microsoft-seal/</u>

Partial versus Fully Homomorphic Encryption

The function on the plaintexts is:

...either multiplication or addition **but not both**.

...either multiplication or addition **both...or even xor**

Recall ElGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in (\mathbf{Z}_{p}^{*}) is infeasible
- Let α ∈ Z^{*}_p be a primitive element
 Let P = Z^{*}_p, C = Z^{*}_p x Z^{*}_p and...
- $\mathcal{K} = \{(p, \alpha, a, \beta): \beta \equiv \alpha^a \pmod{p}\}$

• For a secret random number k in \mathbf{Z}_{p-1} define:

• $e_k(x,k) = (y_1, y_2)$, where $y_1 = \alpha^k \mod p$ and $y_2 = x\beta^k \mod p$

• For y_1, y_2 in Z_p^* , define $d_K(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$

Consider Multiplicative HE

Consider Multiplicative HE

Consider Multiplicative HE

CS489 Winter 2023

Consider Additive HE

- Multiplicative HE: Idea: encrypt a, b as g^a and g^b, respectively
- $g(E_A(g^a), E_A(g^b)) = E_A(g^{a+b})$
- Need to break discrete logarithm of g^{a+b}
 Only works for small a, b

Note of Caution!

- Paillier's
- Some mathematical details have been omitted from the have heainder of the lecture Simplified DGHV

• Let p, q be two large primes; N = pq

- Let p, q be two large primes; N = pq
- Ciphertexts are mod N²

- Let p, q be two large primes; N = pq
- Ciphertexts are mod N²
- Choose r; plaintext m (mod p) is encrypted as $g^m r^N \pmod{N^2}$

- Let p, q be two large primes; N = pq
- Ciphertexts are mod N²
- Choose r; plaintext m (mod p) is encrypted as $g^m r^N \pmod{N^2}$
- If factorization of N is known, breaking the discrete logarithm is efficient

- Let p, q be two large primes; N = pq
- Ciphertexts are mod N²
- Choose r; plaintext m (mod p) is encrypted as $g^m r^N \pmod{N^2}$
- If factorization of N is known, breaking the DL is efficient
- \Rightarrow Efficient additive HE for large numbers

$$D(E(m_1,r_1)\cdot E(m_2,r_2) ext{ mod } n^2) = m_1 + m_2 ext{ mod } n_2$$

Product to addition

- Let p, q be two large primes; N = pq
- Ciphertexts are mod N²
- Choose r; plaintext m (mod p) is encrypted as $g^m r^N$ (mod N^2)
- If factorization of N is known, breaking the DL is efficient
- $\Rightarrow \text{ Efficient additive HE for Raising g, producing a sum}$ $D(E(m_1, r_1) \cdot E(m_2, r_2) \mod n^2) = m_1 + m_2 \mod n^2$

$$D(E(m_1,r_1)\cdot g^{m_2} mod m^2) = m_1 + m_2 mod m_1$$

Fully HE

- Need to encrypt message m in the base, then both operations work
- Many schemes now, usually abbreviated by the first letters of the last names of the authors
- Different security assumptions (not factoring or discrete log)
 Lattice problems: Learning with errors, ...

Examples:

- First construction by Gentry in 2009
- E.g. FV, BGV, or DGHV (not used in practice)

Consider Simplified DGHV (not used in practice)

- m ∈ {0, 1}
- Protocols is over the integers
- Secret key: prime p

Consider Simplified DGHV (not used in practice)

- m ∈ {0, 1}
- Protocols is over the integers
- Secret key: prime p

Encryption

- Choose q, r; r < p
- \circ c = qp + 2r + m

Consider Simplified DGHV (not used in practice)

- m ∈ {0, 1}
- Protocols is over the integers
- Secret key: prime p

Encryption

- o Choose q, r; r < p</p>
- \circ c = qp + 2r + m

Decryption

 \circ m = c mod 2 \oplus (Lc/pJ mod 2)

Computing with Simplified DGHV

• Ciphertexts

$$\circ c_1 = q_1 p + 2r_1 + a$$

$$\circ c_2 = q_2 p + 2r_2 + b$$

Computing with Simplified DGHV

• Ciphertexts

$$\circ c_1 = q_1 p + 2r_1 + a$$

$$\circ c_2 = q_2 p + 2r_2 + b$$

Addition

$$\circ c_1 + c_2 = (q_1+q_2)p + 2(r_1+r_2) + a + b$$

Computing with Simplified DGHV

• Ciphertexts

$$\circ c_1 = q_1 p + 2r_1 + a$$

$$\circ c_2 = q_2 p + 2r_2 + b$$

Addition

$$\circ c_1 + c_2 = (q_1 + q_2)p + 2(r_1 + r_2) + a + b$$

Multiplication

$$\circ$$
 c₁ · c₂ = ??? = q'p + 2r' + ab
 \circ r' = 2r₁r₂ + r₁ b + r₂ a
■ Note the increase in length!!

Bootstrapping...in Fully HE Schemes

• r > p/2 \Rightarrow decryption fails

Bootstrapping...in Fully HE Schemes

- r > p/2 \Rightarrow decryption fails
- Multiplication quickly increases noise (doubles the length)

Bootstrapping...in Fully HE Schemes

- r > p/2 \Rightarrow decryption fails
- Multiplication quickly increases noise (doubles the length)
- Bootstrapping is a procedure that reduces the noise to its initial length
 - \circ Bootstrapping is slow in most fully HE schemes
 - DGHV does not have bootstrapping
 - When using fully HE, it is therefore important to reduce the number of subsequent multiplications

Practical Used FHE

• FV, BGV, BFV, CKKS

- Lattice-based encryption schemes
- Encrypt vectors (usually as polynomials)

• TFHE

- \circ Fully HE over the Torus
- \circ Usually encrypts bits
- Very fast bootstrapping (frequently performed)

Try it...

- Download Microsoft's SEAL library
 - <u>https://www.microsoft.com/en-us/research/project/micros</u> oft-seal/
- Create a key
- Encrypt two 8 bit numbers bit-wise using batch encoding (allows rotation)
- Perform comparison, for each position: If prefix is equal and bits are different, output 1 if bit of first number is 1; else output 0
- Decrypt result

Try it...on your own.

- Download Microsoft's SEAL library
 - <u>https://www.microsoft.com/en-us/research/project/micros</u> oft-seal/
- Create a key
- Encrypt two 8 bit numbers bit-wise using batch encoding (allows rotation)
- Perform comparison, for each position: If prefix is equal and bits are different, output 1 if bit of first number is 1; else output 0
- Decrypt result

Multi-Party Computation (MPC)

Goal: learn f(x, y) but not reveal anything else about x or y

Goal: learn f(x, y) but not reveal anything else about x or y

Critical: Secret inputs, public outputs (to at least one party)

CS489 Winter 2023

Toy Example, Basically "Millionaire's Problem"

Toy Example, "The Millionaire's Problem"

Q: how can Bob and Alice determine who is richer?

A: A multi-party computation to compute the f: x < y

Fun Facts:

• "Yao's millionaires' problem" (Andrew C. Yao, Turing Award 2000)

CS489 Winter 2023

Exponential Solution

Let E_a be Alice's public key. Alice has i billions, Bob has j millions, such that 1 < i, j < 10.

1. Bob picks a random N-bit integer, and computes privately the value of $E_a(x)$; call the result k.

- 2. Bob sends Alice the number k j + 1
- 3. Alice computes privately the values of $y_u = D_a(k-j+u)$ for u = 1, 2, ..., 10.

Exponential Solution Con't

4. Alice generates a random prime p of N/2 bits, and computes the values $z_u = y_u \pmod{p}$ for all u; if all z_u differ by at least 2 in the mod p sense, stop; otherwise generates another random prime and repeat the process until all z_u differ by at least 2; let p, z_u denote this final set of numbers;

5. Alice sends the prime p and the following 10 numbers to B: z_1, z_2, \ldots, z_i followed by $z_i + 1, z_{i+1} + 1, \ldots, z_{10} + 1$; the above numbers should be interpreted in the mod p sense.

Exponential Solution More Con't

6. Bob looks at the j-th number (not counting p) sent from Alice, and decides that $i \ge j$ if it is equal to x mod p, and i < j otherwise.

7. Bob tells Alice what the conclusion is.

Why Exponential Solution Works?

Q: Can anyone identify a reason it would fail?

Why Exponential Solution Works?

Q: Can anyone identify a reason it would fail?

Q: What does Alice know?

Q: What does Bob know?

Why Exponential Solution Works?

Q: Can anyone identify a reason it would fail?

Q: What does Alice know?

Q: What does Bob know?

Short A: Other than lies...no.

CS489 Winter 2023

"Real-World" Example

"Real-World" Example

Require: A function f over public parameters, but secret architecture

Goal: A MPC for f(x, y) such that only Alice learns the analysis of her sentence and Alice does not learn the NN

"Types" of MPC: Participant Set

Multi-Party

- Assume n >> 3 clients with an input
 - Example collect statistics about emoji usage in texting

- Assume n >> 3 clients with an input
 - Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)

- Assume n >> 3 clients with an input
 - Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs

- Assume n >> 3 clients with an input
 - Example collect statistics about emoji usage in texting
- Dedicate 3 (or 2) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs
- The servers perform multi-party computation
 - Decrypt input
 - Compute f

"Types" of MPC: Functionality

Generic / Specific Functions, in more words

• Specific functions:

A multi-party computation protocol that can only be used for **a specific function f**

• Generic functions:

A multi-party computation protocol that can be used for **"any" function f**

"Types" of MPC: Security

Active

Passive Security

Passive security

 (also called security against semi-honest adversaries)

Each party **follows the protocol** but keeps a record of all messages and after the protocol is over, **tries to infer additional information** about the other parties' inputs

Active Security

Active security

(also called security against malicious adversaries)

Each party **may arbitrarily deviate from the protocol**. Either the protocol computes f or the protocol is aborted.

• Passive security is a **prerequisite** for active security

Q: What does a prerequisite here mean?

- Passive security is a **prerequisite** for active security
 - A protocol can be secure against passive adversaries but not active ones
 - A protocol secure against active adversaries is also secure against passive adversaries

- Passive security is a **prerequisite** for active security
 - A protocol can be secure against passive adversaries but not active ones
 - A protocol secure against active adversaries is also secure against passive adversaries
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries

Q: Suggestions?

Known as Goldreich's compiler (Oded Goldreich, Knuth Prize 2017)

- Passive security is a **prerequisite** for active security
 - A protocol can be secure against passive adversaries but not active ones
 - A protocol secure against active adversaries is also secure against passive adversaries
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries
 Adding additional protocol steps proving the correct computation of each message

Known as Goldreich's compiler (Oded Goldreich, Knuth Prize 2017)