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Last two classes!
● Private data access (PIR, SSE)
● Blockchains
● Applied cryptography 
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Private Database Queries
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Introduction…
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Server provider S’s cloud

Secret query…
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Introduction…
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Server provider S’s cloud

Secret query…

Even I might not know 
plaintext of the DB

I want my query to be 
private…
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Real-world Example
● The server stores a list of “broken” passwords that appeared 

on the Internet
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Real-world Example
● The server stores a list of “broken” passwords that appeared 

on the Internet
● The client wants to check whether the password they just 

created for an Internet site is in that database
● If it is, they should not use it
● If it is not but revealed to the database, the password should 

not be used either anymore
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Real-world Example
● The server stores a list of “broken” passwords that appeared 

on the Internet
● The client wants to check whether the password they just 

created for an Internet site is in that database
● If it is, they should not use it
● If it is not but revealed to the database, the password should 

not be used either anymore
● Hence, the client needs to query without revealing the 

password
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Classification, or Terms for Private Queries
● Server learns matching elements / does not learn matching 

elements
○ Searchable encryption / Private information retrieval (PIR)
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Classification, or Terms for Private Queries
● Server learns matching elements / does not learn matching 

elements
○ Searchable encryption / Private information retrieval (PIR)

● Keyword / index query
○ Keyword PIR / PIR
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PIR

17

Carol the client has index i 
Server has DB d1,...,dn

Goal  Correctness: Client learns di

Goal Security: Server does not learn index i

 Catch:  There is no security requirement that client only learns di
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Complexity of PIR
● Theorem: The server’s search complexity for a single query i 

is O(n)
● Proof:
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Q: Why?

Act.



CS489 Winter 2023 

Complexity of PIR
● Theorem: The server’s search complexity for a single query i 

is O(n)
● Proof:

○ By contradiction
○ Assume the server does not access (consider) item j for query i
○ The server has just learnt that i ≠ j
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Complexity of PIR
● Theorem: The server’s search complexity for a single query i 

is O(n)
● Proof:

○ By contradiction
○ Assume the server does not access (consider) item j for query i
○ The server has just learnt that i ≠ j
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Caveat: This applies for a 

single query i but not a 

set of concurrent queries
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Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
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Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
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● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n
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Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R  C → S2: Q2 = R ⊕ I
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Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R  C → S2: Q2 = R ⊕ I
● Each server St computes st = -1t ∑1 ≤ j ≤ n Qt(j) dj 
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Information-Theoretic PIR
● Assume two servers S1 and S2 with the same database D
● The client C constructs an indicator vector I ∈ { 0, 1 }n

○ I(i) = 1, I(j) = 0 (j ≠ i)
● The client chooses a random, binary vector R ∈ { 0, 1 }n

● C → S1: Q1 = R  C → S2: Q2 = R ⊕ I
● Each server St computes st = -1t ∑1 ≤ j ≤ n Qt(j) dj 
● St → C: st
● The client computes di = s1 + s2
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Notes on IT-PIR
● Requires at least two servers (who cannot collude)
● Communication complexity O(n)
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Q: Why?
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Computational PIR
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Assume a single server
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Computational PIR
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homomorphic enc. scheme
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Computational PIR

30

Assume a single server

Choose a public/private key 
pair in an additively 
homomorphic enc. scheme

● Let I be the indication vector
● C → S: EC(I(j)) (for 1 ≤ j ≤ n)
● Server computes c = ∏1 ≤ j ≤ n EC(I(j))^(dj) = EC(∑1 ≤ j ≤ n I(j) dj)
● S → C: c
● Client decrypts di = DC(c)
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Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:
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Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

○ Server chooses h, such that there is a “low” number of maximum 
collisions per bin (lower than a constant) for database D
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Hashing Elements…or Searches?
● Let w be the query keyword
● Let there be a hash function h, such that h(w) = i
● Dealing with collisions:

○ Server chooses h, such that there is a “low” number of maximum 
collisions per bin (lower than a constant) for database D

○ Client downloads h, computes query i = h(w) and submits i to PIR 
(two-round protocol)

○ Query may return constant number of elements as a block (note 
public database assumption)

○ If D is updated, so may be h
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Server computes indicator vector
● Assume fully HE
● Let wk be the k-th bit of w and dj,k the k-th bit of dj (1 ≤ k ≤ u) 
● C → S: EC(wk)
● For each dj

○ The server computes EC(I(j)) = ∏1 ≤ k ≤ u ¬(EC(wk) ⊕ E(dj,k))

● Caveat: Computation cost is high
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Repeated keywords
● So far, each keyword was unique
● How can we deal with repeated keywords?

○ The indicator vector has now multiple 1 entries
○ The size of result set that can be returned in one query is fixed
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Searchable 
Encryption
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Searchable Encryption
● Server does learn the matching entries for the query
● Server does not know database
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Upload
● Client uploads encrypted database 
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keyed, cryptographic hash function
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Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a 

keyed, cryptographic hash function
● Let cj be a counter for keyword wj
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Upload
● Client uploads encrypted database
● Let H() be a cryptographic hash function and HK() be a 

keyed, cryptographic hash function
● Let cj be a counter for keyword wj
● Client computes tk = H(HK(wj)||cj) (|| denotes concatenation)
● Client sorts { tk } and uploads sorted table T
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SSE Query
● Let w be the query keyword
● C → S: v = HK(w)
● Server computes tk = H(v||k) (1 ≤ k ≤ n)
● Server returns entries matching tk in T
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Notes on searchable encryption
● One round protocol, independent of result set size
● Server computation complexity O(maxj(cj) log n)
● Client communication complexity O(1)
● Server communication complexity O(maxj(cj))
● Much more efficient than PIR

45



CS489 Winter 2023 

Efficiency comes at a price
● Server learns which elements match the query
⇒Same elements, same query
● Assume the server knows which is the most common 

keyword
○ Abstractly, the server has background knowledge about the frequency of keywords

● Assume the server knows which query is “popular”
○ Abstractly, the server has background knowledge about the frequency of queries

● Etc.
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Blockchain
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Introduction
●There is a large and changing number of parties
●There is some state S that all parties share

○ S could be the balance of an account/set of transactions 
(ledger)

○ S could be the state of a state machine (smart contract)
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The double spending problem

53

Alice has coins and gives them to Bob

Later..I wants to 
give another set 
of coins to Carol

How do I 
know that 
Alice still has 
the coins?

 Local state at Alice is not 
reliable, because Alice can 
reset after transaction with 

Bob

Thus: need a global state

E.g.,Trusted party (bank)

Distributed (blockchain) 
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What is the state?
●The state grows (append only): payload1 || payload2 || payload3

H(previous block)   H(payload
1
)

H(previous block)   H(payload
2
)

H(previous block)   H(payload
3
)
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State is append-only 
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3
)

55



CS489 Winter 2023 

State is append-only 

H(previous block)   H(payload
1
)

H(previous block)   H(payload
2
)

H(previous block)   H(payload
3
)

56



CS489 Winter 2023 

State is append-only 

H(previous block)   H(payload
1
)

H(previous block)   H(payload
2
)

H(previous block)   H(payload
3
)

57



CS489 Winter 2023 

State is append-only 

H(previous block)   H(payload
1
)

H(previous block)   H(payload
2
)

H(previous block)   H(payload
3
)

58



CS489 Winter 2023 

Who can add to the state?
●Key Idea

○ Not everyone can add to the state, but only selected 
one/few

●Permissioned block
○ Fixed set of signers

●Permissionless block chain
○ Leader election

■ Proof of Work
■ Proof of Stake
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Permissioned Blockchain
●Step 1: Signers agree on next state

○ Consensus protocol
■ CS454

●Step 2: Joint signature of block

○ Multi-party computation
■ Threshold signature

H
1
(previous block)   H

2
(payload)   Signature(H

1
||H

2
)
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Threshold signature
●Distribution

○ KeyGen: (pubKey, privKey1, privKey2, …)
○ Signeri gets privKeyi

●Signature
○ signaturei = Sign(message, privKeyi)
○ signature = Reconstruct(signature1, signature2, …)

■ At least t out of n: (t, n)-threshold signature
●Verification

○ Verify(signature, message, pubKey) = Τ /⊥
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Permissionless Blockchain
●Anybody should be able to become signer

○ Open system
●Needs to qualify

○ Computation: Proof-of-Work
○ State-dependent: Proof-of-Stake
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Proof of Work

●Requirement:
○ H(previous block) < threshold ⋅ No. hash values

■ Starts with leading zeros
●H is a one-way function

○ Need to try different nonce until requirement is fulfilled

H(previous block)   H(payload
1
)   Nonce

H(previous block)   …
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Expected number of trials
●Output of hash function is uniform in [0, No. hash values – 1]
●Probabilty of success

○ Pr[H < threshold ⋅ No. hash values] = threshold
●Expected number of trials

○ E[H | H < threshold ⋅ No. hash values] = 1 / threshold
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How to determine threshold
●Constant expected time

○ Bitcoin
●Global threshold:

○ threshold = prev. thres. ⋅ (2016 ⋅ 10 minutes) / (time 
since 2016th last block)

●Adjusts to the number of parties in the system (miners)
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What if the miner is malicious?
● In permissionless blockchain, step 1 (consensus) of 

permissioned blockchain is missing
●There is no guarantee that the miner will use agreed payload
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Nakamoto Consensus
●Assume other (honest) parties somehow agree on “valid” 

state
●They will ignore block and continue with previous state
⇒ There can be different chain ends in the system
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What is the agreed state
● If an honest miner agrees with more than one state, which 

one should they append to?
●Answer: The longest
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Why?
●The longest chain has used the most work
● If majority of miners is honest, then the longest chain has 

used the most honest miners’ work
●Therefore if a majority is honest (> 50%), the longest chain 

will be appended the fastest
●Honest parties outrun malicious parties

○ What if the adversary controls >50% of the computing 
power?
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Careful
●Honest parties not always in the lead
●Need to wait until payload has “settled”
●E.g. in Bitcoin, the recommendation is 6 blocks (60 minutes)
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Caveat
●Computing hash values does not provide useful results
● Incentive is by transaction fee (a share of each transaction’s 

value)
●Massive energy loss

○ As much as Argentina (May 2022, 
https://news.climate.columbia.edu/2022/05/04/cryptocurrency-energy/)

○ 0,5% of all electricity consumed in the world (September 2021, 
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html) 

○ Daily tracking: https://ccaf.io/cbeci/index
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Proof of Stake
●Stake is a function of the state

○ E.g. account balance divided by total wealth
●Similar idea to mining

○ Signature (Verifiable Random Function)
Sign(H(previous block), timestamp) < stake ⋅ No. VRF 
values
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What if the miner is malicious? 
●Honest miners can punish malicious miner

○ Burn stake (e.g. set account balance to 0)
●With multiple chains, how to determine which is the “valid” one?

○ Ethereum:
■ Punish forker (equivocator)
■ Vote on “valid” chain

● Punish minority votes
●How to determine “valid” chain, when new to the system?

○ Ethereum: Trusted nodes broadcast last hash
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What is in a state?
●Transactions

○ Sender public key
○ Recipient public key
○ Amount
○ Signature by sender public key

●Smart contract
○ Sender public key
○ Opcodes (program)
○ Storage

74



CS489 Winter 2023 

How to validate transaction?
●Check account balance (from blockchain state)
●Verify signature
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Smart contract execution
●Read old storage / program (of blockchain state)
●Execute program

○ Use volatile memory (stack)
●Write updated storage
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How to validate smart contract execution?
●Need to execute program and verify updated storage
●What if the program does not hold (or takes very long)?

○ Limit number of computational steps
■ Charge per step

○ Stop if limit has been exceeded
■ Ethereum: Gas limit
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Block Chain and Private Data? 
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Block Chain and Private Data? 
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Caveat: Blockchain 

compatibility with 

sensitive data? 



Other exercises
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Exercise 
● Download data sets D1, D2 from XXX
● Encrypt each keyword in D1 with searchable encryption
● Use D2 to attack D1

○ Query for each keyword in D1 ∩ D2

○ Observe the matching entries in D1 (server’s view)

○ Use D2 to guess the keywords in D1
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Notes
● So far communication complexity O(n)
● We can do better in C-PIR
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Folding
● Server arranges database into a f-dimensional hypercube 

(we consider f = 2 square)
○ dk,l = di (i = k√n + l)

● Clients generates f (two) indicator vectors I1 and I2
○ I1(k) = 1, I2(l) = 1 (else 0)

● Server computes cl = ∏1 ≤ j ≤ √n EC(I1(j)) ^ (dj,l) (for 1 ≤ l ≤ √n)
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Example

d
k,l

i
I
1

I
2

0

0

1

0

0 0 0 1
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Folding II
● If EC() is fully homomorphic
● Server computes

○ e = ∑1≤j≤√n EC(I2(j)) ⋅ cj,m

● Client decrypts decrypts e = DC(e)
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Folding III
● If EC() is additively homomorphic
● Server splits cl into m “chunks” cl,m

○ Note that Paillier ciphertexts are twice as long as their plaintexts

● Server computes
○ em = ∏1≤j≤√n EC(I2(j)) ^ (cj,m)

● Client decrypts cl,m = DC(em), reconstructs cl, decrypts di = 
DC(cl)
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Exercise
● What is the communication complexity of C-PIR for f=2?
● What is the communication complexity of C-PIR for any f?
● What is the lower bound of the communication complexity 

of folding for C-PIR?
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Keyword Queries
● Index queries: Dense, each index returns an element
● Keyword queries: Sparse, very few keywords return an 

element
⇒ Indicator vector becomes large compared to database size
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Notes on C-PIR
● Computational cost of HE is very high
● Additively HE overhead is higher than fully HE overhead
● Additively HE overhead is so high, that downloading the 

entire database is faster
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Exercise
●Create smart contract to accept mined nonce for

○ H(“University of Waterloo rules” || nonce)
○ With at most 220 hashes

●https://ethereum.org/en/developers/
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Returning the first result
● Let I be the indicator vector of length n
● Compute prefix P1 = ∑1 ≤ k ≤ j I(k)  (for 1 ≤ j ≤ n)
● Compare prefix P1 to 1n: I’ = (P1(j) – 1)^(p-1) mod p
● Compute prefix P2 = ∑1 ≤ k ≤ j I’(k)  (for 1 ≤ j ≤ n)
● Compare prefix P2 to 1n: I’’ = P2(j) – 1)^(p-1) mod p
● Caveat: Using clever math this can be optimized to one 

comparison
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Example

0 1 0 1 1 1 0 0I

0 1 1 2 3 4 4 4P1

0 1 1 0 0 0 0 0I’

0 1 2 0 0 0 0 0P2

0 1 0 0 0 0 0 0I’’
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