CS489/689

Privacy, Cryptography, Network and Data Security

MPC, and PSI

Construct generic multi-party computations?

Composing Protocols with Additive Shares

- Let there be values u and v
- Alice has u_{A} and v_{A}, Bob has u_{B} and v_{B}
$o u=U_{A}+U_{B}, V=V_{A}+V_{B}$
- Compute $s=s_{A}+s_{B}=u+v$
- Alice computes $s_{A}=u_{A}+v_{A}$
- Bob computes $\mathrm{s}_{\mathrm{B}}=\mathrm{u}_{\mathrm{B}}+\mathrm{v}_{\mathrm{B}}$
- Compute $t=t_{A}+t_{B}=u^{*}$
- See exercise

Composing Protocols with Additive Shares

- Let there be values u and v
- Alice has u_{A} and v_{A}, Bob has
$o u=u_{A}+u_{B^{\prime}}, v=v_{A}+$
- Compute $s=s_{\wedge}+s$

- Bob con
- Connurity
- See ev cise

Composing Protocols with Additive Shares

Goal: Compute the sum of two values

Composing Protocols with Additive Shares

Goal: Compute the sum of two values

Catch: neither value can be shared

Composing Protocols with Additive Shares

Goal: Compute the sum of two values

Catch: neither value can be shared

Composing Protocols with Additive Shares

Goal: Compute the sum of two values

Catch: neither value can be shared

Composing Protocols with Additive c/ror

Computing the Sum "Secretly"

Compute $S_{A}=u_{A}+v_{A}$

Computing the Sum of U and V "Secretly"

Since: $u=u_{A}+u_{B}$ and $v=v_{A}+v_{B}$ then

$$
S_{A}+S_{B}=U+V
$$

Computing the Sum of U and V "Secretly"

Compute $\mathrm{S}_{\mathrm{A}}=\mathrm{u}_{\mathrm{A}}+\mathrm{v}_{\mathrm{A}}$

V_{B}

Since: $u=u_{A}+u_{B}$ and $v=v_{A}+v_{B}$ then

$$
S_{A}+S_{B}=U+V
$$

Thus we learn the sum of \mathbf{u} and \mathbf{v} without revealing either individual value

Computing the Sum of U and Y "Secr Iu."

Compute $S_{A}=u+v$

व1. c. $u=u_{A}+u_{B}$ and $v=v_{A}+v_{B}$ then

$$
S_{A}+S_{B}=U+V
$$

Thus we learn the sum of \mathbf{u} and \mathbf{v} without revealing either individual value

Compose, but no Carol or Dave

- Alice has x, Bob has y
- Alice create $x_{A}+x_{B}, \operatorname{Bob}_{A}+y_{B}$
- They execute a number of addition and multiplication protocols
- All intermediate outputs are uniformly random to the respective party
- All intermediate outputs allow to continue performing additions and multiplications

Compose, but no Carol or Dave

Have x
Have y

Compose, but no Carol or Dave

Compute X_{A} and x_{B}
Have y
Compute y_{a} and y_{B}

Compose, but no Carol or Dave

- They can execute a number of addition and multiplication protocols
- All intermediate outputs are uniformly random to the respective party
- All intermediate outputs allow to continue performing additions and multiplications

Compose, but no Carol or Dave

Have y

Compute y_{a} and y_{B}

Reconstruction:

- There is a result $r=r_{A}+r_{B}$
- Alice sends r_{A} to Bob
- Bob sends r_{B} to Alice (if they agreed on this)

Exercise: Design a protocol to compute z_{A} (for Alice) and z_{B} (for Bob)

- Alice has $x_{A^{\prime}} y_{A^{\prime}}$ Bob has $x_{B^{\prime}}, y_{B}$
$\circ x=x_{A}+x_{B} ; y=y_{A}+y_{B}$
- The goal is to compute $z_{A}+z_{B}=x^{*} y$
- Alice has the private key to an (additive) homomorphic enc. scheme $E_{A}()$ (e.g. Paillier's encryption)
- Alice can perform $D_{A}\left(E_{A}(x)\right)=x$
- $D_{A}\left(E_{A}(x)\right.$ * $\left.E_{A}(y)\right)=x+y$
- Bob has the public key to Alice's private key
- Bob can perform $c=E_{A}(x)$ (but not DA(c))

Towards Proving Passive Security

- Let VIEW ${ }_{\text {A }}$ be Alice's view during a multi-party computation
- All messages received by Alice
- Let SIM $_{A}$ be a randomized algorithm (simulator) that outputs (a "guess" of) VIEW
- Give Alice's input x and output z (of the multi-party computation) as input to the simulator $\operatorname{SIM}_{A}(x, z)$
- If $\operatorname{SIM}_{A}(x, z)=$ (indistinguishable) VIEW $_{A}(x, y)$, then Alice cannot learn anything beyond x, z (about y)
- What does indistinguishable mean?

Indistinguishability

- Let D and E be two distributions
- Information-theoretic indistinguishability
- D = E

■ Example: One-time pad as before

Indistinguishability

- Let D and E be two distributions
- Information-theoretic indistinguishability
- D = E
- Example: One-time pad as $⺊$ sounds great.

Indistinguishability Con't

- Computational indistinguishability
- Let A be any polynomial-time algorithm
$\circ \operatorname{Pr}[A(x \leftarrow D)=1]-\operatorname{Pr}[A(x \leftarrow E)=1]$ is negligible in the security parameter (smaller than any polynomial as long as the parameter is large enough)
- Example: Let r be a random number. $\mathrm{E}_{\mathrm{A}}(\mathrm{x})$ is computationally indistinguishable from $\mathrm{E}_{\mathrm{A}}(\mathrm{r})$ (recall semantic security)

Overview

- Two-party computation requires (public-key) computational assumptions
- Multi-party computation can be implemented using only information-theoretic assumptions
- Protocols using information-theoretic assumptions are often faster than ones using computational assumptions
- However, the more parties, the slower the protocol

PSI

Private Set Intersection (PSI)

- Alice has set $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$
- Bob has set $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right\}$
- They want to compute $\mathrm{Z}=\mathrm{X} \cap \mathrm{Y}$ (but reveal nothing else)
- This is an instance of a two-party computation of a specific function

Private Set Intersections

2-Party, One-Way PSI

$$
A \longrightarrow B
$$

2-Party, Two-Way PSI

$$
A \hookrightarrow B
$$

n-Party PSI

Private Set Intersections

2-Party, One-Way PSI $A \longrightarrow B$

2-Party, Two-Way PSI

$$
A \hookrightarrow B
$$

n-Party PSI

Directionality
Reducing Information
Multi-party
Varying Guarantees

Strawman Protocol

- Alice permutes her set X, Bob permutes his set Y
- For each $x \in X$
- For each $y \in Y$
- Compute $\mathrm{x}=$? y
- Protocol for comparison $x=$? y
- Alice \rightarrow Bob: $\mathrm{E}_{\mathrm{A}}(\mathrm{x})$
- Bob: Choose r. $\mathrm{c}=\left(\mathrm{E}_{\mathrm{A}}(\mathrm{x}) \text { * } \mathrm{E}_{\mathrm{A}}(-\mathrm{y})\right)^{\wedge} \mathrm{r}$
- Bob \rightarrow Alice: c
- Alice: Output $x=y$, if $D_{A}(c)=0$, else $x \neq y$

Exercise

- Prove the security of the comparison protocol against passive adversaries

Improved Protocol

- The complexity of the previous protocol is $\mathrm{O}(\mathrm{nm})$
- Wlog $m \leq n$
- If you hash n elements into a table with n bins with high probability the maximum number of elements in a bin is O($\log \mathrm{n})$ (Balls-to-bins problem)

Improved Protocol Con't

- Improved protocol
- Alice hashes elements to table with n bins
- Alice pads each bin to O(log n) elements with dummy elements
- Bob hashes elements to table with n bins
- Bob pads each bin to O(log m) elements with dummy elements
- Alice and Bob use comparison protocol for each pair in their respective bins
- Complexity O(n log n log m)

Precomputation

- The cryptographic operations of the comparison protocol can be precomputed
- Alice: Choose r
- Alice \rightarrow Bob: $E_{A}(r)$
- Bob: Choose b and s
- Bob \rightarrow Alice: $c=\left(E_{A}(r)^{\wedge} s\right) * E_{A}(-b)$
- Alice: Set a = $\mathrm{D}_{\mathrm{A}}(\mathrm{c})$
- It holds

$$
a+b=r * s
$$

Comparison Protocol After Precomputation

- Alice has a, r. Bob has b, s: a+b = r*s
- Alice \rightarrow Bob: c = a + x
- Bob: d = (c - y)/r
- Bob \rightarrow Alice: d
- Alice: If d = s, then output $x=y$, else output $x \neq y$

OPRF Comparison Protocol

- Let H be a cryptographic hash function
- Alice has x
- Bob has y and a key k
- Alice: Choose r
- Alice \rightarrow Bob: $\mathrm{H}(\mathrm{x})^{\wedge} \mathrm{r}$
- Bob \rightarrow Alice: $\mathrm{c}=\mathrm{H}(\mathrm{x})^{\wedge}(\mathrm{r} k), \mathrm{d}=\mathrm{y}^{\wedge} \mathrm{k}$
- Alice: If $d=c^{\wedge}\left(r^{-1}\right)$, output $x=y$, else $x \neq y$

Exercise

- Prove the OPRF comparison protocol secure against passive adversaries
- Hint
- Recall the Decisional Diffie-Hellman assumption for $g^{\wedge} a$, $g^{\wedge} b, g^{\wedge} c$
- Let $\mathrm{H}(\mathrm{x})$ output $\mathrm{g}^{\wedge} \mathrm{a}$ (programmable random oracle assumption)

PSI using OPRF comparison

- Alice has $X=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Bob has $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right\}$ and a key k
- Alice and Bob compute OPRF protocol for each $x \in X$
- Alice obtains $\mathrm{H}\left(\mathrm{x}_{\mathrm{j}}\right)^{\wedge} \mathrm{k}$
- Bob sends $\mathrm{H}\left(\mathrm{y}_{\mathrm{j}}\right)^{\wedge} \mathrm{k}$
- Alice compares each $\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)^{\wedge} \mathrm{k}$ and $\mathrm{H}\left(\mathrm{y}_{\mathrm{j}}\right)^{\wedge} \mathrm{k}$
- Use a hash table
- This protocol has complexity $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Exercises related to Homomorphic Encryption

Exercise I

- Write a small program that tries to break the discrete logarithm in a prime group with 2048 bits
- Choose a prime p
- Set a + b = 2, 4, 8, 16, ...
- Compute c $=g^{a+b}(\bmod p)$
- Try i = 1, 2, 3, ...
- If $\mathrm{g}^{\mathrm{i}}=\mathrm{c}$, stop and output i

Exercise II

- Study the baby-step, giant-step algorithm
- https://en.wikipedia.org/wiki/Baby-step_giant-step
- What is the complexity of the algorithm?
- When computing over number $a, b \in\{0, D\}, D \ll p$
- Does the baby-step, giant-step algorithm help?

Exercises related MPC

Exercise

- Let $x \in\{0,1\} n$ be a binary string of length n
- Let $y \in\{0,1\} m$ be a binary string of length m
- Let $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{y}$ be "any" function
- Prove that f can be construction from only AND and XOR gates
- Hint
- Show it for the case $\mathrm{n}=1$ and $\mathrm{m}=1$
- Show that $\mathrm{n}^{\prime}=\mathrm{n}+1$ can be constructed from solution for n
- Show that $\mathrm{m}^{\prime}=\mathrm{m}+1$ can be constructed from solution for m

Exercises related to PSI

Exercise I

- Alice has $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Bob has $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right\}$ and a key k
- They want to compute $|\mathrm{X} \cap \mathrm{Y}|$, i.e., the size of the intersection (only)
- Design a protocol for this
- Hint: Alice cannot distinguish $\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)^{\wedge} \mathrm{k}$ from $\mathrm{H}\left(\mathrm{x}_{\mathrm{j}}\right)^{\wedge} \mathrm{k}$

Exercise II

- Alice has $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$
- Bob has pairs (elements with payload) $Y=\left\{\left(y_{1}, p_{1}\right),\left(y_{2}, p_{2}\right)\right.$, $\left.\left(y_{3}, p_{3}\right), \ldots,\left(y_{m}, p_{m}\right)\right\}$ and (at least) a key k
- They want to compute Σp_{j} over $\left\{p_{j} \mid y_{j} \in X\right\}$
- Design a protocol for this
- Hint: Recall Paillier's encryption

Security proof of generic protocol

- Addition
- Trivial no messages are exchanged, simulator outputs empty view
- Multiplication
- Alice \rightarrow Bob: $E_{A}\left(x_{A}\right), E_{A}\left(y_{A}\right)$
- Bob: Choose r. Set $c=E_{A}\left(x_{A}\right)^{\wedge} y_{B} * E_{A}\left(y_{A}\right)^{\wedge} x_{B} * E_{A}\left(x_{B} y_{B}-r\right)$. Set $z_{B}=r$
- Bob \rightarrow Alice: c
- Alice: $z_{A}=D_{A}(c)+x_{A}{ }^{*} y_{A}$

Security proof of generic protocol con't

- Simulator for Bob
- Choose s, t. Output EA(s), EA(t)

■ Recall computational indistinguishability (semantic security) - Bob does not have private key

- Simulator for Alice
- Choose s. Output s

■ Recall one-time pad - Bob chooses s

