CS489/689 Privacy, Cryptography, Network and Data Security

MPC, and PSI

Winter 2023, Tuesday/Thursday 8:30-9:50am

Construct generic multi-party computations?

 Let there be values u and v \circ Alice has u_{A} and v_{A} , Bob has u_{B} and v_{B} \circ u = u_A + u_R, v = v_A + v_R • Compute $s = s_A + s_B = u + v$ \circ Alice computes $s_A = u_A + v_A$ \circ Bob computes s_B = u_B + v_B • Compute $t = t_A + t_B = u*v$ • See exercise

Composing Protocols with Additive Shares Let there be values u and v \circ Alice has u_{A} and v_{A} , Bob has y_{A} \circ u = u_A + u_B, v = v_A + Break it down • Compute $s = s_1 + s_2$ • Bob cor • Compute t 7 ○ See e×

Goal: Compute the sum of two values

Goal: Compute the sum of two values

Catch: neither value can be shared

Goal: Compute the sum of two values

Catch: neither value can be shared

Let the values be u and v.

Carol splits u and Dave splits v

Goal: Compute the sum of two values

Catch: neither value can be shared

Let the values be u and v.

Computing the Sum "Secretly"

Computing the Sum of U and V "Secretly"

Since:
$$u = u_A + u_B$$
 and $v = v_A + v_B$ then
 $S_A + S_B = U + V$

Computing the Sum of U and V "Secretly"

Since:
$$u = u_A + u_B$$
 and $v = v_A + v_B$ then
 $S_A + S_B = U + V$

Thus we learn the sum of **u** and **v** without revealing either individual value

CS489 Winter 2023

Thus we learn the sum of **u** and **v** without revealing either individual value

CS489 Winter 2023

- Alice has x, Bob has y
 - \circ Alice create $x_A + x_B$, Bob $y_A + y_B$
- They execute a number of addition and multiplication protocols
 - All intermediate outputs are uniformly random to the respective party
 - All intermediate outputs allow to continue performing additions and multiplications

- They can execute a number of addition and multiplication protocols
 - All intermediate outputs are uniformly random to the respective party
 - All intermediate outputs allow to continue performing additions and multiplications

Reconstruction:

There is a result r = r_A + r_B
Alice sends r_A to Bob
Bob sends r_B to Alice (if they agreed on this)

Exercise: Design a protocol to compute z_A (for Alice) and z_B (for Bob)

• Alice has x_A, y_A; Bob has x_B, y_B

$$x = x_A + x_B; y = y_A + y_B$$

- The goal is to compute $z_A + z_B = x*y$
- Alice has the private key to an (additive) homomorphic enc. scheme E_A() (e.g. Paillier's encryption)

 Alice can perform D_A(E_A(x)) = x
 D_A(E_A(x) * E_A(y)) = x+y
- Bob has the public key to Alice's private key \circ Bob can perform c = E_A(x) (but not DA(c))

Towards Proving Passive Security

- Let VIEW_A be Alice's view during a multi-party computation
 All messages received by Alice
- \bullet Let $\text{SIM}_{\rm A}$ be a randomized algorithm (simulator) that outputs (a "guess" of) $\text{VIEW}_{\rm A}$
- Give Alice's input x and output z (of the multi-party computation) as input to the simulator $SIM_{\Delta}(x, z)$
- If SIM_A(x, z) = (indistinguishable) VIEW_A(x, y), then Alice cannot learn anything beyond x, z (about y)
 What does indistinguishable mean?

Indistinguishability

- Let D and E be two distributions
- Information-theoretic indistinguishability
 D = E
 - Example: One-time pad as before

Indistinguishability

- Let D and E be two distributions
- Information-theoretic indistinguishability Sounds great...but not always an option \circ D = E
 - Example: One-time pad as b

- Computational indistinguishability

 Let A be any polynomial-time algorithm
 Pr[A(x ← D) = 1] Pr[A(x ← E) = 1] is negligible in the security parameter (smaller than any polynomial as long as the parameter is large enough)
 - Example: Let r be a random number. E_A(x) is computationally indistinguishable from E_A(r) (recall semantic security)

Overview

- **Two-party** computation requires (public-key) computational assumptions
- Multi-party computation can be implemented using only information-theoretic assumptions
- Protocols using information-theoretic assumptions are often faster than ones using computational assumptions
- However, the more parties, the slower the protocol

Private Set Intersection (PSI)

- Alice has set $X = \{x_1, x_2, x_3, ..., x_n\}$
- Bob has set Y = {y₁, y₂, y₃, ..., y_m}
- They want to compute $Z = X \cap Y$ (but reveal nothing else)
- This is an instance of a two-party computation of a specific function

Private Set Intersections

2-Party, One-Way PSI

 $A \longrightarrow B$

n-Party PSI

Private Set Intersections

Strawman Protocol

- Alice permutes her set X, Bob permutes his set Y
- For each x ∈ X
 For each y ∈ Y
 Compute x =? y

• Protocol for comparison x =? y \circ Alice \rightarrow Bob: $E_A(x)$ \circ Bob: Choose r. c = $(E_A(x) * E_A(-y))^r$ \circ Bob \rightarrow Alice: c \circ Alice: Output x = y, if $D_A(c) = 0$, else x \neq y

Exercise

 Prove the security of the comparison protocol against passive adversaries

Improved Protocol

- The complexity of the previous protocol is O(nm)
- Wlog m ≤ n
- If you hash n elements into a table with n bins with high probability the maximum number of elements in a bin is O(log n) (Balls-to-bins problem)

Improved Protocol Con't

- Improved protocol
 - \circ Alice hashes elements to table with n bins
 - \circ Alice pads each bin to O(log n) elements with dummy elements
 - \circ Bob hashes elements to table with n bins
 - Bob pads each bin to O(log m) elements with dummy elements
 - \circ Alice and Bob use comparison protocol for each pair in their respective bins
 - \circ Complexity O(n log n log m)

Precomputation

- The cryptographic operations of the comparison protocol can be precomputed
- Alice: Choose r
- Alice \rightarrow Bob: $E_A(r)$
- Bob: Choose b and s
- Bob \rightarrow Alice: c = (E_A(r)^s) * E_A(-b)
- Alice: Set a = $D_A(c)$
- It holds

a+b = r*s

Comparison Protocol After Precomputation

- Alice has a, r. Bob has b, s: a+b = r*s
- Alice \rightarrow Bob: c = a + x
- Bob: d = (c y)/r
- Bob \rightarrow Alice: d
- Alice: If d = s, then output x = y, else output x \neq y

OPRF Comparison Protocol

- Let H be a cryptographic hash function
- Alice has x
- Bob has y and a key k
- Alice: Choose r
- Alice \rightarrow Bob: H(x)^r
- Bob \rightarrow Alice: c = H(x)^(r k), d = y^k
- Alice: If d = $c^{(r-1)}$, output x=y, else x \neq y

Exercise

- Prove the OPRF comparison protocol secure against passive adversaries
- Hint
 - Recall the Decisional Diffie-Hellman assumption for g^a, g^b, g^c
 - Let H(x) output g^a (programmable random oracle assumption)

PSI using OPRF comparison

- Alice has X = { $x_1, x_2, x_3, ..., x_n$ }
- Bob has Y = { $y_1, y_2, y_3, ..., y_m$ } and a key k
- Alice and Bob compute OPRF protocol for each $x \in X$ \circ Alice obtains H(x_i)^k
- Bob sends $H(y_i)^k$
- Alice compares each $H(x_i)^k$ and $H(y_j)^k$ \circ Use a hash table
- This protocol has complexity O(n + m)

CS489 Winter 2023

Exercises related to Homomorphic Encryption

Exercise I

- Write a small program that tries to break the discrete logarithm in a prime group with 2048 bits
 - Choose a prime p

 \circ Compute c = g^{a+b} (mod p)

Exercise II

- Study the baby-step, giant-step algorithm

 <u>https://en.wikipedia.org/wiki/Baby-step_giant-step</u>
- What is the complexity of the algorithm?
- When computing over number a, b \in {0, D}, D<<p \circ Does the baby-step, giant-step algorithm help?

Exercises related MPC

Exercise

- Let $x \in \{0,1\}$ h be a binary string of length h
- Let $y \in \{0,1\}$ m be a binary string of length m
- Let f: $x \rightarrow y$ be "any" function
- Prove that f can be construction from only AND and XOR gates

Hint

• Show it for the case n=1 and m=1

- \circ Show that n' = n+1 can be constructed from solution for n
- \circ Show that m' = m+1 can be constructed from solution for m

Exercises related to PSI

Exercise I

- Alice has X = { x₁, x₂, x₃, ..., x_n }
- Bob has Y = { $y_1, y_2, y_3, ..., y_m$ } and a key k
- They want to compute |X∩Y|, i.e., the size of the intersection (only)
- Design a protocol for this
- Hint: Alice cannot distinguish $H(x_i)^k$ from $H(x_i)^k$

Exercise II

- Alice has X = { x₁, x₂, x₃, ..., x_n }
- Bob has pairs (elements with payload) Y = { $(y_1, p_1), (y_2, p_2), (y_3, p_3), ..., (y_m, p_m)$ } and (at least) a key k
- They want to compute Σp_i over $\{p_i | y_i \in X\}$
- Design a protocol for this
- Hint: Recall Paillier's encryption

Security proof of generic protocol

- Addition
 - \circ Trivial no messages are exchanged, simulator outputs empty view
- Multiplication
 - Alice → Bob: $E_A(x_A)$, $E_A(y_A)$ • Bob: Choose r. Set $c = E_A(x_A)^y_B * E_A(y_A)^x_B * E_A(x_By_B - r)$. Set $z_B = r$ • Bob → Alice: c• Alice: $z_A = D_A(c) + x_A^y_A$

Security proof of generic protocol con't

- Simulator for Bob
 - Choose s, t. Output EA(s), EA(t)
 - Recall computational indistinguishability (semantic security) Bob does not have private key
- Simulator for Alice
 - \circ Choose s. Output s
 - Recall one-time pad Bob chooses s