
CS489/689
 Privacy, Cryptography,

Network and Data Security

Winter 2023, Tuesday/Thursday 8:30-9:50am

PIR, SSE, Blockchains, Bonus Applied Crypto

CS489 Winter 2023

Last two classes!
● Private data access (PIR, SSE)
● Blockchains
● Applied cryptography

2

Private Database Queries

3

CS489 Winter 2023

Introduction…

4

Server provider S’s cloud

Secret query…

CS489 Winter 2023

Introduction…

5

Server provider S’s cloud

Secret query…

Even I might not know
plaintext of the DB

I want my query to be
private…

CS489 Winter 2023

Real-world Example
● The server stores a list of “broken” passwords that appeared

on the Internet

6

CS489 Winter 2023

Real-world Example
● The server stores a list of “broken” passwords that appeared

on the Internet
● The client wants to check whether the password they just

created for an Internet site is in that database

7

CS489 Winter 2023

Real-world Example
● The server stores a list of “broken” passwords that appeared

on the Internet
● The client wants to check whether the password they just

created for an Internet site is in that database
● If it is, they should not use it
● If it is not but revealed to the database, the password should

not be used either anymore

8

CS489 Winter 2023

Real-world Example
● The server stores a list of “broken” passwords that appeared

on the Internet
● The client wants to check whether the password they just

created for an Internet site is in that database
● If it is, they should not use it
● If it is not but revealed to the database, the password should

not be used either anymore
● Hence, the client needs to query without revealing the

password

9

CS489 Winter 2023

Classification, or Terms for Private Queries
● Server learns matching elements / does not learn matching

elements
○ Searchable encryption / Private information retrieval (PIR)

10

CS489 Winter 2023

Classification, or Terms for Private Queries
● Server learns matching elements / does not learn matching

elements
○ Searchable encryption / Private information retrieval (PIR)

● Keyword / index query
○ Keyword PIR / PIR

11

PIR

12

CS489 Winter 2023

PIR

13

Carol the client has index i

CS489 Winter 2023

PIR

14

Carol the client has index i
Server has DB d1,...,dn

CS489 Winter 2023

PIR

15

Carol the client has index i
Server has DB d1,...,dn

Goal Correctness: Client learns di

CS489 Winter 2023

PIR

16

Carol the client has index i
Server has DB d1,...,dn

Goal Correctness: Client learns di

Goal Security: Server does not learn index i

CS489 Winter 2023

PIR

17

Carol the client has index i
Server has DB d1,...,dn

Goal Correctness: Client learns di

Goal Security: Server does not learn index i

 Catch: There is no security requirement that client only learns di

CS489 Winter 2023

Complexity of PIR
● Theorem: The server’s search complexity for a single query i

is O(n)
● Proof:

18

Q: Why?

Act.

CS489 Winter 2023

Complexity of PIR
● Theorem: The server’s search complexity for a single query i

is O(n)
● Proof:

○ By contradiction
○ Assume the server does not access (consider) item j for query i
○ The server has just learnt that i ≠ j

19

CS489 Winter 2023

Complexity of PIR
● Theorem: The server’s search complexity for a single query i

is O(n)
● Proof:

○ By contradiction
○ Assume the server does not access (consider) item j for query i
○ The server has just learnt that i ≠ j

20

Caveat: This applies for a

single query i but not a

set of concurrent queries

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D

21

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)

22

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

23

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R C → S2: Q2 = R ⊕ I

24

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R C → S2: Q2 = R ⊕ I
● Each server St computes st = -1t ∑1 ≤ j ≤ n Qt(j) dj
● St → C: st

25

CS489 Winter 2023

Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R C → S2: Q2 = R ⊕ I
● Each server St computes st = -1t ∑1 ≤ j ≤ n Qt(j) dj
● St → C: st
● The client computes di = s1 + s2

26

CS489 Winter 2023

Notes on IT-PIR
● Requires at least two servers (who cannot collude)
● Communication complexity O(n)

27

Q: Why?

CS489 Winter 2023

Computational PIR

28

Assume a single server

CS489 Winter 2023

Computational PIR

29

Assume a single server

Choose a public/private key
pair in an additively
homomorphic enc. scheme

CS489 Winter 2023

Computational PIR

30

Assume a single server

Choose a public/private key
pair in an additively
homomorphic enc. scheme

● Let I be the indication vector
● C → S: EC(I(j)) (for 1 ≤ j ≤ n)
● Server computes c = ∏1 ≤ j ≤ n EC(I(j))^(dj) = EC(∑1 ≤ j ≤ n I(j) dj)
● S → C: c
● Client decrypts di = DC(c)

CS489 Winter 2023

Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

31

CS489 Winter 2023

Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

○ Server chooses h, such that there is a “low” number of maximum
collisions per bin (lower than a constant) for database D

32

CS489 Winter 2023

Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

○ Server chooses h, such that there is a “low” number of maximum
collisions per bin (lower than a constant) for database D

○ Client downloads h, computes query i = h(w) and submits i to PIR
(two-round protocol)

33

CS489 Winter 2023

Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

○ Server chooses h, such that there is a “low” number of maximum
collisions per bin (lower than a constant) for database D

○ Client downloads h, computes query i = h(w) and submits i to PIR
(two-round protocol)

○ Query may return constant number of elements as a block (note
public database assumption)

○ If D is updated, so may be h

34

CS489 Winter 2023

Server computes indicator vector
● Assume fully HE
● Let wk be the k-th bit of w and dj,k the k-th bit of dj (1 ≤ k ≤ u)
● C → S: EC(wk)
● For each dj

○ The server computes EC(I(j)) = ∏1 ≤ k ≤ u ¬(EC(wk) ⊕ E(dj,k))

● Caveat: Computation cost is high

35

CS489 Winter 2023

Repeated keywords
● So far, each keyword was unique
● How can we deal with repeated keywords?

○ The indicator vector has now multiple 1 entries
○ The size of result set that can be returned in one query is fixed

36

Searchable
Encryption

37

CS489 Winter 2023

Searchable Encryption
● Server does learn the matching entries for the query
● Server does not know database

38

CS489 Winter 2023

Upload
● Client uploads encrypted database

39

CS489 Winter 2023

Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a

keyed, cryptographic hash function

40

CS489 Winter 2023

Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a

keyed, cryptographic hash function
● Let cj be a counter for keyword wj

41

CS489 Winter 2023

Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a

keyed, cryptographic hash function
● Let cj be a counter for keyword wj
● Client computes tk = H(HK(wj)||cj) (|| denotes concatenation)

42

CS489 Winter 2023

Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a

keyed, cryptographic hash function
● Let cj be a counter for keyword wj
● Client computes tk = H(HK(wj)||cj) (|| denotes concatenation)
● Client sorts { tk } and uploads sorted table T

43

CS489 Winter 2023

SSE Query
● Let w be the query keyword
● C → S: v = HK(w)
● Server computes tk = H(v||k) (1 ≤ k ≤ n)
● Server returns entries matching tk in T

44

CS489 Winter 2023

Notes on searchable encryption
● One round protocol, independent of result set size
● Server computation complexity O(maxj(cj) log n)
● Client communication complexity O(1)
● Server communication complexity O(maxj(cj))
● Much more efficient than PIR

45

CS489 Winter 2023

Efficiency comes at a price
● Server learns which elements match the query
⇒Same elements, same query
● Assume the server knows which is the most common

keyword
○ Abstractly, the server has background knowledge about the frequency of keywords

● Assume the server knows which query is “popular”
○ Abstractly, the server has background knowledge about the frequency of queries

● Etc.

46

Blockchain

47

CS489 Winter 2023

Introduction
●There is a large and changing number of parties
●There is some state S that all parties share

○ S could be the balance of an account/set of transactions
(ledger)

○ S could be the state of a state machine (smart contract)

48

CS489 Winter 2023

The double spending problem

49

Alice has coins and gives them to Bob

CS489 Winter 2023

The double spending problem

50

Alice has coins and gives them to Bob

Later..I wants to
give another set
of coins to Carol

CS489 Winter 2023

The double spending problem

51

Alice has coins and gives them to Bob

Later..I wants to
give another set
of coins to Carol

How do I
know that
Alice still has
the coins?

CS489 Winter 2023

The double spending problem

52

Alice has coins and gives them to Bob

Later..I wants to
give another set
of coins to Carol

How do I
know that
Alice still has
the coins?

 Local state at Alice is not
reliable, because Alice can
reset after transaction with

Bob

CS489 Winter 2023

The double spending problem

53

Alice has coins and gives them to Bob

Later..I wants to
give another set
of coins to Carol

How do I
know that
Alice still has
the coins?

 Local state at Alice is not
reliable, because Alice can
reset after transaction with

Bob

Thus: need a global state

E.g.,Trusted party (bank)

Distributed (blockchain)

CS489 Winter 2023

What is the state?
●The state grows (append only): payload1 || payload2 || payload3

H(previous block) H(payload
1
)

H(previous block) H(payload
2
)

H(previous block) H(payload
3
)

54

CS489 Winter 2023

State is append-only

H(previous block) H(payload
1
)

H(previous block) H(payload
2
)

H(previous block) H(payload
3
)

55

CS489 Winter 2023

State is append-only

H(previous block) H(payload
1
)

H(previous block) H(payload
2
)

H(previous block) H(payload
3
)

56

CS489 Winter 2023

State is append-only

H(previous block) H(payload
1
)

H(previous block) H(payload
2
)

H(previous block) H(payload
3
)

57

CS489 Winter 2023

State is append-only

H(previous block) H(payload
1
)

H(previous block) H(payload
2
)

H(previous block) H(payload
3
)

58

CS489 Winter 2023

Who can add to the state?
●Key Idea

○ Not everyone can add to the state, but only selected
one/few

●Permissioned block
○ Fixed set of signers

●Permissionless block chain
○ Leader election

■ Proof of Work
■ Proof of Stake

59

CS489 Winter 2023

Permissioned Blockchain
●Step 1: Signers agree on next state

○ Consensus protocol
■ CS454

●Step 2: Joint signature of block

○ Multi-party computation
■ Threshold signature

H
1
(previous block) H

2
(payload) Signature(H

1
||H

2
)

60

CS489 Winter 2023

Threshold signature
●Distribution

○ KeyGen: (pubKey, privKey1, privKey2, …)
○ Signeri gets privKeyi

●Signature
○ signaturei = Sign(message, privKeyi)
○ signature = Reconstruct(signature1, signature2, …)

■ At least t out of n: (t, n)-threshold signature
●Verification

○ Verify(signature, message, pubKey) = Τ /⊥

61

CS489 Winter 2023

Permissionless Blockchain
●Anybody should be able to become signer

○ Open system
●Needs to qualify

○ Computation: Proof-of-Work
○ State-dependent: Proof-of-Stake

62

CS489 Winter 2023

Proof of Work

●Requirement:
○ H(previous block) < threshold ⋅ No. hash values

■ Starts with leading zeros
●H is a one-way function

○ Need to try different nonce until requirement is fulfilled

H(previous block) H(payload
1
) Nonce

H(previous block) …

63

CS489 Winter 2023

Expected number of trials
●Output of hash function is uniform in [0, No. hash values – 1]
●Probabilty of success

○ Pr[H < threshold ⋅ No. hash values] = threshold
●Expected number of trials

○ E[H | H < threshold ⋅ No. hash values] = 1 / threshold

64

CS489 Winter 2023

How to determine threshold
●Constant expected time

○ Bitcoin
●Global threshold:

○ threshold = prev. thres. ⋅ (2016 ⋅ 10 minutes) / (time
since 2016th last block)

●Adjusts to the number of parties in the system (miners)

65

CS489 Winter 2023

What if the miner is malicious?
● In permissionless blockchain, step 1 (consensus) of

permissioned blockchain is missing
●There is no guarantee that the miner will use agreed payload

66

CS489 Winter 2023

Nakamoto Consensus
●Assume other (honest) parties somehow agree on “valid”

state
●They will ignore block and continue with previous state
⇒ There can be different chain ends in the system

67

CS489 Winter 2023

What is the agreed state
● If an honest miner agrees with more than one state, which

one should they append to?
●Answer: The longest

68

CS489 Winter 2023

Why?
●The longest chain has used the most work
● If majority of miners is honest, then the longest chain has

used the most honest miners’ work
●Therefore if a majority is honest (> 50%), the longest chain

will be appended the fastest
●Honest parties outrun malicious parties

○ What if the adversary controls >50% of the computing
power?

69

CS489 Winter 2023

Careful
●Honest parties not always in the lead
●Need to wait until payload has “settled”
●E.g. in Bitcoin, the recommendation is 6 blocks (60 minutes)

70

CS489 Winter 2023

Caveat
●Computing hash values does not provide useful results
● Incentive is by transaction fee (a share of each transaction’s

value)
●Massive energy loss

○ As much as Argentina (May 2022,
https://news.climate.columbia.edu/2022/05/04/cryptocurrency-energy/)

○ 0,5% of all electricity consumed in the world (September 2021,
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html)

○ Daily tracking: https://ccaf.io/cbeci/index

71

https://news.climate.columbia.edu/2022/05/04/cryptocurrency-energy/
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://ccaf.io/cbeci/index

CS489 Winter 2023

Proof of Stake
●Stake is a function of the state

○ E.g. account balance divided by total wealth
●Similar idea to mining

○ Signature (Verifiable Random Function)
Sign(H(previous block), timestamp) < stake ⋅ No. VRF
values

72

CS489 Winter 2023

What if the miner is malicious?
●Honest miners can punish malicious miner

○ Burn stake (e.g. set account balance to 0)
●With multiple chains, how to determine which is the “valid” one?

○ Ethereum:
■ Punish forker (equivocator)
■ Vote on “valid” chain

● Punish minority votes
●How to determine “valid” chain, when new to the system?

○ Ethereum: Trusted nodes broadcast last hash

73

CS489 Winter 2023

What is in a state?
●Transactions

○ Sender public key
○ Recipient public key
○ Amount
○ Signature by sender public key

●Smart contract
○ Sender public key
○ Opcodes (program)
○ Storage

74

CS489 Winter 2023

How to validate transaction?
●Check account balance (from blockchain state)
●Verify signature

75

CS489 Winter 2023

Smart contract execution
●Read old storage / program (of blockchain state)
●Execute program

○ Use volatile memory (stack)
●Write updated storage

76

CS489 Winter 2023

How to validate smart contract execution?
●Need to execute program and verify updated storage
●What if the program does not hold (or takes very long)?

○ Limit number of computational steps
■ Charge per step

○ Stop if limit has been exceeded
■ Ethereum: Gas limit

77

CS489 Winter 2023

Block Chain and Private Data?

78

CS489 Winter 2023

Block Chain and Private Data?

79

Caveat: Blockchain

compatibility with

sensitive data?

Other exercises

80

CS489 Winter 2023

Exercise
● Download data sets D1, D2 from XXX
● Encrypt each keyword in D1 with searchable encryption
● Use D2 to attack D1

○ Query for each keyword in D1 ∩ D2

○ Observe the matching entries in D1 (server’s view)

○ Use D2 to guess the keywords in D1

81

CS489 Winter 2023

Notes
● So far communication complexity O(n)
● We can do better in C-PIR

82

CS489 Winter 2023

Folding
● Server arranges database into a f-dimensional hypercube

(we consider f = 2 square)
○ dk,l = di (i = k√n + l)

● Clients generates f (two) indicator vectors I1 and I2
○ I1(k) = 1, I2(l) = 1 (else 0)

● Server computes cl = ∏1 ≤ j ≤ √n EC(I1(j)) ^ (dj,l) (for 1 ≤ l ≤ √n)

83

CS489 Winter 2023

Example

d
k,l

i
I
1

I
2

0

0

1

0

0 0 0 1

84

CS489 Winter 2023

Folding II
● If EC() is fully homomorphic
● Server computes

○ e = ∑1≤j≤√n EC(I2(j)) ⋅ cj,m

● Client decrypts decrypts e = DC(e)

85

CS489 Winter 2023

Folding III
● If EC() is additively homomorphic
● Server splits cl into m “chunks” cl,m

○ Note that Paillier ciphertexts are twice as long as their plaintexts

● Server computes
○ em = ∏1≤j≤√n EC(I2(j)) ^ (cj,m)

● Client decrypts cl,m = DC(em), reconstructs cl, decrypts di =
DC(cl)

86

CS489 Winter 2023

Exercise
● What is the communication complexity of C-PIR for f=2?
● What is the communication complexity of C-PIR for any f?
● What is the lower bound of the communication complexity

of folding for C-PIR?

87

CS489 Winter 2023

Keyword Queries
● Index queries: Dense, each index returns an element
● Keyword queries: Sparse, very few keywords return an

element
⇒ Indicator vector becomes large compared to database size

88

CS489 Winter 2023

Notes on C-PIR
● Computational cost of HE is very high
● Additively HE overhead is higher than fully HE overhead
● Additively HE overhead is so high, that downloading the

entire database is faster

89

CS489 Winter 2023

Exercise
●Create smart contract to accept mined nonce for

○ H(“University of Waterloo rules” || nonce)
○ With at most 220 hashes

●https://ethereum.org/en/developers/

90

https://ethereum.org/en/developers/

CS489 Winter 2023

Returning the first result
● Let I be the indicator vector of length n
● Compute prefix P1 = ∑1 ≤ k ≤ j I(k) (for 1 ≤ j ≤ n)
● Compare prefix P1 to 1n: I’ = (P1(j) – 1)^(p-1) mod p
● Compute prefix P2 = ∑1 ≤ k ≤ j I’(k) (for 1 ≤ j ≤ n)
● Compare prefix P2 to 1n: I’’ = P2(j) – 1)^(p-1) mod p
● Caveat: Using clever math this can be optimized to one

comparison

91

CS489 Winter 2023

Example

0 1 0 1 1 1 0 0I

0 1 1 2 3 4 4 4P1

0 1 1 0 0 0 0 0I’

0 1 2 0 0 0 0 0P2

0 1 0 0 0 0 0 0I’’

92

